钢箱计算失效应变的冲击试验

2014-08-08 13:02王君杰李军孟德巍
建筑科学与工程学报 2014年1期

王君杰+李军+孟德巍

建筑科学与工程学报2014年文章编号:16732049(2014)01005006

收稿日期:20131107

基金项目:国家重点基础研究发展计划(“九七三”计划)项目(2013CB036305);国家自然科学基金项目(51278373);

交通运输部西部交通建设科技项目(2007 318 822 34)

作者简介:王君杰(1962),男,辽宁本溪人,教授,博士研究生导师,工学博士,

摘要:为研究船桥碰撞有限元分析中钢板的网格尺寸与钢材计算失效应变之间的关系,进行了3个钢箱模型的落锤冲击试验。采用LSDYNA软件对试验模型进行了有限元建模和碰撞计算,并与试验结果进行了对比。定义了一个相关系数来反映试验结果与计算结果之间的相关性,并据此定义了与网格尺寸相关的计算失效应变合理取值区间。研究结果表明:为得到合理精度的计算结果,钢板的计算失效应变的取值应随钢板网格尺寸变化,使用大的网格尺寸时应采用小的失效应变,使用小的网格尺寸时应采用大的失效应变;将计算失效应变合理取值区间与自适应网格剖分技术结合,可以在保证计算精度的同时,提高计算效率。

关键词:钢箱;网格尺寸;失效应变;计算精度;自适应网格剖分;冲击试验

中图分类号:U661.72文献标志码:A

Impact Test on Computational Failure Strain of Steel BoxesWANG Junjie, LI Jun, MENG Dewei

(State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)Abstract: In order to investigate the relations between the meshing size of steel plates and computational failure strain of steel in shipbridge collision finite element analysis, the drop hammer impact tests of three steel boxes were carried out. The finite element model was built and impact computation was conducted for test models using LSDYNA software, and the computational results were compared with the test results. A correlation coefficient was defined to obtain a reasonable failure strain interval related to the meshing size of the steel boxes. The research results show that in order to get reasonable computational accurcy, the values of computational failure strainshould vary with the meshing size of steel plates. The larger failure strain should be used for the smaller meshing size, and the smaller failure strain should be used for the larger meshing size. The computational accuracy and computational efficiency can be obtained at the same time through combining the reasonable computational failure strain interval and the adaptive meshing technology.

Key words: steel box; meshing size; failure strain; computational accuracy; adaptive meshing; impact test

0引言

对于桥梁船撞设计,能够把握船撞桥的碰撞力特征和破坏形态具有重要的实际意义。随着计算机技术的快速发展,特别是有限元技术的日益进步和成熟,数值模拟分析在桥梁船撞设计和防撞设施设计上逐渐得到了广泛的应用。与此同时,数值仿真计算结果的可靠性和如何使用有限元技术对此类碰撞问题进行有效的模拟日益成为关注的焦点。建立有限元模型是有限元分析过程的关键,而网格划分是建立有限元模型的中心工作,模型的合理性很大程度上可以通过所划分的网格形式体现出来。

对于固体碰撞问题,研究发现网格尺寸与材料失效应变的取值存在一定的相关性[15]。Lehmann等[1]、Kitamura等[2]、Paik等[3]分别基于一系列的碰撞试验或钢板拉伸试验总结得出:必要的数值失效应变(在有限元模型中调整该值以匹配试验数据)是网格尺寸的函数,总的趋势是大尺寸的网格需要定义较小的数值失效应变。Pedersen[6],Kitamura等[2]和高震等[7]将这种现象解释为:较大的单元降低了高应力点的应力,以致撕裂不能及时发生,提高了结构抗力;大的网格尺寸使用较小的失效应变是考虑了裂缝、侵蚀和冲击荷载等的影响。然而,由于碰撞的实际行为状态非常重要,因而一个算例或一个试验的结果很难直接应用于其他碰撞情况。船桥碰撞中的不确定因素很多,而这些因素又会对碰撞结果产生极大的影响。换言之,当分析的问题稍有不同时,就可能需要对网格尺寸与失效应变的关系进行调整。

本文中笔者基于3次碰撞试验研究了网格尺寸和失效应变取值之间的关系,对碰撞破坏问题中的网格划分方法进行了进一步的探讨。

1模型设计与测试

本文中以船舶正向撞击钢结构防撞设施为背景进行了3次试验,其初始能量(碰撞前系统的能量)比约为1∶2∶3。由于试验中冲头的初始动能基本全部由被撞钢箱吸收,因此3次试验中被撞钢箱吸收的能量比例也约为1∶2∶3(表1),并由此来实现被撞钢箱结构不同程度的破坏,试验安装见图1。试验中的主动撞击结构由上导向板、落锤、下导向板及撞击铁块组成。试验时,由电动葫芦通过挂弹钩将主动撞击结构提升至预定的跌落高度,然后挂弹钩通电释放主动撞击结构,主动撞击结构自由跌落并冲击钢结构防撞设施缩尺模型,从而使被撞钢箱出现不同程度的破坏。3次试验的结构布置见图2。

试验中的被撞钢箱具体尺寸参见文献[8]。由于被撞钢箱钢板较薄(4.62 mm),焊接过程中产生的残余应力将对结构的性能产生很大影响,故在焊接结束后对被撞钢箱进行了钢板回火处理、焊缝质

表1试验工况

Tab.1Testing Cases试验

编号撞击质量/kg跌落高度/m冲击速度/

endprint

(m·s-1)初始动能/

(kN·m)19 7681.85.94172 307.529 7684.18.97392 478.2314 0284.59.39618 634.8图1试验安装

Fig.1Test Installation图2试验的结构布置

Fig.2Structural Arrangements of Tests量检查和钢板的静态拉伸试验等。

试验中,对冲击过程中主动撞击锤的加速度和被撞钢箱上选取点的应变响应进行测量,对冲击结束后被撞钢箱上一些选取的点进行人工位移测量,使用高速摄影设备对冲击过程中被撞钢箱的变形情况进行辅助性的记录。测量系统见图3。

图3测量系统

Fig.3Measurement System2数值计算方法

在大量分析和比较的基础上,本文中使用如下的计算参数:选择在汽车碰撞分析中广泛使用的多段线性塑性模型来代表钢材在冲击作用下的力学属性;采用CowperSymonds公式[9][(σYd/σY=1+(ε/C)q,其中,σYd为材料动态失效应变,σY为材料静态失效应变,ε为应变率,C,q均为材料常数]来考虑应变率的影响,并结合粘塑性公式来减少考虑应变率时的响应噪声,本试验中被撞钢箱为Q235软钢,C=40.4,q=1/5;采用材料的实际应力应变关系;钢材的失效模式采用最大有效塑性应变失效模式,失效模式表述为εpeff≥εfailure,即当有限元模型中单元的应变超过设定值时,单元失效,失效后的单元从模型中删除。3数值计算结果符合度检验方法

由于冲头相对于被撞钢箱来说刚度极大,因此在试验中,冲头可以近似地视为刚体,故在得到冲头的加速度时程后,可以根据牛顿第二定律得到碰撞过程中的碰撞力时程。

在进行船舶碰撞的有限元仿真分析时,主要关注以下2个方面的结果:①船舶与桥梁或防撞结构之间的撞击力特征,包括碰撞力轮廓和碰撞力峰值;②船舶或桥梁的破坏模式、破坏情形。

为了讨论不同网格尺寸对应的最佳失效应变取值,本文中定义描述试验加速度结果与数值仿真结果之间差别的2个指标或准则:①计算值与测量值之间的相关系数,采用Pearson相关系数r;②峰值加速度计算值与测量值之间的相对误差e。r,e的计算方法分别为

r=XY-XYN/

(X2-(X)2N)(Y2-(Y)2N)(1)

e=amax-a′maxamax(2)

式中:X,Y为2个数值序列;amax为最大加速度测量值; a′max为最大加速度计算值。

3次试验测量得到的加速度试验结果见图4,其中,g为重力加速度。试验结果表明,开始段均具有明显的周期约为0.003 8 s的波动段,且该波动段在第1次试验中响应最大,在第3次试验中响应最小,

图4加速度试验结果及其修正

Fig.4Acceleration Test Results and Amendment初步判定该响应与试验场地地基有关[10]。本文中采用HilbertHuang[1112]原理修正了第1次和第2次试验的波动段加速度试验结果。4网格剖分与失效应变的关系

考虑被撞钢箱上的壳单元边长为2 cm的情形,将单元的失效应变μ分别取为0.12,0.15,0.20,0.25,0.30,研究单元失效应变对加速度数值模拟结果的影响,结果见图5。

图5失效应变对加速度计算结果的影响

Fig.5Effects of Failure Strain on Acceleration

Computational Results由图5可以看出,失效应变取值不同,得到的计算结果差别很大,这说明失效应变的合理取值对船桥碰撞数值模拟计算结果的合理性和可靠性是十分重要的。

本文中对被撞钢箱划分了7种网格尺寸,网格单元边长l分别为0.5,1,1.4,2,2.5,3,5 cm,并采用多种失效应变(最小失效应变0.05,最大失效应变0.6)来研究失效应变和网格尺寸的关系。相关系数与加速度峰值相对误差的计算结果见图6,7。

图6相关系数计算结果

Fig.6Computational Results of Correlation Coefficient从图6,7可以看出:

(1)失效应变取值为0.05时(很小时),不同网格尺寸下的计算结果均与试验结果差别很大,总体上来说,加速度计算结果与试验结果之间的相关系数较小,且可能出现非常大的峰值加速度,这说明失效应变取值过小不能合理预测钢箱发生塑性损伤时的冲击反应。

(2)随着失效应变的增大,大尺寸网格可以率先计算得到较好的结果,随着失效应变继续增加,小尺寸的网格依次得到精度较好的计算结果。

(3)存在一个失效应变的取值区间[εLf,εUf],εLf为区间的下界,εUf为区间的上界,当失效应变在此区间取值时可获得较高精度的计算结果。这个取值区间的范围随网格尺寸变化:网格尺寸大,失效应变取值区间宽度小;反之,网格尺寸小,则失效应变区间宽度大。

(4)当网格尺寸足够小时,对于本试验,网格尺寸不宜大于1 cm,失效应变取0.35~0.50是合理的,但是同时也可以看出,合理的失效应变取值与钢箱遭受的冲击破坏程度可能有关。

图8为最优失效应变范围。从图8可以看出,对于同一网格的不同失效应变情形,相关系数总是先增大再减小。据此定义[εLf,εUf]为合理取值区间。合理取值区间的下界εLf和上界εUf根据相关系数r>0.9的条件确定。图8中综合了3次试验的加速度结果,得到了适用于3次试验的失效应变合理取值区间的下界和上界。图8中显示合理区间的下界和上界均随着网格尺寸的增大而逐步变小,上界变化相对较快,区间范围随网格尺寸的增大而变小。

从图8还可以看出,如果采用大网格模型进行分析,则必须谨慎地定义失效应变;如果采用小网格模型进行分析,则可以适当地将失效应变取得大一点,以计算结果逐步稳定时为宜。

有限元仿真模拟的另一项重要内容是对结构的变形模式或破坏形式进行捕捉。图9中给出了第3次试验中被撞钢箱背面钢板出现的褶皱和0.5 cm以及5 cm网格计算对该褶皱捕捉情况的对比。由此可见,0.5 cm网格对该褶皱的描述非常好,且结构变形光滑平顺,而5 cm网格则完全没有表现出该处出现的褶皱。这表明当需要研究结构的变形模式或破坏模式时,应该划分尺寸较小的网格。5结语

(1)网格尺寸与失效应变是相关的,即单元的失效应变依赖于网格的尺寸,使用大尺寸网格时应采用较小的失效应变,且失效应变的定义较为敏感;使用小尺寸网格时应采用较大的失效应变,且失效应变的定义不敏感,因此,根据相关系数定义了合理失效应变区间。网格大则合理失效应变取值区间小,网格小则合理失效应变取值区间大。

(2)为保证计算结果的精度,建议计算时可逐步细化模型中网格的尺寸并对失效应变的取值进行较大幅度的变化,当失效应变的取值在较大范围内变图7加速度峰值相对误差计算结果

Fig.7Computational Results of Relative Error of Peak Acceleration图8最优失效应变范围

Fig.8Optimum Failure Strain Interval化而对计算结果的影响较小时,可以认为已经获得了较好的计算模型。

(3)采用自适应网格剖分并结合最优失效应变区间概念进行计算分析,可以在获得同等计算精度的同时节省大量的建模时间和计算分析时间。

endprint

(4)需要注意的是,本文中的结论是在缩尺模型试验中获得的,其适用性还有待在足尺试验或实际船桥碰撞事故中得到进一步验证。图9试验与计算褶皱的对比

Fig.9Comparisons of Folds Between Test and Computational Results参考文献:

References:[1]LEHMANN E,PESCHMANN J.Energy Absorption by the Steel Structure of Ships in the Event of Collisions[J].Marine Structures,2002,15(4/5):429441.

[2]KITAMURA O.FEM Approach to the Simulation of Collision and Grounding Damage[J].Marine Structures,2002,15(4/5):403428.

[3]PAIK J K,AMDAHL J,BARLTROP N.Collision and Grounding[C]//MANSOURE A E,ERTEKIN R C.Proceedings of the 15th International Ship and Offshore Structures Congress.San Diego:ISSC,2003:71107.

[4]SERVIS D,SAMUELIDES M,LOUKA T,et al.The Implementation of Finite Element Codes for the Simulation of Shipship Collision[J].Journal of Ship Research,2002,46(4):239247.

[5]NAAR H,KUJALA P,SIMONSEN B C,et al.Comparison of the Crashworthiness of Various Bottom and Side Structures[J].Marine Structures,2002,15(4/5):443460.

[6]PEDERSEN P T.Ship Impacts:Bow Collisions[J].International Journal of Impact Engineerin,1993,13(2):163187.

[7]高震,顾永宁,胡志强.结构冲击试验的校准计算[J].船舶力学,2005,9(2):7782.

GAO Zhen,GU Yongning,HU Zhiqiang.Benchmark Study of Structural Impact Test[J].Journal of Ship Mechanincs,2005,9(2):7782.

[8]李军.冲击数值模拟可靠性的试验检验[D].上海:同济大学,2009.

LI Jun.Experimental Examination of the Trustworthiness of Impact Numerical Simulation[D].Shanghai:Tongji University,2009.

[9]COWPER G R,Symonds P S.Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams[R].Providence:Brown University,1958.

[10]华南理工大学,东南大学,浙江大学,等.地基与基础[M].2版.北京:中国建筑工业出版社,1991.

South China University of Technology, Southest University,Zhejiang University,et al.Soils and Foundations[M].2nd ed.Beijing:China Architecture & Building Press,1991.

[11]HUANG N E,WU M C,LONG S R,et al.A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis[J].Proceedings of the Royal Society A,2003,459(2037):23172345.

[12]HUANG N E,SHEN Z,LONG S R,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[J].Proceedings of the Royal Society A,1998,454(1971):903995.(上接第15页)

associated with CSA S13607 will be greater than that of GB 50018—2002.

(4) The difference of the nominal axial strength between the two standards is primarily influenced by the flange widthtothickness ratio. For typical Csection wall studs investigated herein, the difference on the nominal axial strength is primarily influenced by the flange widthtothickness ratio wf/t. If the flange widthtothickness ratio wf/t is not less than 17.8, the difference on the nominal axial strength is dominated by the difference of flange effective width, and the nominal axial strength evaluated by GB 50018—2002 is less than that of CSA S13607, with the maximum difference being 31.9%. However, when wf/t is approximately less than 17.8, then the difference on the nominal axial strength is primarily governed by the difference of the web effective width and the nominal axial strength evaluated by GB 50018—2002 is slightly greater than that of CSA S13607, with the maximum difference being 8.9%.References:[1]CSA S13607,North American Specification for the Design of Coldformed Steel Structural Members[S].

[2]GB 50018—2002,Technical Code of Coldformed Thinwall Steel Structures[S].

[3]JGJ 227—2011,Technical Specification for Lowrise Coldformed Thinwall Steel Buildings[S].

[4]CHEN J.Stability of Steel Structures:Theory and Design[M].Beijing:Science Press,2008.

[5]YU W W,LABOUBE R A.Coldformed Steel Design[M].New York:John Wiley & Sons,2010.

[6]ZHOU X H,WANG S J.Stability Theory and Its Applications of Thinwalled Members[M].Beijing:Science Press,2009.

[7]XU L.Advanced Structural Steel Design[R].Waterloo:University of Waterloo,2012.

[8]Canadian Institute of Steel Construction.Handbook of Steel Construction[M].10th ed.Markham:Canadian Institute of Steel Construction,2010.

[9]Canadian Sheet Steel Building Institute (CSSBI).Lightweight Steel Frame Metric Section Properties[R].Cambridge:Canadian Sheet Steel Building Institute,2011.

endprint

(4)需要注意的是,本文中的结论是在缩尺模型试验中获得的,其适用性还有待在足尺试验或实际船桥碰撞事故中得到进一步验证。图9试验与计算褶皱的对比

Fig.9Comparisons of Folds Between Test and Computational Results参考文献:

References:[1]LEHMANN E,PESCHMANN J.Energy Absorption by the Steel Structure of Ships in the Event of Collisions[J].Marine Structures,2002,15(4/5):429441.

[2]KITAMURA O.FEM Approach to the Simulation of Collision and Grounding Damage[J].Marine Structures,2002,15(4/5):403428.

[3]PAIK J K,AMDAHL J,BARLTROP N.Collision and Grounding[C]//MANSOURE A E,ERTEKIN R C.Proceedings of the 15th International Ship and Offshore Structures Congress.San Diego:ISSC,2003:71107.

[4]SERVIS D,SAMUELIDES M,LOUKA T,et al.The Implementation of Finite Element Codes for the Simulation of Shipship Collision[J].Journal of Ship Research,2002,46(4):239247.

[5]NAAR H,KUJALA P,SIMONSEN B C,et al.Comparison of the Crashworthiness of Various Bottom and Side Structures[J].Marine Structures,2002,15(4/5):443460.

[6]PEDERSEN P T.Ship Impacts:Bow Collisions[J].International Journal of Impact Engineerin,1993,13(2):163187.

[7]高震,顾永宁,胡志强.结构冲击试验的校准计算[J].船舶力学,2005,9(2):7782.

GAO Zhen,GU Yongning,HU Zhiqiang.Benchmark Study of Structural Impact Test[J].Journal of Ship Mechanincs,2005,9(2):7782.

[8]李军.冲击数值模拟可靠性的试验检验[D].上海:同济大学,2009.

LI Jun.Experimental Examination of the Trustworthiness of Impact Numerical Simulation[D].Shanghai:Tongji University,2009.

[9]COWPER G R,Symonds P S.Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams[R].Providence:Brown University,1958.

[10]华南理工大学,东南大学,浙江大学,等.地基与基础[M].2版.北京:中国建筑工业出版社,1991.

South China University of Technology, Southest University,Zhejiang University,et al.Soils and Foundations[M].2nd ed.Beijing:China Architecture & Building Press,1991.

[11]HUANG N E,WU M C,LONG S R,et al.A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis[J].Proceedings of the Royal Society A,2003,459(2037):23172345.

[12]HUANG N E,SHEN Z,LONG S R,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[J].Proceedings of the Royal Society A,1998,454(1971):903995.(上接第15页)

associated with CSA S13607 will be greater than that of GB 50018—2002.

(4) The difference of the nominal axial strength between the two standards is primarily influenced by the flange widthtothickness ratio. For typical Csection wall studs investigated herein, the difference on the nominal axial strength is primarily influenced by the flange widthtothickness ratio wf/t. If the flange widthtothickness ratio wf/t is not less than 17.8, the difference on the nominal axial strength is dominated by the difference of flange effective width, and the nominal axial strength evaluated by GB 50018—2002 is less than that of CSA S13607, with the maximum difference being 31.9%. However, when wf/t is approximately less than 17.8, then the difference on the nominal axial strength is primarily governed by the difference of the web effective width and the nominal axial strength evaluated by GB 50018—2002 is slightly greater than that of CSA S13607, with the maximum difference being 8.9%.References:[1]CSA S13607,North American Specification for the Design of Coldformed Steel Structural Members[S].

[2]GB 50018—2002,Technical Code of Coldformed Thinwall Steel Structures[S].

[3]JGJ 227—2011,Technical Specification for Lowrise Coldformed Thinwall Steel Buildings[S].

[4]CHEN J.Stability of Steel Structures:Theory and Design[M].Beijing:Science Press,2008.

[5]YU W W,LABOUBE R A.Coldformed Steel Design[M].New York:John Wiley & Sons,2010.

[6]ZHOU X H,WANG S J.Stability Theory and Its Applications of Thinwalled Members[M].Beijing:Science Press,2009.

[7]XU L.Advanced Structural Steel Design[R].Waterloo:University of Waterloo,2012.

[8]Canadian Institute of Steel Construction.Handbook of Steel Construction[M].10th ed.Markham:Canadian Institute of Steel Construction,2010.

[9]Canadian Sheet Steel Building Institute (CSSBI).Lightweight Steel Frame Metric Section Properties[R].Cambridge:Canadian Sheet Steel Building Institute,2011.

endprint

(4)需要注意的是,本文中的结论是在缩尺模型试验中获得的,其适用性还有待在足尺试验或实际船桥碰撞事故中得到进一步验证。图9试验与计算褶皱的对比

Fig.9Comparisons of Folds Between Test and Computational Results参考文献:

References:[1]LEHMANN E,PESCHMANN J.Energy Absorption by the Steel Structure of Ships in the Event of Collisions[J].Marine Structures,2002,15(4/5):429441.

[2]KITAMURA O.FEM Approach to the Simulation of Collision and Grounding Damage[J].Marine Structures,2002,15(4/5):403428.

[3]PAIK J K,AMDAHL J,BARLTROP N.Collision and Grounding[C]//MANSOURE A E,ERTEKIN R C.Proceedings of the 15th International Ship and Offshore Structures Congress.San Diego:ISSC,2003:71107.

[4]SERVIS D,SAMUELIDES M,LOUKA T,et al.The Implementation of Finite Element Codes for the Simulation of Shipship Collision[J].Journal of Ship Research,2002,46(4):239247.

[5]NAAR H,KUJALA P,SIMONSEN B C,et al.Comparison of the Crashworthiness of Various Bottom and Side Structures[J].Marine Structures,2002,15(4/5):443460.

[6]PEDERSEN P T.Ship Impacts:Bow Collisions[J].International Journal of Impact Engineerin,1993,13(2):163187.

[7]高震,顾永宁,胡志强.结构冲击试验的校准计算[J].船舶力学,2005,9(2):7782.

GAO Zhen,GU Yongning,HU Zhiqiang.Benchmark Study of Structural Impact Test[J].Journal of Ship Mechanincs,2005,9(2):7782.

[8]李军.冲击数值模拟可靠性的试验检验[D].上海:同济大学,2009.

LI Jun.Experimental Examination of the Trustworthiness of Impact Numerical Simulation[D].Shanghai:Tongji University,2009.

[9]COWPER G R,Symonds P S.Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams[R].Providence:Brown University,1958.

[10]华南理工大学,东南大学,浙江大学,等.地基与基础[M].2版.北京:中国建筑工业出版社,1991.

South China University of Technology, Southest University,Zhejiang University,et al.Soils and Foundations[M].2nd ed.Beijing:China Architecture & Building Press,1991.

[11]HUANG N E,WU M C,LONG S R,et al.A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis[J].Proceedings of the Royal Society A,2003,459(2037):23172345.

[12]HUANG N E,SHEN Z,LONG S R,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[J].Proceedings of the Royal Society A,1998,454(1971):903995.(上接第15页)

associated with CSA S13607 will be greater than that of GB 50018—2002.

(4) The difference of the nominal axial strength between the two standards is primarily influenced by the flange widthtothickness ratio. For typical Csection wall studs investigated herein, the difference on the nominal axial strength is primarily influenced by the flange widthtothickness ratio wf/t. If the flange widthtothickness ratio wf/t is not less than 17.8, the difference on the nominal axial strength is dominated by the difference of flange effective width, and the nominal axial strength evaluated by GB 50018—2002 is less than that of CSA S13607, with the maximum difference being 31.9%. However, when wf/t is approximately less than 17.8, then the difference on the nominal axial strength is primarily governed by the difference of the web effective width and the nominal axial strength evaluated by GB 50018—2002 is slightly greater than that of CSA S13607, with the maximum difference being 8.9%.References:[1]CSA S13607,North American Specification for the Design of Coldformed Steel Structural Members[S].

[2]GB 50018—2002,Technical Code of Coldformed Thinwall Steel Structures[S].

[3]JGJ 227—2011,Technical Specification for Lowrise Coldformed Thinwall Steel Buildings[S].

[4]CHEN J.Stability of Steel Structures:Theory and Design[M].Beijing:Science Press,2008.

[5]YU W W,LABOUBE R A.Coldformed Steel Design[M].New York:John Wiley & Sons,2010.

[6]ZHOU X H,WANG S J.Stability Theory and Its Applications of Thinwalled Members[M].Beijing:Science Press,2009.

[7]XU L.Advanced Structural Steel Design[R].Waterloo:University of Waterloo,2012.

[8]Canadian Institute of Steel Construction.Handbook of Steel Construction[M].10th ed.Markham:Canadian Institute of Steel Construction,2010.

[9]Canadian Sheet Steel Building Institute (CSSBI).Lightweight Steel Frame Metric Section Properties[R].Cambridge:Canadian Sheet Steel Building Institute,2011.

endprint