超高产冬小麦对氮素的吸收、积累和分配

2013-10-16 10:30党红凯李瑞奇李雁鸣孙亚辉张馨文刘梦星
植物营养与肥料学报 2013年5期
关键词:冬小麦氮素器官

党红凯, 李瑞奇, 李雁鸣*, 孙亚辉, 3, 张馨文, 刘梦星

(1 河北农业大学农学院, 河北省作物生长调控重点实验室,河北保定 071001; 2 河北省农林科学院旱作农业研究所,河北衡水 053000; 3 河北联合大学轻工学院,河北唐山 063000)

超高产冬小麦对氮素的吸收、积累和分配

党红凯1, 2, 李瑞奇1, 李雁鸣1*, 孙亚辉1, 3, 张馨文1, 刘梦星1

(1 河北农业大学农学院, 河北省作物生长调控重点实验室,河北保定 071001; 2 河北省农林科学院旱作农业研究所,河北衡水 053000; 3 河北联合大学轻工学院,河北唐山 063000)

超高产; 冬小麦; 氮素; 吸收; 积累; 分配

1 材料与方法

1.1 试验地概况

2年中均选用4个冬小麦新品种,并采用审定时推荐的适宜基本苗。2004年为石麦14、石麦12、冀丰703、石新828,10月4日播种,翌年5月6日开花,6月11日收获; 2005年为特麦1号、石新531、石新828、石麦12,10月6日播种,翌年5月7日开花,6月12日收获。每个品种的总面积均为1 hm2,分为面积相等的3个地块(3333 m2),取样时作为3次重复。2年的籽粒产量均达到或接近超高产(9000 kg/hm2)水平(表4)。

1.2 测定项目和方法

各主要时期在每个品种各重复中按5点法取样,每个样本苗期取样50株,拔节后取样30株。将植株按叶片、叶鞘、茎秆(拔节期开始)、穗(孕穗期开始,开花后10 d以后不包括籽粒)、籽粒分解,105℃烘箱中杀青30 min,然后降温至80℃烘干至恒重,冷却后称量各器官重量,并根据取样株数和每公顷基本苗数计算每公顷该器官的总重量,用于计算氮的总积累量。土壤速效氮含量采用碱解定氮法[11]。植株全氮含量用比色法[11],U2001型紫外分光光度计测定。

1.3 数据处理与统计分析

营养器官氮素转移量=开花期营养器官氮素积累量-成熟期营养器官氮素积累量;

营养器官氮素转移率(%)=该阶段营养器官氮素转移量/营养器官氮素总积累量×100;

营养器官氮素贡献率(%)=营养器官氮素转移量/成熟期籽粒氮素积累量×100。

采用Microsoft Excel 2000处理数据,采用DPS2000数据处理系统进行统计分析和差异显著性检验。

2 结果与分析

2.1 小麦植株体内氮浓度的变化动态

表1 小麦不同器官总干物质中的氮含量(%,干重)Table 1 N contents in different parts of wheat (dry matter)

注(Note): DAA—Days after anthesis. 同列数据后字母相同表示每年度4个品种间在0.05水平差异不显著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year.

2.2 小麦地上部各器官对氮的吸收积累和分配

2.2.1 地上部各器官中氮的积累量 由表2可见,在拔节期以前的各生育时期,不同品种同类器官中氮积累量的差异较大,拔节以后品种间的差异逐渐变小。不同品种各器官氮积累量达到最高值的时期有所不同,叶片和叶鞘中氮的积累量在拔节期、孕穗期或开花期达到最高值,茎秆氮的积累量在孕穗期或开花期达到最高值,穗部均在开花期达到最高值,籽粒氮的积累量在成熟期最高。除籽粒以外的各器官氮积累量达最高值后,即随生育进程逐渐降低。各器官氮积累量比较,生育前期叶片中最高,生育后期籽粒中最高。成熟期不同器官中氮的积累量表现为籽粒>叶片>茎秆≥叶鞘≥穗部。成熟期不同品种各器官中氮的积累量仍存在一定差异,2005年冀丰703和石新828籽粒氮积累量显著高于石麦14和石麦12的,2006年特麦1号籽粒氮积累量显著高于其他3个品种。

2.2.2 不同生育时期氮在各器官中的分配 由表3可见,不同品种各生育时期同类器官中氮的分配率差异较小。生育前期氮在叶片中的分配率最高,孕穗期之前一般都在50%以上,但拔节期以后呈下降趋势,成熟期均降到8%以下。冬前和起身期氮在叶鞘中的分配率较高,以后也逐渐降低。氮在茎秆中的分配率2005年以开花期最高,2006年在孕穗期最高,最高值出现后即逐渐降低。穗部的氮素分配率在开花期最高,之后逐渐降低。氮在籽粒中的分配率,从开花后10 d到成熟期逐渐增高,成熟期达到80%以上。成熟期氮在不同器官的分配顺序为:籽粒>叶片≥茎秆≥叶鞘≥穗部。

2.3 小麦不同生育阶段氮的净吸收和净转移

表6显示,叶片和叶鞘在拔节前,茎秆和穗部在开花前分别是氮的净吸收器官,之后则转为氮的转移器官。2年中上述器官对氮的总净吸收量和总净转移量均以叶片最高;对籽粒的贡献率表现为叶片>叶鞘≥穗部≥茎秆。2年中各器官对籽粒氮的贡献率分别为68.02%和73.31%,说明籽粒氮的吸收和积累在很大程度上取决于营养器官中氮的再分配。

3 讨论

3.1关于小麦植株中氮的含量和积累量及其与产量水平的关系

表2 不同生育时期氮在地上部器官中的积累量(kg/hm2)Table 2 Accumulated amounts of N in above-ground parts of wheat at main growth stages

注(Note): DAA—Days after anthesis. 同列数据后字母相同表示每年度4个品种间在0.05水平差异不显著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year.

表3 不同生育时期氮在地上部不同器官中的分配率(%)Table 3 Percentages of N stored in different parts of wheat at main growth stages

注(Note): DAA—Days after anthesis. 同列数据后字母相同表示每年度4个品种间在0.05水平差异不显著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year.

表4 小麦植株氮的总积累量和100 kg籽粒吸收量Table 4 Total N accumulation in wheat plants and N adsorption for 100 kg grain yield

注(Note): DAA—Days after anthesis. 同列数据后字母相同表示每年度4个品种间在0.05水平差异不显著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year. “平均”行的小写字母表示2年度4个品种平均值的差异显著性The small letters in rows “Mean” show the significance between the averages of the four cultivars in each growing year.

表5 不同生育时期小麦植株氮的积累百分率 (%)Table 5 The accumulative percentages of N in wheat plants at main growth stages

注(Note): DAA—Days after anthesis. 同列数据后字母相同表示每年度4个品种间在0.05水平差异不显著 Values followed by the same letter within a column are not significantly at the 0.05 level among the four cultivars at the same growing year.“平均”行的小写字母表示2年度4个品种平均值的差异显著性The small letters in rows “Mean” show the significance between the averages of the four cultivars in each growing year.

表6 小麦植株各器官氮的净吸收与净转移Table 6 Net absorption and transfer of N of different organs of wheat

注(Note): 正值表示积累量Plus values mean net absorption; 负值表示转移量Negative values mean net transfer. 同列不同小写字母表示同一测定项目或器官两年度间在0.05水平差异显著Different small letters in the same column mean that the same parameter or organ between the two years are significant at the 0.05 level.

3.2超高产冬小麦植株中氮的吸收分配特点与栽培环境的关系

3.3 超高产冬小麦氮素吸收关键期与施肥的关系

[1] 张绪成, 于显枫, 马一凡, 上官周平. 高大气CO2浓度下小麦旗叶光合能量利用对氮素和光强的响应[J]. 生态学报, 2011, 31(4): 1046-1057. Zhang X C, Yu X F, Ma Y F, Shangguan Z P. The responses of photosynthetic energy use in wheat flag leaves to nitrogen application rates and light density under elevated atmospheric CO2concentration[J]. Acta Ecol. Sin., 2011, 31(4): 1046-1057.

[2] Evans J R, Poorter H. Photosynthetic acclimation to growth irradiance: the relative importance of plants specific leaf area and nitrogen partitioning in maximizing carbon gain[J]. Plant Cell Environ., 2001, 24: 755-767.

[3] 张永丽, 于振文. 灌水量对小麦氮素吸收、分配、利用及产量与品质的影响[J]. 作物学报, 2008, 34(5): 870-878. Zhang Y L, Yu Z W. Effects of irrigation amount on nitrogen uptake, distribution, use, and grain yield and quality in wheat[J]. Acta Agron. Sin., 2008, 34(5): 870-878.

[4] 李瑞奇, 李雁鸣, 何建兴, 等. 施氮量对冬小麦氮素利用和产量的影响[J]. 麦类作物学报, 2011, 31(2): 270-275. Li R Q, Li Y M, He J Xetal. Effect of nitrogen application rate on nitrogen utilization and grain yield of winter wheat[J]. J. Tritic. Crops, 2011, 31(2): 270-275.

[5] 赵俊晔, 于振文, 李延奇, 王雪. 施氮量对小麦氮磷钾养分吸收利用和产量的影响[J]. 西北植物学报, 2006, 26(1): 98-103. Zhao J Y, Yu Z W, Li Y Q, Wang X. Effects of different nitrogen rates of fertilization on nitrogen, phosphorous and potassium uptakes and utilizations as well as kernel yield of wheat under high-yield circumstances[J]. Acta Bot. Bo.-Oc. Sin., 2006, 26(1): 98-103.

[6] 赵万春, 董剑, 高翔, 张改生. 施氮对杂交小麦不同器官氮素积累与转运及其杂种优势的影响[J]. 作物学报, 2007, 33(1): 57-62. Zhao W C, Dong J, Gao X, Zhang G S. Effects of nitrogen application on nitrogen accumulation and translocation as well as their heterosis in different organs of hybrid wheat[J]. Acta Agron. Sin., 2007, 33(1): 57-62.

[7] 李世清, 王瑞军, 张兴昌, 等. 小麦氮素营养与籽粒灌浆期氮素转移量的研究进展[J]. 水土保持学报, 2004, 18(3): 106-111. Li S Q, Wang R J, Zhang X Cetal. Research advancement of wheat nitrogen nutrition and nitrogen transportation in wheat grain filling[J]. J. Soil Water Conserv., 2004, 18(3): 106-111.

[8] 张法全, 王小燕, 于振文, 等. 公顷产10000 kg小麦氮素和干物质积累与分配特性[J]. 作物学报, 2009, 35(6): 1086-1096. Zhang F Q, Wang X Y, Yu Z Wetal. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare[J]. Acta Agron. Sin., 2009, 35(6): 1086-1096.

[9] 潘庆民, 于振文, 王月福, 田奇卓. 公顷产9000 kg 小麦氮素吸收分配的研究[J]. 作物学报, 1999, 25(5): 541-547. Pan Q M, Yu Z W, Wang Y F, Tian Q Z. Studies on uptake and distribution of nitrogen in wheat at level of 9000 kg per hectare[J]. Acta Agron. Sin., 1999, 25(5): 541-547.

[10] 孙亚辉, 李瑞奇, 党红凯, 等. 河北省超高产冬小麦群体和个体生育特性及产量结构特点[J]. 河北农业大学学报, 2007, 30(3): 1-8. Sun Y H, Li R Q, Dang H Ketal. Population and individual characteristics of growth and development and yield components of super-high-yielding winter wheat in Hebei Province[J]. J. Hebei Agric. Univ., 2007, 30(3): 1-8.

[11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. 49-52, 263-268. Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000. 49-52, 263-268.

[12] Bar-Tal A, Yermiyahu U, Berahd Metal. Nitrogen, phosphorus, and potassium uptake by wheat and their distribution in soil following successive, annual compost applications[J]. J. Envir. Qual., 2004, 33(5): 1855-1865.

[13] 陆贵生, 梁振兴, 梅楠. 小麦熟相与粒重形成[J]. 北京农业大学学报, 1987, 13(3): 263-271. Lu G S, Liang Z X, Mei N. The maturing phases and the formation of grain weight in wheat[J]. Acta Agric. Univ. Pek., 1987, 13(3): 263-271.

[14] 李雁鸣, 梁振兴, 梅楠. 冬小麦叶片衰亡及其形态生理变化[J]. 北京农学院学报, 1988, 3(2): 58-69. Li Y M, Liang Z X, Mei N. Leaf senescence and its morphological, anatomical and physiological changes in winter wheat[J]. J. Beijing Agric. Col., 1988, 3(2): 58-69.

[15] 王树安. 作物栽培学各论[M]. 北京: 中国农业出版社, 1995. 50-51. Wang S A. Crop cultivation science[M]. Beijing: China Agriculture Press, 1995. 50-51.

[16] 李雁鸣, 张建平, 王焕忠, 等. 喷灌条件下高产冬小麦植株体内氮磷钾的时空分配特点[J]. 河北农业大学学报, 2002, 25(3): 1-5. Li Y M, Zhang J P, Wang H Zetal. Properties of spatial and temporal distribution of nitrogen, phosphorus and potassium in the plant of high yield winter wheat under the conditions of sprinkling irrigation[J]. J. Hebei Agric. Univ., 2002, 25(3): 1-5.

[17] 党红凯, 李瑞奇, 孙亚辉, 等. 超高产栽培条件下冬小麦对锰的吸收、积累和分配[J]. 植物营养与肥料学报, 2010, 16(3): 575-583. Dang H K, Li R Q, Sun Y Hetal. Absorption, accumulation and distribution of manganese in winter wheat cultivated under super-high-yielding conditions[J]. Plant Nutr. Fert. Sci., 2010, 16(3): 575-583.

[18] 石玉, 于振文, 王东, 等. 施氮量和底追比例对小麦氮素吸收转运及产量的影响[J]. 作物学报, 2006, 32(12): 1860-1866. Shi Y, Yu Z W, Wang Detal. Effects of nitrogen rate and ratio of base fertilizer and topdressing on uptake, translocation of nitrogen and yield in wheat[J]. Acta Agron. Sin., 2006, 32(12): 1860-1866.

[19] 杜世州, 曹承富, 张耀兰, 等. 氮素运筹对淮北地区超高产小麦养分吸收利用的影响[J]. 植物营养与肥料学报, 2011, 17(1): 9-15. Du S Z, Cao C F, Zhang Y Letal. Effects of nitrogen application on nitrogen absorption, utilization in super-high-yielding wheat in Huaibei region[J]. Plant. Nutr. Fert. Sci., 2011, 17(1): 9-15.

[20] 李春艳, 张宏, 马龙, 李诚. 冬小麦苗期氮素吸收利用生理指标的综合评价[J]. 植物营养与肥料学报, 2012, 18(3): 523-530. Li C Y, Zhang H, Ma L, Li C. Comprehensive evaluation on physiological indices of nitrogen absorption and utilization in winter wheat at seedling stage[J]. Plant Nutr. Fert. Sci., 2012, 18(3): 523-530.

[21] 王红光, 于振文, 张永丽, 等. 推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响[J]. 生态学报, 2012, 32(6): 1861-1870. Wang H G, Yu Z W, Zhang Y Letal. Effects of delayed irrigation at jointing stage on nitrogen accumulation and its allocation, and NO3-N migration in wheat[J]. Acta Ecol. Sin., 2012, 32(6): 1861-1870.

[22] 胡承霖. 安徽麦作学[M]. 合肥: 安徽科学技术出版社, 2009. 129-137. Hu C L. Anhui wheat science[M]. Hefei: Anhui Science and Technology Press, 2009. 129-137.

[23] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924. Zhang F S, Wang J Q, Zhang W Fetal. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedol. Sin., 2008, 45(5): 915-924.

[24] 王旭, 李贞宇, 马文奇, 张福锁. 中国主要生态区小麦施肥增产效应分析[J]. 中国农业科学, 2010, 43(12): 2469-2476. Wang X, Li Z Y, Ma W Q, Zhang F S. Effects of fertilization on yield increase of wheat in different agro-ecological regions of China[J]. Sci. Agri. Sin., 2010, 43(12): 2469-2476.

Absorption,accumulationanddistributionofnitrogeninsuper-highlyyieldingwinterwheat

DANG Hong-kai1, 2, LI Rui-qi1, LI Yan-ming1*, SUN Ya-hui1, 3, ZHANG Xin-wen1, LIU Meng-xing1

(1CollegeofAgronomy,AgriculturalUniversityofHebei/KeyLaboratoryofCropGrowthRegulationofHebeiProvince,Baoding,Hebei071000,China; 2DrylandFarmingInstitute,HebeiAcademyofAgricultureandForestrySciences,Hengshui,Hebei053000,China; 3CollegeofLightIndustry,HebeiUnitedUniversity,Tangshan,Hebei063000,China)

In order to clarify the characteristics of nitrogen nutrition in winter wheat with yields of above 9000 kg/ha, field experiments were conducted in Gaocheng County, Hebei Province during 2004-2006. Eight winter wheat cultivars: Shimai14, Jifeng703, Shimai12 and Shixin828 during 2004-2005, and Temai1, Shimai12, Shixin531 and Shixin828 during 2005-2006, were used for the experiments. Plant samples were collected at 8 growth stages and the nitrogen contents in different parts of wheat were determined. The results showed that the N contents in the tested parts of wheat were in the range of 0.22%-3.35% (dry weight). The highest nitrogen contents and accumulation were occurred in leaf blades during the early growing period and in grains during the mature period. The total amount of accumulated N in whole plants were in the range of 232.48 to 285.18 kg/ha, the amount of N needed for forming 100 kg of grain yield was in the range of 2.63 to 3.13 kg. Before booting stage, more than 50% of the absorbed N was stored in leaf blades, and in maturity stage, more than 80% of the N was stored in grains in all the cultivars. 68.02%-73.31% of the nitrogen in grains at maturity stage came from the redistribution from vegetative organs. From seedling emergence to erecting stage, jointing to booting stage, and anthesis to maturity stage are important for winter wheat to absorb nitrogen. According to the characteristics of nitrogen absorption and accumulation, it is essential for winter wheat to yield 9000 kg/ha in Hebei Plain that the soil total N be higher than 0.75 g/kg, and the total fertilizing N be about 260 kg/ha.

supper-highly yielding; winter wheat; nitrogen; absorption; accumulation; distribution

2013-01-06接受日期2013-03-14

国家科技支撑计划项目“粮食丰产科技工程”课题(2006BAD02A08,2011BAD16B08)资助。

党红凯(1979—),男,河北巨鹿人,博士,助理研究员,主要从事作物节水节肥栽培生理研究。E-mail:wheatcrop@126.com * 通信作者 E-mail:liym315@126.com

S512.1+1.01

A

1008-505X(2013)05-1037-11

猜你喜欢
冬小麦氮素器官
基于Sentinel-1A数据的冬小麦种植面积提取
冬小麦田N2O通量研究
类器官
不误农时打好冬小麦春管“第一仗”
ORGANIZED GIVING
皮肤是个大大的器官
肺脏:隐藏多年的造血器官
甘肃冬小麦田
桃树氮素营养研究进展(2) ——桃树的氮素贮藏与循环利用
桃树氮素营养研究进展(1)——桃树对氮素的吸收、运转与利用