长春花萜类吲哚生物碱生物合成与调控研究

2017-02-13 16:59匡雪君王彩霞邹丽秋朱孝轩孙超
中国中药杂志 2016年22期
关键词:长春花

匡雪君 王彩霞 邹丽秋 朱孝轩 孙超

[摘要] 长春花含有多种具有重要药理活性的萜类吲哚生物碱(TIA)。TIA的生物合成与调控及其合成生物学研究受到广泛关注。3α (S)异胡豆苷是TIA生物合成的重要节点,由裂环马钱子苷和色胺缩合而成。前者通过环烯醚萜途径生成;后者通过吲哚途径生成。由3α (S)异胡豆苷分别经过多步酶促反应生成文多灵和长春质碱,然后两者缩合生成α3, 4脱水长春碱,进而生成长春碱和长春新碱。AP2/ERF和WRKY等多种转录因子参与了TIA合成的调控。长春花TIA生物合成途径的逐步解析为其合成生物学研究奠定了基础。目前已在酿酒酵母实现了3α (S)异胡豆苷和文多灵等的异源合成。长春花TIA生物合成与调控的研究将为TIA类药物的生产和研发提供支撑。

[关键词] 长春花; 萜类吲哚生物碱; 代谢调控; 合成生物学

Advance in biosynthesis of terpenoid indole alkaloids and

its regulation in Catharanthus roseus

KUANG Xuejun1, WANG Caixia2, ZOU Liqiu1, ZHU Xiaoxuan1, SUN Chao1*

(1. Institute of Medicinal Plant Development, China Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;

2. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China)

[Abstract] Catharanthus roseus can produce a variety of terpenoid indole alkaloids (TIA), most of which exhibit strong pharmacological activities. Hence, biosynthesis and regulation of TIA have received recent attention. 3α (S)strictosidine is an important node in TIA biosynthesis, which is a condensation product of secologanin and tryptamine. The former is produced in iridoid pathway, and the latter is produced in indole pathway. Vindoline and catharanthine, which are produced respectively by 3α (S)strictosidine via multistep enzymatic reaction, can form α3, 4anhydrovinblastine by the condensation reaction. Then, vinblastine and vincristine are generated from α3, 4anhydrovinblastine. Many transcription factors are involved in the regulation of TIA synthesis, such as AP2/ERF and WRKY. Illumination of biosynthetic pathway has laid a foundation for the study of synthetic biology. Today, 3α (S)strictosidine and vindoline have been synthesized in heterologous hosts Saccharomyces cerevisiae.Research about synthetic biology and the regulation mechanisms will provide a guidance for the production and development of TIA drugs in C. roseus.

[Key words] Catharanthus roseus; terpenoid indole alkaloids (TIAs); metabolic regulation; synthetic biology

doi:10.4268/cjcmm20162208

长春花Catharanthus roseus为夹竹桃科长春花属多年生草本植物,体内含有130多种生物碱,大多数为萜类吲哚生物碱(terpenoid indole alkaloids,TIA)[12]。TIA在现代医疗领域得到了广泛的应用,如长春碱 (vinblastine) 和长春新碱 (vincristine) 是应用最为广泛的2种天然植物抗肿瘤药物,广泛应用于何杰金氏病、急性淋巴细胞型白血病、恶性淋巴肿瘤等疾病的治疗;文多灵和长春质碱由于具有降低血糖的功效,被广泛用于治疗糖尿病等;阿玛碱和蛇根碱作为高效降压药物在临床中使用[34]。然而,TIA在长春花中含量极其微少,从原植物中提取远远不能满足市场需求;化学合成和半合成成本太高,也不具有商业前景[5]。随着长春花 TIA 生物合成途径中关键酶基因的克隆以及代谢途径的解析,对其进行合成生物学研究,利用底盘细胞实现TIA及其前体的异源合成是解决抗肿瘤 TIA 药物稀缺的有效方法之一[46]。本文对长春花萜类吲哚生物碱的生物合成途径与调控及其合成生物学的最新进展进行了综述,为更好地研究与开发长春花的药用价值提供参考。

1 长春花萜类吲哚生物碱的生物合成途径

长春花TIA生物合成途径分为上游途径和下游途径[7],上游途径包括生成裂环马钱子苷的环烯醚萜途径(iridoid pathway)和生成色胺的吲哚途径(indole pathway),以及由裂环马钱子苷和色胺经缩合反应生成3α (S)异胡豆苷的过程[89]。下游合成途径是指以上游途径合成的终产物3α (S)异胡豆苷为共同前体,在各自的酶促反应下经过多种不同的代谢途径最后生成各种TIA的代谢过程(图1)[1013]。目前已鉴定的长春花萜类吲哚生物碱合成途径中关键酶已超过30个(表1)。

粗箭头表示多步反应;蓝色实线箭头表示一步反应;红色虚线箭头表示没有被阐明的步骤。

1.1 环烯醚萜途径 形成萜类化合物前体的途径主要有2个:甲羟戊酸途径(MVA pathway)和非甲羟戊酸途径(MEP pathway)[8]。经MVA途径和MEP途径生成的异戊烯焦磷酸(IPP)可在IPP异构酶(IPP isomerase, IPI)催化作用下生成IPP的同分异构体二甲基丙烯基焦磷酸(DMAPP)[1819]。IPP和DMAPP以头尾缩合的方式合成十碳化合物GPP,GPP在香叶醇合成酶(geraniol synthase, GES)的催化作用下生成香叶醇(geraniol),随即便进入环烯醚萜途径[22]。长春花中参与环烯醚萜途径的IPP的主要来源是MEP途径,MVA途径在环烯醚萜合成中仅提供少量前体[23]。

长春花体内环烯醚萜途径由香叶醇到裂环马钱子苷的形成总共经过8个酶促反应。首先由香叶醇10脱氢酶(geraniol 10hydroxylase, G10H)催化香叶醇生成10羟基香叶醇(10hydroxygeraniol)[24]。10羟基香叶醇经10羟基香叶醇氧化还原酶 (10hydroxygeraniol oxidoreductase,10HGO)氧化还原生成10羟基香叶酮(10oxogeranial),再由烯醚萜合成酶(iridodial synthase, IRS)环化生成环烯醚萜(iridodial)[2526]。IRS是一种NADPH依赖的10羟基香叶酮环化酶,2012年由GeuFlores等挖掘并进行了功能验证[26]。7deoxyloganetic acid synthase(7DLS)将环烯醚萜氧化为7deoxyloganetic acid,7deoxyloganetic acid glucosyltransferase(7DLGT)再将其催化为7脱氧马钱苷酸(7deoxyloganic acid)[2829]。2013年由Salim等[30]通过病毒介导的基因沉默对催化由7脱氧马钱苷酸到马钱苷酸(loganic acid)的7脱氧马钱苷酸羟化酶(7deoxyloganic acid 7hydroxylase, DL7H)进行了功能分析并证明了其催化功能。马钱苷酸进一步在马钱苷酸甲基转移酶(loganic acid methyltransferase, LAMT)的作用下生成马钱子苷,2008年,Murata等[31]对长春花中LAMT基因进行了克隆和分析。最后,马钱子苷在裂环马钱子苷合成酶(secologanin synthase, SLS)的催化作用下裂环生成裂环马钱子苷(secologanin)。SLS由Vetter于2000年[3233]在长春花悬浮细胞中分离并进行了功能分析,它是一种与细胞膜相关的对氧气和NADPH依赖的细胞色素P450单加氧酶,在环烯醚萜途径中同样起着至关重要的调节作用。

1.2 吲哚途径 长春花中的吲哚途径由7步连续的酶促反应催化完成[34]。参与吲哚途径的酶均已被报道,其中参与第一步反应的邻氨基苯甲酸合成酶(anthranilate synthase, AS)和参与最后一步反应的色氨酸脱羧酶(tryptophan decarboxylase,TDC)是该途径的主要调节节点。AS蛋白由2个大亚基和2个小亚基组成,α大亚基与形成邻氨基苯甲酸有关,β小亚基与形成氨基有关。1984年, Noe等[35]完成了TDC的首次分离纯化,该酶存在于植物细胞的细胞质中,只在叶片的上表皮细胞中表达[36]。

由类萜途径而来的裂环马钱子苷(secologanin)和由吲哚途径而来的色胺(tryptamine),在异胡豆苷合成酶(strictosidine synthase, STR)的催化作用下偶合生成3α (S)异胡豆苷[3α (S)strictosidine][38]。3α (S)异胡豆苷是长春花TIA生物合成中一个重要的中间产物,是形成多种TIA的关键前体物质,所以STR是长春花TIA整个代谢合成途径中最为重要的一个关键酶 [39],该酶的活性还受到反应终产物文多灵、长春质碱和阿玛碱等的反馈抑制[40]。

1.3 文多灵途径 文多灵途径(vindoline pathway) 被认为是产生双吲哚类生物碱的限速步骤,它的合成由3α (S)异胡豆苷经过水甘草碱(tabersonine)及随后进行的6步连续的酶促反应催化而成[4748]。首先,水甘草碱在其羟化酶(tabersonine 16hydroxylase 2, T16H2)的酶促作用下芳烃羟化,生成16羟基水甘草碱(16hydroxytabersonine),随后16羟基水甘草碱在甲基氧化酶(16Omethyltransferase, 16OMT)作用下生成16甲氧基水甘草碱(16methoxytabersonine)[4344]。文多灵生物合成的第3步反应是通过水甘草碱3加氧酶(tabersonine 3oxygenase,T3O)和水甘草碱3还原酶(tabersonine 3reductase,T3R)的协同作用将16甲氧基水甘草碱转化为16甲氧基2,3二氢3羟基水甘草碱(16methoxy2,3dihydro3hydroxytabersonine);接下来第3步的产物在N甲基转移酶 (Nmethyltransferase,NMR)的催化作用下生成去乙酰氧基文多灵(desacetoxyvindoline);第5步反应是去乙酰氧基文多灵在羟化酶(desacetoxyvindoline4hydroxylase, D4H)的作用下生成去乙酰文多灵(deacetylvindoline);最后在去乙酰文多灵4O乙酰转移酶(deacetylvindoline4Oacetyltransferase, DAT)[45]的作用下进一步生成文多灵(vindoline)[4344]。文多灵途径中水甘草碱16羟化酶(tabersonine 16hydroxylase2, T16H2)、去乙酰氧基文多灵4羟化酶(desacetoxyvindoline4hydroxylase, D4H)和去乙酰文多灵4O乙酰转移酶(deacetylvindoline4Oacetyltransferase, DAT)是该途径中的关键酶[4145]。

1.4 长春质碱途径 在异胡豆苷βD型葡萄糖苷酶(strictosidine βDglucosidase, SGD)的催化下,经TIA上游代谢途径产生的前体物质3α (S)异胡豆苷可以水解生成葡萄糖和cathenamine[41]。cathenamine化学性质不稳定,通过不同的分支途径,逐渐形成阿玛碱(ajmalicine)、水甘草碱(tabersonine)[49]和长春质碱(catharanthine),阿玛碱在过氧化物酶的作用下进一步生成蛇根碱(serpentine)。目前,对长春花体内长春质碱合成的研究还很少,从cathenamine到长春质碱分支途径中许多酶和基因还没有被分离和克隆出来,有待进一步研究。

1.5 双吲哚生物碱(长春碱和长春新碱)的生物合成 双吲哚生物碱长春碱和长春新碱可由单萜类生物碱长春质碱和文多灵偶合生成中间产物α3,4脱水长春碱(α3,4anhydrovinblastine)[50],然后转化为长春碱,长春碱再生成长春新碱。2008年Costa等[46]在长春花中克隆到了1个PRX1基因,该基因存在于长春花叶片中,故命名为CrPRX1。CrPRX1与脱水长春碱合成酶基因具有相似性,进一步验证表明该基因参与长春质碱和文多灵偶合生成长春碱和长春新碱的反应,属于Class Ⅲ过氧化物酶基因。至今,α3, 4脱水长春碱到长春碱和长春新碱的转化仍不清楚,有待进一步研究。

2 长春花萜类吲哚生物碱代谢途径的调控

TIA代谢途径是一条复杂的,受到高度调控的代谢通路,包含至少35个中间产物,36个催化反应的酶(表1),18个调控基因(表2),以及若干细胞组分[5153]。对于该途径调控机制的深入研究和解读能有效利用代谢工程技术提高通路基因的表达及生物碱的产量。尽管TIA合成途径的调控机制非常复杂,但相关研究已经证实了一些信号分子,诸如真菌诱导子(YE)、茉莉酸(JA)、乙烯、一氧化氮(NO)以及水杨酸等,通过协同或拮抗的方式介导了TIA生物合成的调控[54]。

关于TIA途径的最直接的调控发生在转录水平。转录因子与特异的元件结合并调控相应基因的表达是TIA生物合成调控的一种主要机制。转录因子通常受到信号分子和其他元件的调控。近年,研究者在鉴定调控TIA代谢途径的转录因子及阐明其调控机制方面做了大量的努力。

最著名的转录因子是硬脂酸应答的长春花AP2/ERF(octadecanoidresponsive Catharanthus AP2/ERF, ORCA)转录因子,包括ORCA1,ORCA2和ORCA3,同属于AP2/ERF转录因子家族。其中, ORCA3转录因子的研究最为深入,它的表达受JA和YE的诱导。在长春花毛状根中过表达ORCA3会提高一些TIA代谢途径催化酶编码基因(AS,TDC,DXS,CPR,G10H,SLS,STR,SGD以及D4H)的表达水平,同时也相应的提高了一些TIA的产量[55]。此外,在长春花悬浮细胞中过表达ORCA3同样会提高AS,TDC,DXS,CPR,STR和D4H等基因的表达水平[56]。

采用STR启动子进行酵母单杂交筛选的结果表明ORCA2激活STR启动子,同时在JA和YE的诱导下其表达量迅速提高;相反,ORCA1的表达则不参与受JA和YE诱导的STR启动子的表达调控[38]。最近的一项研究表明,长春花毛状根中过表达ORCA2会提高AS,TDC,G10H,SLS,D4H,T16H和PRX1基因的表达水平[57]。除了3个ORCAs转录因子以外,其他转录因子如长春花box Pbinding factor(CrBPF1)同样可以结合STR启动子,但结合部位与ORCAs并不相同。研究表明CrBPF1会在ORCAs已经结合到启动子区的基础上进一步增强STR基因的表达[58]。CrMYC1[41]和CrMYC2[42]是基本的helixloophelix转录因子。JA和YE可诱导CrMYC1和STR基因的mRNA水平升高,表明CrMYC1激活了STR基因的表达[59]。CrMYC2被认为作用于ORCA2和ORCA3上游的顺式作用元件并激活它们的转录[60]。CrMYC1和CrMYC2这2个转录因子都受到JA和YE的诱导,然而只有CrMYC1对真菌诱导子做出响应。

ORCA2,ORCA3,CrBPF1,CrMYC1和CrMYC2对于TIA生物合成基因来说都属于转录增强因子,除此之外,一些转录抑制因子也受到了关注。长春花中Cys2/His2type锌指蛋白家族的3个成员ZCT1,ZCT2和ZCT3抑制TDC和STR启动子的活性,同时受到ORCA2和ORCA3的激活。此外,ZCT蛋白还会抑制ORCAs的AP2/ERF结构域的活性[61]。除了ZCT蛋白,Gbox结合因子(GBF1和GBF2)也是STR基因表达的抑制因子[62]。

CrWRKY1和CrWRKY2是JA应答的WRKY转录因子,可以激活TIA合成途径中若干基因的表达[6364]。长春花毛状根中过表达CrWRKY1使TDC表达水平上调,同时也使转录抑制因子ZCT1,ZCT2和ZCT3的表达水平上调,并下调了转录激活因子ORCA2,ORCA3和CrMYC2的表达水平[63]。与此相反,长春花毛状根中过表达CrWRKY2使TDC,NMT,DAT和MAT的表达水平提高了,同时还提高了转录激活因子ORCA2,ORCA3和CrMYC2以及转录抑制因子ZCT1,ZCT2和ZCT3的表达水平。

MPK3是长春花细胞内的信号途径中一个重要的转录因子[72],被不同的压力触发。MPK3在长春花叶片中过表达提高了ORCA3和TIA合成途径中关键基因的表达水平,并且使蛇根碱、文多灵、长春质碱和长春新碱的含量增加。

3 TIA合成生物学研究

用植物细胞来生产TIA最大的限制是生长缓慢,采用微生物来异源合成TIA可以解决这一问题,并且相比于植物细胞培养能获得更高的产量。此外,目的产物在培养基中,使得分离纯化也相对容易。然而,长春花中TIA的生物合成途径很复杂,要实现微生物异源合成TIA,要求途径中所有的基因都已被鉴定,并且在微生物中有足够的前体供应和无毒性产物的积累,目前,已有学者完成长春花中部分途径的构建,完成了3α(S)异胡豆苷、cathenamine、文多灵的异源合成[7379]。

3α (S)异胡豆苷是吲哚生物碱生物合成的共同前体物质。Geerlings等[75]将STR和SGD基因共同导入酿酒酵母细胞,通过前体饲喂色胺和裂环马钱子苷,经过2步反应,首次实现了异胡豆苷(主要产物)和cathenamine在酿酒酵母中的生产。裂环马钱子苷相对昂贵,故可以使用雪果忍冬Symphoricarpus albus的提取物来提供裂环马钱子苷(含有1%裂环马钱子苷)、碳源和氮源;色胺相对廉价,故直接添加到培养基中。研究发现STR在胞内和胞外均有活性,SGD只在细胞内检测到,通过饲喂色胺和裂环马钱子苷,转基因酵母培养基中异胡豆苷产量在3 d内达到2 g·L-1,胞内3α (S)异胡豆苷也被检测到,但是含量相对较低(每个细胞达到0.2 mg·g-1),这是由于酵母细胞对底物色胺和裂环马钱子苷的通透性低,对酵母细胞做通透化处理后,SGD能将裂环马钱子苷完全水解为cathenamine。cathenamine是许多单萜吲哚类生物碱的重要来源,如阿玛碱。2014年,Brown 等[79]在酵母中成功重构了3α (S)异胡豆苷合成途径,利用hydroxymethylglutarylCoA与色氨酸为前体物质实现了3α (S)异胡豆苷的合成。在酿酒酵母中引入了TIA途径相关的基因,它们分别为tHMGR,IDI1,GES,G8H,GOR,ISY,IO,7DLGT,7DLH,LAMT,SLS,STR,TDC,ADH2,ADH1,ALDH1,为了增强途径酶基因的表达水平,额外引入了7个基因,分别为MAF1,AgGPPS2,mFPS144,SAM2,ZWF1,CPR,CYB5;为了减少途径中间产物的消耗,删除了3个基因,分别为ATF1,OYE2,ERG20。尽管3α (S)异胡豆苷的产量很低(0.5 mg·L-1),但是实现3α (S)异胡豆苷在酵母中的从头合成为接下来下游TIA的合成奠定了坚实的基础。

长春质碱及文朵灵是长春花碱生物合成途径中的2个直接前体物质,但是长春质碱的生物合成途径并不完全清晰,而文朵灵的生物合成路径以解析较为深入,因此,常利用水甘草碱进行文多灵的合成。文多灵途径中从16methoxytabersonine到16methoxy2,3dihydro3hydroxytabersonine的步骤是文多灵途径中唯一未知的反应,随着T3O (tabersonine 3oxygenase)和T3R(tabersonine 3reductase)基因的鉴定,Qu等[78]完成了从水甘草碱到文多灵7个基因(T16H,16OMT,D4H,DAT,NMT,T3O,T3R)途径在酵母的组装,实现了在酵母中生产抗癌药物前体文多灵。

将长春花中的基因转入其他植物,也能实现生物碱或其前体的合成,例如Hallard等[73]将长春花中的TDC和STR基因分别转入烟草细胞和诺丽细胞,通过TDC和STR基因过表达,将3α (S)异胡豆苷的产量分别增加到5.3,21.2 mg·L-1。Chavadej等[74]将长春花TDC基因转入甘蓝型油菜,转基因植物成熟的种子减少了吲哚类硫苷的产生,增强了经济学价值。Miettinen等[77]鉴定了长春花马钱子苷途径中的4个酶(8HGO,IO,7DLGT,7DLH),证明了香叶醇通过4个不同的细胞色素P450酶、2个不同的氧化还原酶、1个葡萄糖转移酶和1个甲基转移酶的连续反应转化为裂环马钱子苷。结合TDC与STR酶,在异源植物烟草中重构了整个MIA途径,实现重要前体3α (S)异胡豆苷的合成。

4 展望

长春花TIA类抗肿瘤药物在肿瘤疾病治疗上具有显著和独特的疗效,已成为抗肿瘤类药物中不可替代的药物之一,其生物合成的分子生物学研究一直备受关注。目前,代谢途径研究虽然取得了一些进展,但是长春花TIA合成途径路线复杂、步骤繁琐,至今还未被完全解析。伴随着本草基因组学(herbgenomics)的发展,综合运用各种组学技术,参与各步反应的酶及其基因的表达与调控以及各代谢途径之间的相互联系将逐渐被解析[8081]。同时,随着合成生物学技术的不断进步,使得在微生物或其他植物中高效合成 TIA或其重要中间产物成为可能,进而推动TIA类药物的研发。

[参考文献]

[1] Almagro L, FernándezPérez F, Pedreo M A. Indole alkaloids from Catharanthus roseus:bioproduction and their effect on human health [J]. Molecules, 2015, 20(2):2973.

[2] Zhu J, Wang M, Wen W, et al. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus [J].Pharmacogn Rev, 2015, 9(17):24.

[3] Verma P, Mathur A K, Srivastava A, et al. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update [J]. Protoplasma, 2012, 249(2):255.

[4] 卢懿, 侯世祥, 陈彤. 长春花抗癌成分长春新碱研究的进展 [J]. 中国中药杂志, 2003,28(11):1006.

[5] Pandey S S, Singh S, Babu C S, et al. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis [J]. Sci Rep, 2016, 6:26583.

[6] Benyammi R, Paris C, KhelifiSlaoui M. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots [J]. Pharm Biol, 2016, 54(10):2033.

[7] Liu D H, Jin H B, Chen Y H, et al. Terpenoid indole alkaloids biosynthesis and metabolic engineering in Catharanthus roseus [J].J Integr Plant Biol, 2007, 49(7):961.

[8] Liu Y, Wang H, Ye H C, et al. Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering [J]. J Integr Plant Biol, 2005, 47(7):769.

[9] 孙敏, 曾建军. 长春花毛状根培养及抗癌生物碱产生的研究[J]. 中国中药杂志, 2005, 30(10):741.

[10] Wang B, Liu L, Chen Y Y, et al. Monoterpenoid indole alkaloids from Catharanthus roseus cultivated in Yunnan[J].Nat Prod Commun, 2015, 10(12):2085.

[11] MaldonadoMendoza I E, Burnett R J, Nessler C L. Nucleotide sequence of a cDNA encoding 3hydroxy3methylglutaryl coenzyme A reductase from Catharanthus roseus [J]. Plant Physiol, 1992, 100(3):1613.

[12] Simkin A J, Guirimand G, Papon N, et al. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta [J]. Planta, 2011, 234(5):903.

[13] Rohdich F, Kis K, Bacher A, et al. The nonmevalonate pathway of isoprenoids:genes, enzymes and intermediates [J]. Curr Opin Chem Biol, 2001, 5(5):535.

[14] Guirimand G, Guihur A, Phillips M A, et al. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus [J]. Plant Mol Biol, 2012, 79(4/5):443.

[15] Han M, Heppel S C, Su T, et al. Enzyme inhibitor studies reveal complex control of methylDerythritol 4phosphate (MEP) pathway enzyme expression in Catharanthus roseus [J]. PLoS ONE, 2013, 8(5):e62467.

[16] Chahed K, Oudin A, Guivarc′h N, et al. 1DeoxyDxylulose 5phosphate synthase from periwinkle:cDNA identification and induced gene expression in terpenoid indole alkaloidproducing cells [J]. Plant Physiol Biochem, 2000, 38(7):559.

[17] Veau B, Courtois M, Oudin A, et al. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus [J]. Biochim Biophys Acta, 2000, 1517(1):159.

[18] Eisenreich W, Bacher A, Arigoni D, et al. Biosynthesis of isoprenoids via the nonmevalonate pathway [J]. Cell Mol Life Sci, 2004, 61(12):1401.

[19] der Heijden R. Isopentenyl diphosphate isomerase:a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function [J]. Nat Prod Rep, 1997, 14(6):591.

[20] Ginis O, Courdavault V, Melin C, et al. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4diphosphate synthase gene promoter from the methyl erythritol phosphate pathway [J]. Mol Biol Rep, 2012, 39(5):5433.

[21] Meijer A H, Lopes Cardoso M I, Voskuilen J T, et al. Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH:cytochrome P450 reductase, an enzyme essential for reactions catalysed by cytochrome P450 monooxygenases in plants [J]. Plant J, 1993, 4(1):47.

[22] Simkin A J, Miettinen K, Claudel P, et al. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma [J]. Phytochemistry,2013, 85:36.

[23] Dubey V S, Bhalla R, Luthra R. An overview of the nonmevalonate pathway for terpenoid biosynthesis in plants [J]. J Biosci, 2003, 28(5):637.

[24] Collu G, Unver N, PeltenburgLooman A M, et al. Geraniol 10hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis[J]. FEBS Lett, 2001, 508(2):215.

[25] Krithika R, Srivastava P L, Rani B, et al. Characterization of 10hydroxygeraniol dehydrogenase from catharanthusroseus reveals cascaded enzymatic activity in iridoid biosynthesis [J]. Sci Rep, 2015, 5:8258.

[26] GeuFlores F, Sherden N H, Courdavault V, et al. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis [J]. Nature, 2012, 492(7427):138.

[27] Jennifer M, Jacob P, Karel M, et al. Iridoid synthase activity is common among the plant progesterone 5breductase family [J]. Mol Plant, 2015, 8(1):136.

[28] Salim V, Wiens B, MasadaAtsumi S, et al. 7Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis [J]. Phytochemistry, 2014, 101:23.

[29] Asada K, Salim V, MasadaAtsumi S, et al. A 7deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle [J]. Plant Cell, 2013, 25(10):4123.

[30] Salim V, Yu F, Altarejos J, et al. Virusinduced gene silencing identifies catharanthusroseus 7deoxyloganic acid7hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis [J]. Plant J, 2013, 76(5):754.

[31] Murata J, Roepke J, Gordon H, et al. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization [J]. Plant Cell, 2008, 20(3):524.

[32] Vetter H P, Mangold U, Schrder G, et al. Molecular analysis and heterologous expression of an inducible cytochrome P450 protein from periwinkle (Catharanthus roseus L.) [J]. Plant Physiol,1992, 100(2):998.

[33] Irmler S, Schrder G, StPierre B, et al. Indole alkaloid biosynthesis in Catharanthus roseus:new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase [J]. Plant J, 2000, 24(6):797.

[34] Poulsen C, Verpoorte R. Roles of chorismate mutase, isochorismate synthase and anthranilate synthase in plants [J]. Phytochemistry, 1991, 30(2):377.

[35] Noé W, Mollenschott C, Berlin J. Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures:purification, molecular and kinetic data of the homogenous protein [J]. Plant Molecular Biology, 1984, 3(5):281.

[36] VázquezFlota F A, StPierre B, De Luca V. Light activation of vindoline biosynthesis does not require cytomorphogenesis in Catharanthus roseus seedlings[J]. Phytochemistry, 2000, 55(6):531.

[37] De Luca V, Marineau C, Brisson N. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase:comparison with animal dopa decarboxylases [J]. Proc Natl Acad Sci USA, 1989, 86(8):2582.

[38] McKnight T D, Roessner C A, Devagupta R, et al. Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus [J]. Nucleic Acids Res, 1990, 18(16):4939.

[39] Yamazaki Y, Sudo H, Yamazaki M, et al. Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila:cloning, characterization and differential expression in tissues and by stress compounds [J]. Plant Cell Physiol, 2003, 44(4):395.

[40] Treimer J F, Zenk M H. Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation [J].Eur J Biochem, 1979, 101(1):225.

[41] Geerlings A, Ibaez M M, Memelink J, et al. Molecular cloning and analysis of strictosidine βDglucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus [J]. J Biol Chem, 2000, 275(5):3051.

[42] Guirimand G, Guihur A, Poutrain P, et al. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus [J]. J Plant Physiol, 2011, 168(6):549.

[43] Qu Y, Easson M L, Froese J, et al. Completion of the sevenstep pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast [J]. Proc Natl Acad Sci USA, 2015, 112(19):6224.

[44] Levac D, Murata J, Kim W S, et al. Application of carborundum abrasion for investigating the leaf epidermis:molecular cloning of Catharanthus roseus 16hydroxytabersonine16Omethyltransferase [J]. Plant J, 2008, 53(2):225.

[45] StPierre B, Laflamme P, Alarco A M, et al. The terminal Oacetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme Adependent acyl transfer [J]. Plant J, 1998, 14(6):703.

[46] Costa M M, Hilliou F, Duarte P, et al. Molecular cloning and characterization of a vacuolar class Ⅲ peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus [J]. Plant Physiol, 2008, 146(2):403.

[47] Balsevich J, DeLuca V, Kurz W G W. Altered alkaloid pattern in dark grown seedlings of Catharanthus roseus:the isolation and characterization of 4desacetoxyvindoline:a novel indole alkaloid and proposed precursor of vindoline [J]. Heterocycles, 1986, 24(9):2415.

[48] Murata J, Luca V D. Localization of tabersonine 16hydroxylase and 16OH tabersonine16Omethyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus [J]. Plant J, 2005, 44(4):581.

[49] Hemscheidt T, Zenk M H. Glucosidases involved in indole alkaloid biosynthesis of Catharanthus roseus cell cultures [J]. FEBS Lett, 1980, 110(2):187.

[50] Rischer H, Oresic M, SeppnenLaakso T, et al. Genetometabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells [J]. Proc Natl Acad Sci USA, 2006, 103(14):5614.

[51] van Der Heijden R, Jacobs D I, Snoeijer W, et al. The Catharanthus alkaloids:pharmacognosy and biotechnology [J].Curr Med Chem, 2004, 11(5):607.

[52] Facchini P J, De Luca V. Opium poppy and Madagascar periwinkle:model nonmodel systems to investigate alkaloid biosynthesis in plants [J].Plant J, 2008, 54(4):763.

[53] Burlat V, Oudin A, Courtois M, et al. Coexpression of three MEP pathway genes and geraniol 10hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoidderived primary metabolites [J]. Plant J, 2004, 38(1):131.

[54] ElSayed M, Verpoorte R. Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedlings treated with plant growth regulators [J]. Plant Growth Regul, 2004, 44(1):53.

[55] Peebles C A, Hughes E H, Shanks J V, et al.Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time [J].Metab Eng, 2009, 11(2):76.

[56] van der Fits L, Memelink J. Memelink, ORCA3, a jasmonateresponsive transcriptional regulator of plant primary and secondary metabolism [J]. Science, 2000, 289(5477):295.

[57] Li C Y, Leopold A L, Sander G W, et al. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway [J]. BMC Plant Biol, 2013, 13:155.

[58] van der Fits L, Zhang H, Menke F L, et al. A Catharanthus roseus BPF1 homologue interacts with an elicitorresponsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JAindependent signal transduction pathway [J]. Plant Mol Biol, 2000, 44(5):675.

[59] Chatel G, Montiel G, Pré M, et al. CrMYC1, a Catharanthus roseus elicitorand jasmonateresponsive bHLH transcription factor that binds the Gbox element of the strictosidine synthase gene promoter [J]. J Exp Bot, 2003, 54(392):2587.

[60] Zhang H, Hedhili S, Montiel G, et al. The basic helixloophelix transcription factor CrMYC2 controls the jasmonateresponsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus [J]. Plant J, 2011, 67(1):61.

[61] Pauw B, Hilliou F A, Martin V S, et al. Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus [J]. J Biol Chem, 2004, 279(51):52940.

[62] Sibéril Y, Benhamron S, Memelink J, et al.Catharanthus roseus Gbox binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures [J]. Plant Mol Biol, 2001, 45(4):477.

[63] Suttipanta N, Pattanaik S, Kulshrestha M, et al. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus [J]. Plant Physiol,2011, 157(4):2081.

[64] Yang Z, Patra B, Li R, et al.Promoter analysis reveals cisregulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus [J].Planta, 2013, 238(6):1039.

[65] Menke F L, Champion A, Kijne J W, et al. A novel jasmonateand elicitorresponsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonateand elicitorinducible AP2domain transcription factor, ORCA2 [J]. EMBO J, 1999, 18(16):4455.

[66] Dutta A, Sen J, Deswal R, et al. Downregulation of terpenoid indole alkaloid biosynthetic pathway by low temperature and cloning of a AP2 type Crepeat binding factor (CBF) from Catharanthus roseus (L). G. Don [J]. Plant Cell Rep, 2007, 26(10):1869.

[67] Van Moerkercke A, Steensma P, Schweizer F, et al.The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus [J]. Proc Natl Acad Sci USA, 2015, 12(26):8130.

[68] Van Moerkercke A, Steensma P, Gariboldi I. The basic helixloophelix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus [J]. Plant J, 2016, doi:10.1111/tpj.13230.

[69] Li C Y, Leopold A L, Sander G W, et al. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes [J]. Front Plant Sci, 2015, 6:818.

[70] Sibéril Y, Doireau P, Gantet P. Plant bZIP Gbox binding factors. Modular structure and activation mechanisms [J]. Eur J Biochem, 2001, 268(22):5655.

[71] VomEndt D, Soares e Silva M, Kijne J W, et al. Identification of a bipartite jasmonateresponsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with ATHook DNAbinding proteins [J]. Plant Physiol, 2007, 144(3):1680.

[72] Raina S K, Wankhede D P, Jaggi M, et al. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids [J]. BMC Plant Biol, 2012, 12:134.

[73] Hallard D, van der Heijden R, Verpoorte R, et al. Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon feeding of secologanin [J]. Plant Cell Rep, 1997, 17, 50.

[74] Chavadej S, Brisson N, McNeil J N.Redirection of tryptophan leads to production of low indole glucosinolatecanola [J]. Proc Natl Acad Sci USA, 1994, 91:2166.

[75] Geerlings A, Redondo F J, Contin A, et al. Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast [J]. Appl Microbiol Biotechnol, 2001, 56:420.

[76] Zhu X, Zeng X, Sun C, et al. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus [J]. Front Med, 2014, 8(3):285.

[77] Miettinen K, Dong L, Navrot N, et al. The secoiridoid pathway from Catharanthus roseus [J]. Nat Commun, 2014, 5:3606.

[78] Qu Y, Easson M L, Froese J, et al.Completion of the sevenstep pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast [J]. Proc Natl Acad Sci USA, 2015, 112(19):6224.

[79] Brown S, Clastre M, Courdavault V, et al. De novo production of the plantderived alkaloid strictosidine in yeast [J]. Proc Natl Acad Sci USA, 2015, 112(11):3205.

[80] 陈士林,宋经元.本草基因组学[J]. 中国中药杂志, 2016, 41(21):3381.

[81] Chen S L, Song J Y, Sun C, et al. Herbal genomics:examining the biology of traditional medicines [J]. Science, 2015, 347(6219 Suppl):S27.

[责任编辑 孔晶晶]

猜你喜欢
长春花
不同丛枝菌根真菌对长春花生长和养分吸收的影响
一盆长春花
绽放四季的长春花
长春花不同细胞培养物中一氧乙酰化地马地宁的水解过程
长春花之歌
均匀设计实验对长春花愈伤组织诱导条件的优化
长春花组织培养研究进展
6-BA对长春花幼苗生长的影响