藏波罗花的化学成分研究

2013-02-14 04:20高燕萍沈云亨高燕霞张卫东
天然产物研究与开发 2013年3期
关键词:第二军医大学药学院药科

高燕萍,沈云亨,高燕霞,李 博,张卫东*

1中国药科大学 中药学院,南京210009;2 第二军医大学药学院 天然药物化学教研室,上海200433

Introduction

Incarvillea younghusbandii,belonging to the genus Incarvillea (Bignoniaceae),is a perennial herb native to the Qinghai and Tibet provinces of China[1].As a Chinese folk medicine,this plant has been long used for the treatment of dizziness,anemia,and to stimulate lactation[2,3].To date,phytochemical investigations on I.younghusbandii have just revealed the isolation of coumarins[4],volatile oil[5],phenolic glycosides[6],and a dimeric cyclohexylethanoid[7].In order to search for more interesting compounds with bioactivities,we investigated the chemical components of the titled plant.Ten compounds were obtained,all of which were isolated from I.younghusbandii for the first time.

Experimental

Apparatus and reagents

Melting points were determined on a RY-1 micro-melting point apparatus without correction. The ESI-MS were acquired on Agilent 1100 series mass spectrometer.NMR spectra were measured on a Bruker DRX-600 spectrometer with TMS as internal standard,operating at 600 MHz for1H and 150 MHz for13C NMR.Chemical shift (δ)was given in ppm and coupling constants in Hz. Column chromatographies (CC)were carried out on silica gel (200-300 mesh,Yantai,China)and sephadex LH-20 (GE Healthcare Bio-Sciences AB,Sweden),and precoated silica GF254plates were used for TLC (Qingdao Haiyang Chemical Co.,Ltd.,China).

Plant material

The whole plants of I. younghusbandiii were collected in Zhongdian county,Yunnan province,P. R. China,in August 2010,and authenticated by Prof. Han-Ming Zhang of Second Military Medical University.A voucher specimen (No. 20100815)was deposited in the School of Pharmacy,Second Military Medical University.

Extraction and isolation

The air-dried whole plant (1.3 kg)were powered and extracted with 80% EtOH for four times and then partitioned with petroleum ether,EtOAc,and n-BuOH successively.The EtOAc-soluable extract was subjected to a silica gel column eluting with a gradient petroleum ether/Me2CO (30∶0→0∶1)to obtain frs.1-5.Fr.2 (1 g)were chromatographied on silica gel (200-300 mesh)eluting with a gradient of petroleum ether/Me2CO (10∶1),and then purified by repeated column chromatography over Sephadex LH-20 (MeOH),yielding compounds 3 (7. 5 mg),5 (9. 0 mg),7 (20. 0 mg),9 (12.0 mg),and 10 (12.5mg).Fr.3 (1.5 g)was applied to silica gel column chromatography and purified by PTLC (CHCl3:MeOH 15 ∶1),to afford compounds 1 (8.0 mg),2 (9.6 mg),and 8 (27.0 mg).Fr.4 (0.5 g),undertook to Sephadex LH-20 and combined with PTLC (CHCl3:MeOH 10 ∶1),gave compounds 4 (15.0 mg)and 6 (17.5 mg).

Structural elucidation

Compound 1 C8H16O3;Colorless oil;ESI-MS:m/z 183[M+Na]+,159 [M-H]-;1H NMR (CDCl3,600 MHz)δ:1.40-1.42 (2H,m,Hax-2 and Hax-6),1.63-1.72 (2H,overlapped,m,Heq-2 and Heq-6),1.63-1.72 (4H,overlapped,m,Hax-3 and Heq-3,Hax-5 and Heq-5 ),3.52 (1H,m,H-4),1.69 (2H,t,J =7.2 Hz,H-1'),3.73 (2H,t,J = 6.6 Hz,H-2');13C NMR (CDCl3,150 MHz)δ:70.8 (C-1),36.1 (C-2),31.3 (C-3),70.8 (C-4),31.3 (C-5),36.1 (C-6),45.5 (C-1'),59.2 (C-2'). The NMR data was identical with those reported in the literature[8],and elucidated as regyol.

Compound 2 C8H14O3;Colorless oil;ESI-MS:m/z 181[M+Na]+,157 [M-H]-;1H NMR (CDCl3,600 MHz)δ:1.75 (2H,dt,J = 13.2,4.8 Hz,Hax-2,Hax-6),2.10 (2H,m,Heq-2,Heq-6),2.73 (2H,dt,J = 13.8,6.0 Hz,Hax-3,Hax-5),2.22 (2H,m,Heq-3,Heq-5),1.80 (2H,t,J = 6.0 Hz,H-7),3.95(2H,t,J = 6.0 Hz,H-8);13C NMR (CDCl3,150 MHz)δ:70.5 (C-1),36.7 (C-2),37.0 (C-3),212.9 (C-4),37.0 (C-5),36.7 (C-6),41.5 (C-7),59.5 (C-8). The NMR data were in accordance with those reported in the literature[9]. Therefore,compound 2 was characterized as cleroindicin B.

Compound 3 C11H21N;White powder;ESI m/z 168[M + H]+;1H NMR (CDCl3,600 MHz)δ:0.91(3H,d,J = 6.6 Hz,CH3-4),1.01 (3H,d,J = 6.6 Hz,CH3-8),1.18 (1H,m,H-4),1.50 (1H,m,H-5),1.62 (2H,m,Ha-6,Ha-7),1.81 (1H,m,H-9),1.98 (2H,m,Hb-6,Hb-7),2.33 (1H,m,Hax-1),2.44 (1H,brs,Hax-3),2.76 (3H,s,N-Me),2.91(1H,dd,J = 12.6,4.2 Hz,H-8),3.23 (1H,d,J =10.8 Hz,Heq-3),3.34 (1H,d,J = 10.8 Hz,Heq-1);13C NMR (CDCl3,150 MHz)δ:53.3 (C-1),59.8(C-3),30.5 (C-4),45.6 (C-5),27.2 (C-6),31.8(C-7),34.0 (C-8),42.9 (C-9),16.9 (4-CH3),18.9 (8-CH3),44.7 (N-CH3). The NMR data were in agreement with those reported in the literature[10],and determined as β-skytanthine.

Compound 4 C21H32O12;White amorphous powder;ESI-MS:m/z 499[M + Na]+,475 [M-H]-;1H NMR(CD3OD,600 MHz)δ:6.81 (lH,d,J = 8.2 Hz,H-5),6.73 (1H,d,J = 2.0 Hz,H-2),6.67 (1H,dd,J=8.2,2.0 Hz,H-6),5.15 (lH,d,J = 16 Hz,H-1''),4.29 (lH,d,J = 7.8 Hz,H-1'),3.81 (3H,s,Ar-OCH3),2.81 (2H,t,J = 7.27 Hz,H-β),1.25(3H,d,J = 6.2 Hz,H-6''),4.08-3.24 (10H of ducose and rhamnose,m,H-α);13C NMR (CDCl3,150 MHz)δ:132.8 (C-1),112.8 (C-2),147.4 (C-3),147.2 (C-4),117.0 (C-5),121.1 (C-6),71.9 (Cα),36.5 (C-β),104.1 (C-1'),75.5 (C-2'),84.4(C-3'),71.1 (C-4'),77.7 (C-5'),62.6 (C-6'),102.6 (C-1''),72.2 (C-2''),72.1 (C-3''),73.9(C-4''),70.0 (C-5''),17.9 (C-6''),56.5 (3-OCH3). Compound 4 was determined as deacyl isomartynoside by comparison with the spectra data reported in the literature[11].

Compound 5 C8H10O2;Colorless oil;ESI-MS:m/z 161[M+Na]+,137 [M-H]-;1H NMR (CDCl3,600 MHz)δ:7.08 (2H,d,J = 8.4 Hz,H-2,H-6),6.76(2H,d,J = 7.8 Hz,H-3,H-5),3.81 (2H,t,J =6.6 Hz,H-α),2.76 (2H,t,J = 6.6 Hz,H-β);13C NMR (CDCl3,150 MHz)δ:154.2 (C-1),130.5 (C-4),130.2 (C-3,C-5),115.4 (C-2,C-6),63.8 (Cα),38.2 (C-β). The above data were identical with those reported in the literature[12]. Consequently,compound 5 was identified as tyrosol.

Compound 6 Amorphous solid,C14H24O8;ESI-MS:m/z 343[M + Na]+;1H NMR (600 MHz,CD3OD)δ:aglycone 4.15 (1 H,dt,J = 11.0,8.0 Hz,H-2"a),3.86 (1H,dt,J = 11.0,8.0 Hz,H-2b "),2.68(2H,ddd,J = 16.0,10.5,5.0 Hz,H-2ax,H-6ax),2.31 (2H,dt,J = 16.0,10.5 Hz,H-2eq,H-6eq),2.03 (2H,ddd,J = 16.0,10.5,5.0 Hz,H-3ax,H-5ax),1.97 (2H,t,J = 8.0 Hz,H-l"),1.94 (2H,dt,J = 16.0,10.5 Hz,H-3eq,H-5eq);glucose 4.49(1H,d,J = 8.0 Hz,H-1'),3.92 (1H,dd,J =12.2,2.4 Hz,H-6'a),3.71(1H,dd,J = 12.2,6.4 Hz,H-6'b),3.49 (1H,t,J = 9.2 Hz,H-3'),3.47(1H,ddd,J = 9.2,6.4,2.4 Hz,H-5'),3.38 (1H,t,J = 9.2 Hz,H-4'),3.25 (1H,dd,J = 9.2,8.0 Hz,H-2');13C NMR (D2O,150 MHz)δ:219.5 (Cl),103.0 (C-l'),76.7 (C-3'),76.5 (C-5'),73.8(C-2'),70.5 (C-4),70.4 (C-4'),67.1 (C-2"),61.5(C-6'),40.6 (C-l"),37.1" (C-2,C-6),36.5(C-3,C-5). By comparison the spectra data with those related in the literature[13],compound 6 was elucidated as rengioside B.

Compound 7 C29H50O;White needles;mp.139-140° C;ESI-MS m/z 437.4 [M + Na]+;13C NMR(CDCl3,150 MHz)δ:37.3 (C-1),31.7 (C-2),71.8(C-3),42.3 (C-4),140.8 (C-5),121.7 (C-6),31.7 (C-7),31.9 (C-8),50.2 (C-9),36.5 (C-10),21.1 (C-11),39.8 (C-12),42.3 (C-13),56.8(C-14),24.3 (C-15),28.2 (C-16),56.1 (C-17),11.9 (C-18),19.1 (C-19),36.1 (C-20),18.8 (C-21),34.0 (C-22),26.1 (C-23),45.9 (C-24),29.2(C-25),19.8 (C-26),19.4 (C-27),23.1 (C-28),12.0 (C-29). The above data were in accordance with those reported in the literature[14]. Consequently,compound 7 was identified as β-sitosterol.

Compound 8 C8H10O3;Colorless oil;ESI-MS:m/z 155[M + H]+,177 [M + Na]+,153 [M-H]-;1H NMR (CDCl3,600 MHz)δ:4.07 (1H,m,H-2a),3.93 (1H,m,H-2b),2.33 (1H,m,H-3a),2.20(1H,m,H-3b),6.77 (1H,d,J = 10.2 Hz,H-5),6.00 (1H,d,J = 10.2 Hz,H-6),2.78 (1H,dd,J =16.8,4.8 Hz,Hax-8),2.60 (1H,dd,J = 16.5,5.4 Hz,Heq-8),4.23 (1H,m,H-9);13C NMR (CDCl3,150 MHz)δ:66.2 (C-2),39.5 (C-3),75.4 (C-4),148.3 (C-5),128.5 (C-6),197.1 (C-7),40.1 (C-8),81.4 (C-9). The NMR data were in accordance with those reported in the literature[15],and determined as cleroindicin F.

Compound 9 C11H22NO;Colorless needles which showed a positive reaction to the Dragendorff reagent;mp.103-104 °C;ESI-MS:m/z 184 [M + H]+;1H NMR (CDCl3,600 MHz)δ:2.68 (1H,ddd,J =2.0,6.0,12.0 Hz,H-1a),1.56 (1H,t,J = 12.0 Hz,H-1b),2.51 (1H,ddd,J =2.0,5.0,11.5 Hz,H-3a),1.67 (1H,t,J = 12.0 Hz,H-3b),2.08 (1H,m,H-4),2.41 (1H,ddd,J = 2.0,6.0,12.0 Hz,H-5),1.80 (1H,m,H-6a),1.50 (1H,br q,J = 5.0,7.0,13.0 Hz H-6b),4.31 (1H,td,J =2.0,6.5 Hz,H-7),1.82 (1H,m,H-8),1.93 (1H,pent,J = 6.0,6.0,12.0 Hz,H-9),2.27 (3H,s,N-Me),0.86 (3H,d,J = 6.6 Hz,Me-4),1.02 (3H,d,J = 6.6 Hz,Me-8);13C NMR (CDCl3,150 MHz)δ:73.4 (C-7),58.0 (C-1,C-3),46.2 (N-Me),45.8 (C-9),42.3(C-8),37.5 (C-5),32.7 (C-6),30.5 (C-4),17.4(Me-8),14.2 (Me-4). Comparing NMR data with those reported in the literature[16],compound 9 was determined as incarvilline.

Compound 10 C8H8O4;White powder;ESI-MS:m/z 167[M-H]-;1H NMR (CD3OD,600 MHz)δ:7.55(2H,s,H-2 and H-6),6.82 (1H,d,J = 7.8 Hz,H-5),3.88 (3H,s,3-OCH3);13C NMR (CD3OD,150 MHz)δ:123.0 (C-1),113.9 (C-2),152.5 (C-3),148.6 (C-4),115.8 (C-5),125.2 (C-6),170.0 (C-7),56.4 (3-OCH3). The above data were in agreement with those dealt with in the literature[17],and identified as 3-O-methyl-4-hydroxy benzoic acid.

1 Editor committee. Flora of China. Beijing:Science Press,1990,69:46.

2 Ni ZC. Economic Plants of Tibet. Beijing:Beijing Science and Technology Press,1990.606.

3 Editor committee. Chinese Herb Medicine. Shanghai:Shanghai Science and Technology Publisher 1999,7:428.

4 Fu Y,Bai Y,Dawa ZM,et al.Chemical constituents of Incarvillea younghusbandii. Chin J Chin Mater Med,2010,35:58-62.

5 Fu Y,Li PJ,Bai Y,et al. Chemical analysis of essential oil from Incarvillea younghusbandii by GC-MS. J Instrum Anal,2008,27:70-71.

6 Pan WG,Jiang SP,Luo P,et al. Isolation,purification and structure identification of two phenolic glycosides from the roots of Incarvillea younghusbandii Sprague and their antioxidant activities.Acta Pharm Sin,2011,46:422-427.

7 Gao YP,Shen YH,Zhang SD,et al.Incarvilleatone,a new cyclohexylethanoid dimer from Incarvillea younghusbandii and its inhibition against Nitric Oxide (NO)release. Org Lett,2012,14:1954-1957.

8 Kobler C Effenberger F. Chemo enzymatic synthesis of Rengyol and Isorengyol.Tetrahedron,2006,62:4823-4828.

9 Tian J,Zhao QS,Zhang HJ,et al. New Cleroindicins from Clerodendrum indicum.J Nat Prod,1997,60:766-769.

10 Lins AP,Felicio JD. Monoterpene alkaloids from Tecoma stans.Phytochemistry,1993,34:876-878.

11 Calis I,Lahloub M,Rogenmoser M,et al. Isomartynoside,a phenylpropanoid glycoside from Galeopsis pubescens. Phytochemistry,1984,23:2313-2315.

12 Takaya Y,Furukawa T,Miura S,et al. Antioxident constituents in distillation residue of Awamori Spirits. J Agric Food Chem,2007,55:75-79.

13 Guiso M,Marra C,Piccioni F,et al. Iridoid and phenylpropanoid glucosides from Tecoma Capensis. Phytochemistry,1997,45:193-194.

14 Luo XR,Li B,Nian JX,et al. Studies on chemical constituents of Alternanthera philoxeroides.Chin Pharm J,2007,42:1138-1140.

15 Tian J,Zhao QS,Zhang HJ,et al.Five new compounds from Clerodendrum Indicum.Chin Chem Lett,1997,8:129-132.

16 Chi YM,Yan WM,Chen DC,et al. A monoterpene alkaloid from incarvillea sinensis. Phytochemistry,1992,31:2930-2932.

17 Scott KN. Carbon-13 nuclear magnetic resonance of biologically important aromatic acid I. Chemical shift of benzoic acid and derivatives.J Am Chem Soc,1972,94:8564-8568.

猜你喜欢
第二军医大学药学院药科
中国药科大学2020年1~7月获授权专利情况(3)
中国药科大学2020年1~7月获授权专利情况(1)
中国药科大学2020年1~7月获授权专利情况(2)
中国药科大学2018年1~6月获授权专利情况
让防治肝癌成为可能
———记第二军医大学免疫学研究所副教授侯晋
对映选择性羟化乙基苯的碳氢键合成 (R)-和 (S)-1-苯基乙醇
滇南羊耳菊乙酸乙酯部位化学成分研究
金铁锁地上部分化学成分研究
长江学者钟建江教授来我校药学院讲学
1994~2009年SCIE收录第二军医大学药学院论文的统计分析