探讨生物法脱氮

2014-04-27 08:44朱建水王文富曹华锋
科技视界 2014年25期
关键词:厌氧池溶解氧硝化

朱建水 王文富 曹华锋

(上蔡县环境保护局,河南 上蔡 463800)

废水中的氮常以有机氮、氨氮、亚硝酸氮和硝酸氮四种形式存在。在生活污水中,氮的存在形式主要为有机氮和氨态氮,它们均来源于人们食物中的蛋白质。生活污水中有机氮约占总氮的60%,氨氮约占40%。当污水中的有机物被生物降解氧化时,其中的有机氮被转化为氨氮。经活性污泥法处理的污水有相当数量的氨氮排入水体,可导致水体富营养化。水体若为水源,将增加给水处理的难度和成本。因此废水再进行二级处理的出水有时需进行脱氮处理。脱氮的方法有化学法和生物法两大类。本文主要探讨生物法去除氮。

1 生物脱氮机理

生物脱氮的机理是在微生物的作用下,将有机氮和氨态氮转化为N2和NxO气体的过程。其中包括硝化和反硝化两个反应过程。

硝化反应是在好氧条件下,将NH4+转化为和的过程。此作用是由亚硝酸菌和硝酸菌两种菌共同完成的。这两种菌属于化能自养型微生物。其反应如下:

硝化细菌是化能自养菌,生长率低,对环境条件变化较为敏感。温度,溶解氧,污泥龄,pH,有机负荷等都会对它产生影响。

硝化反应的适宜温度为20℃~30℃。低于15℃时,反应速度迅速下降,5℃时反应几乎完全停止。

由于硝化菌是自养菌,若水中BOD5值过高,将有助于异氧菌的迅速增殖,微生物中的硝化菌的比例下降。硝化菌的生长世代周期较长,为了保证硝化作用的进行,泥龄应取大于硝化菌最小世代时间两倍以上。

硝化反应对溶解氧有较高的要求,处理系统中的溶解氧量最好保持在2mg/L以上。另外,在硝化反应过程中,有H+释放出来,使pH值下降。硝化菌受pH值的影响很敏感,为了保持适宜的pH值7~8,应在废水中保持足够的碱度,以调节pH值的变化。1g氨态氮(以N计)完全硝化,需碱度(以 CaCO3计)7.1 g。

反硝化菌属异养型兼性厌氧菌,在有氧存在时,它会以O2为电子受体进行好氧呼吸;在无氧而有O3-或NO2-存在时,则以NO3-或NO2-为电子受体,以有机碳为电子供体和营养源进行反硝化反应。

在反硝化菌代谢活动的同时,伴随着反硝化菌的生长繁殖,即菌体合成过程.

在反硝化反应中,最大的问题就是污水中可用于反硝化的有机碳的多少及其可生化程度。当污水中BOD5/TKN>3~5时,可认为碳源充足。不同的有机碳将导致反硝化速率的不同。碳源按其来源可分为三类:①外加碳源,多采用甲醇,因为甲醇被分解后的产物为CO2,H2O,不产生其它难降解的中间产物,但其费用较高;②原水中含有的有机碳;③内源呼吸碳源——细菌体内的原生物质及其贮存的有机物。

反硝化反应的适宜pH值为6.5~7.5。pH值高于8或低于6时,反硝化速率将迅速下降。

反硝化反应的温度范围较宽,在5℃~40℃范围内都可以进行。但温度低于15℃时,反硝化速率明显下降。

2 常见生物脱氮工艺

生物脱氮技术的开发是在30年代发现生物滤床中的硝化、反硝化反应开始的。但其应用还是在1969年美国的Barth提出三段生物脱氮工艺后。

2.1 三段生物脱氮工艺

该工艺是将有机物氧化,硝化及反硝化段独立开来,每一部分都有其自己的沉淀池和各自独立的污泥回流系统。使除碳,硝化和反硝化在各自的反应器中进行,并分别控制在适宜的条件下运行,处理效率高。

由于反硝化段设置在有机物氧化和硝化段之后,主要靠内源呼吸碳源进行反硝化,效率很低,所以必须在反硝化段投加外加碳源来保证高效稳定的反硝化反应。随着对硝化反应机理认识的加深,将有机物氧化和硝化合并成一个系统以简化工艺,从而形成二段生物脱氮工艺成为现实。各段同样有其自己的沉淀及污泥回流系统。除碳和硝化作用在一个反应器中进行时,设计的污泥负荷率要低,水力停留时间和泥龄要长,否则,硝化作用要降低。在反硝化段仍需要外加碳源来维持反硝化的顺利进行。

2.2 Bardenpho 生物脱氮工艺

该工艺取消了三段脱氮工艺的中间沉淀池。该工艺设立了两个缺氧段,第一段利用原水中的有机物为碳源和第一好氧池中回流的含有硝态氮的混合液进行反硝化反应。经第一段处理,脱氮已基本完成。为进一步提高脱氮效率,废水进入第二段反硝化反应器,利用内源呼吸碳源进行反硝化。最后的曝气池用于吹脱废水中的氮气,提高污 泥的沉降性能,防止在二沉池发生污泥上浮现象。这一工艺比三段脱氮工艺减少了投资和运行费用。

2.3 改进的 Bardenpho工艺

改进的Bardenpho工艺由四池串联,即缺氧一好氧一缺氧池一好氧池。类似二级A/O工艺串联。第二级A/O的缺氧池基本上利用内源碳源进行脱氮,最后的曝气池可以吹脱氨氮,提高污泥的沉降性能。

为了提高除磷的稳定性,在Bardenpho工艺流程之前增设一个厌氧池,以提高污泥的磷释放效率。只要脱氮效果好,那么通过污泥进入厌氧池的硝酸盐是很少的,不会影响污泥的放磷效果,从而使整个系统达到较好的脱氮除磷效果。

2.4 UCT 工艺

在改进的Bardenpho工艺中,由于二沉池回流污泥中很难避免有一些硝酸盐回流到流程前端的厌氧池,从而影响除磷效果;为此,UCT工艺将二沉池的回流污泥回流到缺氧池,污泥中携带的硝酸盐在缺氧池中反硝化脱氮。同时为弥补厌氧池中污泥的流失,增设缺氧池至厌氧池的污泥回流。这样厌氧池可免受硝酸盐的干扰。

2.5 SBR 工艺

SBR工艺是将除磷脱氮的各种反应,通过时间顺序上的控制,在同一反应器中完成。如进水后进行一定时间的缺氧搅拌,好氧菌将利用进水中携带的有机物和溶解氧进行好氧分解,此时水中的溶解氧将迅速降低甚至达到零,这时厌氧发酵菌进行厌氧发酵,反硝化菌进行脱氮;然后停止搅拌一段时间,使污泥处于厌氧状态,聚磷菌放磷;接着进行曝气,硝化菌进行硝化反应,聚磷菌吸磷,经一定反应时间后,停止曝气,进行静止沉淀,当污泥沉淀下来后,撇出上部清水而后再放人原水,如此周而复始。研究表明,SBR工艺可取得很好的脱氮除磷效果。自动控制系统的完善,为SBR的应用提供了物质基础。SBR是间歇运行的,为了连续进水,至少需设置二套SBR设施,进行切换。

3 新型生物脱氮工艺

随着科学的发展,近年来发现了好氧反硝化菌和异养硝化菌,硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用,反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaerapantotropha菌),并能把氧化成NO:-后直接进行反硝化反应;氨的氧化不仅可以在好氧条件下进行,也可以在厌氧条件下进行。这些新发现突破了传统生物脱氮理论的认识,为研发生物脱氮新工艺奠定了基础。

4 结束语

随着生物脱氮技术的发展,新的工艺不断被开发出来,如氧化沟、序批式活性污泥法等,可在同一池中通过控制运行条件,在不同时段,形成缺氧和好氧的条件,从而达到除碳和脱氮的目的。

猜你喜欢
厌氧池溶解氧硝化
浅析水中溶解氧的测定
高校再生中水处理站的设计与运行分析
MBBR中进水有机负荷对短程硝化反硝化的影响
生化系统厌氧池进水管改造
污水活性污泥处理过程的溶解氧增益调度控制
氧化沟技术在城镇污水处理中的应用研究
城市河道洲滩对水流溶解氧分布的影响
厌氧氨氧化与反硝化耦合脱氮除碳研究Ⅰ:
海水反硝化和厌氧氨氧化速率同步测定的15N示踪法及其应用
杜塘水库溶解氧随深度变化规律