模糊控制器在空调系统温度控制中的应用研究

2013-04-12 11:01
科技视界 2013年14期
关键词:水阀模糊化中央空调

郭 旭

(重庆化工职业学院,中国 重庆 400020)

0 引言

中央空调系统的设计是以室内空气参数为基本依据,通过对整个空调系统新风、回风的温度、湿度、送风风机运行状态、初效过滤段的压差等现场信号的采集,根据所设计的控制策略控制送风风机的变频调速、加湿器的加湿、冷、热水阀门的开度大小来达到设定的空气状态,且根据室内、外空气的状态(温度、湿度)确定系统的运行工况,在保证生产工艺的要求的前提下,使空调系统运行合理、安全、可靠、能耗低等,使控制效果达到最优。因为回风温、湿度与室内温、湿度的变化情况有一致性,所以常把系统回风温、湿度作为被控参数,控制回路采用多个回路的PID控制[1]。但由于空调系统传递滞后较大,且是一个干扰大、高度非线性、随机干扰因素多的系统,参数整定困难,致使普通PID控制难以满足要求。我们运用模糊控制技术,采用一种基于模糊控制规则的控制方法设计出恒温恒湿中央空调控制系统,具有超调小、调节迅速和上升时间短的特点,且具有很好的鲁棒性[2]。

1 模糊控制技术节能原理

智能模糊控制系统不仅对中央空调冷冻水系统、冷却水系统、冷却塔风机等各个环节进行全面控制,而且采用系统集成技术将各个控制系统在物理上、逻辑上和功能上互连在 一起,实现它们之间的信息综合、资源共享,在一个计算机平台上进行集中控制和统一管理,实现中央空调全系统的整体协调运行和综合性能优化[4]。

(1)冷冻水系统采用最佳输出能量控制,实现空调主机冷媒流量跟随末端负荷的 由于冷冻水系统采用了输出能量的动态控制,需求供应,使空调系统在各种负荷情况下,都能既保证末端用户的舒适性,又最大限度地 节省了系统的能量消耗[3]。

(2)冷却水系统采用最佳热转换效率控制,保证了中央空调主机处于最佳工作状态,始终保持最佳的能源利用率,从而降低了 空调主机的能量消耗,同时因冷却水泵和冷却塔风机经常在低于额定负荷下运行,也最大 限度地节约了冷却水泵和冷却塔风机的能量消耗[4]。

2 系统特点

(1)具有可靠的安全保护 通过全面的运行参数采集,有效地保障了冷冻水和冷却水系统在变流量工况下空调主机蒸发器和冷凝器的安全稳定运行。

(2)实现动态负荷跟随,保障了末端的服务质量 系统突破了传统中央空调冷媒系统的运行方式,实现最佳输出能量控制,在空调系统的任何负荷状况下,都能 既保障中央空调系统末端的服务质量,又实现最大的节能。

(3)具有自寻优、自适应的智能模糊控制对于中央空调这样多参量相互影响的复杂系统,要实现冷冻水和冷却水系统全部变流 量运行,需要采用了模糊控制技术,实现了中央空调系统各种负荷条件下的最大节能。

(4)优化了空调主机运行环境,系统全面采集中央空调的各种运行参量,再利用模糊控制技术对这些运行参量进行动态优化控制,使空调 主机始终运行在最佳工况,以保持最高的热转换效率,从而减少主机的能耗 5%-10%[5]。

3 制冷空调系统模型

制冷空调的实际控制对象大多可用高阶的微分方程来描述。为了分析简便,常用低阶模型来近似描述控制对象的动态特性,只要能满足一定的控制精度。在自动控制系统中一阶惯性环节定义的微分方程是一阶的,且输出响应需要一定的时间才能达到稳态值。因此中央空调系统中表冷器、电动水阀都可以近似的用一阶惯性环节来表示,而房间作为系统的控制对象,根据能量守恒定律,可建立控制对象房间的微分方程,它是一个二阶系统,但在工业控制中往往用纯迟延的一阶模型来代替,仿真结果表明,用带迟延的一阶模型来近似描述控制对象完全可以满足实际应用的要求[5]。温度检测和变送环节也有一定的时间滞后,但和控制对象房间的时间常数相比,可以忽略不计,因此温度检测和变送环节可以近似用一阶比例环节来代替。模糊控制系统的结构如图1所示[3]。

图1 模糊控制系统的结构图

4 模糊温度控制器的设计

模糊控制(fuzzy control)是一种对系统控制的宏观方法,加入了控制规则,规则通常采用“IF-THEN”方式来表达实际控制中的专家知识和规则,其最大的特征是将专家的控制经验、知识表达成语言控制规则,用规则去控制目标系统,特别适用于那些数学模型未知的、复杂的、非线性系统进行控制。

设计模糊控制器的第一步是确定语言变量、语言值和隶属度函数。本文涉及的模糊控制器有两个输入信号和一个输出信号,分别为:

1)输入语言变量之一,记为e,是温度设定值和回风温度的偏差,e=s-y。

2)输入语言变量之二,记为de/dt是偏差的变化率。

3)输出语言变量,记为u,是电动水阀的控制电压,单位为V,对应电动水阀的开度。

输入语言变量e的取值:{负大,负中,负小,零,正小,正中,正大},表示符号 {NB,NM,NS,ZE,PS,PM,PB}。 语言值隶属度函数选择三角形,如图 2(a)所示。

输入语言变量de/dt的取值:{负大,负中,负小,零,正小,正中,正大},表示符号{NB,NM,NS,ZE,PS,PM,PB}。 语言值隶属度函数选择三角如图 2(b)所示。

输出变量u的取值:{关闭,微开,小开,半开,小半开,大半开,全开},表示符号{CB,CM,CS,M,OS,OM,OB}。 语言值隶属度函数选择梯形,如图 2(c)所示。

图2

每个语言变量所取的语言值,所对应的语言值隶属函数都是交叉重叠的。初始设定时,可采用均匀等分的方式布置,然后再根据系统仿真或实际的控制结果进行合理的调整。

设计模糊控制器的第二步是引入模糊推断、逻辑实现和控制决策推断。而推断逻辑是由一组IF-THEN的控制规则组成的。这一组控制规则的形成来源于实际经验的总结。

从经验出发,用语言形式表达表达推理控制决策过程如下:

IF{温度设定值和回风温度偏差过大AND偏差有变大的趋势}THEN{电动水阀全开};

IF{温度设定值和回风温度偏差过小AND偏差有变小的趋势}THEN{电动水阀全闭};

类似于上述的一系列控制规则集中在控制规则表中[7]。

在应用模糊控制器实际进行实时控制时,一定的偏差e和偏差变化率de/dt,对应的就有某一些IF-THEN控制规则生效,而这些生效的控制规则产生一个综合推断结论,并通过解模糊过程转换为一个确定的输出值,从而给定电动水阀的控制电压,对应于电动水阀的开度。我们应用了模糊逻辑的min-max合成运算获得综合推断控制决策,并通过mom法,进行解模糊,产生确定的控制调节作用。

5 系统仿真[6]

MATLAB中的模糊逻辑工具箱提供了大量的对输入、输出变量进行模糊化的函数,可以很方便的完成对变量的模糊化。在模糊控制箱中只需给定输入、输出变量的隶属度函数即可完成对变量的模糊化。

输入、输出变量的模糊化

图3所示的模糊控制系统为双输入单输出系统,输入为偏差e和偏差的变化率,输出为u,我们可根据前边给定的输入、输出变量的隶属度函数,在模糊逻辑控制箱添加隶属度函数就可以完成模糊变量的模糊化过程。

模糊控制规则

MATLAB中的模糊逻辑工具箱提供了规则库,将模糊控制规则添加到规则库即可。模糊控制规则是设计一个模糊控制器的关键,该规则给定的好坏将直接影响到所设计的模糊控制器的性能好坏。

反模糊化

MATLAB中的模糊逻辑工具箱提供反模糊化方法(总共提供5种反模糊化方法,即centriod,bisector,mom,lom,som),我们选用其中的mom法,即可对所设计的模糊控制系统进行仿真。

仿真结果

通过上述工作,完成对模糊控制器的设计,在模糊控制系统仿真框图中加入模糊控制器,通过调用相应的模糊推理矩阵,即可对所设计的模糊控制系统进行仿真。

在仿真过程中可根据系统仿真或实际的控制结果调整输入、输出的隶属度函数,一直调整到理想的控制效果为止。

上述模糊控制系统的阶跃响应曲线如图3所示。为了分析比较,对上述系统的控制效果与传统的PID控制效果放在一个坐标系里。从系统仿真曲线看,PID控制器的系统响应曲线有超调,过渡时间比较长,而模糊控制器的系统响应曲线比较平稳,没有超调。

图3 模糊控制系统的阶跃响应曲线[6]

6 结论

使用以上设计的模糊控制器,通过计算机实现实时控制。根据偏差和偏差变化值的大小,再利用模糊控制规则确定电动水阀的输出,从而取得了良好的控制效果,能实时地对温度进行监控,具有以下特点[7]:1)和普通PID控制器控制效果相比,采用模糊控制器后系统响应超调小,响应曲线平稳;2)系统具有良好的响应速度、稳定性和精确性,且具有较强的鲁棒性;3)由模糊控制规则确定的三个参数是动态变化的,更符合空调系统的控制特点。所以说模糊控制器可以克服普通PID控制器的局限性,在中央空调自动控制中具有广泛的应用价值[8]。

[1]孙增圻,等.智能控制理论与技术[M].北京:清华大学出版社,1997,4.

[2]Negm MM,Nasab TM.Integral VSC and preview control of efficiency and speed of a DC drive[J].IEEE Power System Technology,2011,6(2):675-682.

[3]邱黎辉,阙沛文,毛义梅.模糊PID控制在中央空调系统中的应用研究[J].计算机测量与控制,2004,(1):57-59.

[4]李金川,郑智慧.空调制冷自动控制系统运行于管理[M].北京:中国建材工业出版社,2002,6.

[5]Junhyuk C.Development and control of BLDC motor using fuzzy models[J].IEEE Trans.on IAS,2011,28(7):145-188.

[6]焦连渤,沈东凯.模糊PID在温湿度控制中的应用[J].南京航空航天大学学报,1998(8):437-442.

[7]周鲜成.模糊控制技术在变频空调器中的应用[M].北京:北京工业大学出版社,1999,9.

[8] 孙亮,杨鹏.自动控制原理[M].北京:北京工业大学出版社,1999,9.

猜你喜欢
水阀模糊化中央空调
([0,1],[0,1])-模糊拟阵的基和秩函数
餐饮娱乐空间的“边界模糊化”态势探讨——餐饮娱乐空间设计专辑
三角模糊数去模糊化对VIKOR妥协解的影响研究
开阀放水喽
中央空调节能系统的设计及实现
恒温混水阀在燃气热水器系统中应用的实验研究
变频节能在中央空调系统中的应用
清远抽水蓄能电站上水库事故检修闸门充水阀设计探讨
捷丰中央空调产品推荐
中央空调节能技术综述