雷帕霉素作用位点信号通路在抗抑郁作用方面的研究进展

2017-04-04 14:35综述兰志勋审校
实用医院临床杂志 2017年2期
关键词:氯胺酮谷氨酸拮抗剂

文 雯 综述,兰志勋,2 审校

(1.西南医科大学临床医学院,四川 泸州 646000;2.四川省医学科学院·四川省人民医院口腔科,四川 成都 610072)

雷帕霉素作用位点信号通路在抗抑郁作用方面的研究进展

文 雯1综述,兰志勋1,2审校

(1.西南医科大学临床医学院,四川 泸州 646000;2.四川省医学科学院·四川省人民医院口腔科,四川 成都 610072)

重度抑郁症 (major depressive disorder,MDD)是一种对生活质量起破坏性作用的精神疾病,且具有较高的发病率和死亡率,给家庭和社会带来巨大的负担。但传统的抗抑郁药物起效缓慢且仅对部分患者有效,是目前治疗抑郁症的一大挑战。糖尿病、肥胖、抑郁及确诊的癌症患者中,mTOR信号通路是失调的[1]。研究中显示mTOR具有快速起效的抗抑郁作用,对于研发新作用靶点的抗抑郁药具有很大的指导意义,可能为情感障碍的神经生物学治疗找到了一个新的方向,本文将从mTOR信号通路与N-甲基-D-天冬氨酸受体(NMDA)、α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPA)、脑源性神经营养因子(brain derived neurotrophic factor,BDNF)、血管内皮生长因子(vascular endothelial growth factor,VEGF)的相互关系等方面进行总结综述。

雷帕霉素作用位点信号通路;N-甲基-D-天冬氨酸受体;α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体;脑源性神经营养因子;血管内皮生长因子

活化的哺乳动物雷帕霉素作用位点(mammalian target of rapamycin,mTOR)信号通路可能是N-甲基-D-天冬氨酸受体(NMDA)受体拮抗剂和其他经典的抗抑郁药物起作用的基础,但与NMDA受体拮抗剂如氯氨酮的抗抑郁作用关系更加密切。雷帕霉素作用位点(target of rapamycin,TOR)是一种高度保守的丝/苏氨酸激酶,包含两种不同形式的蛋白复合物:雷帕霉素作用位点复合物1(TOR complex 1,TORC1)与雷帕霉素作用位点复合物2(TOR complex 2,TORC2[2],通过直接活化α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPA)和神经营养因子受体传递信息。mTOR信号通路的上游激动子是蛋白激酶B(protein kinase B,PKB/AKt)及细胞外信号相关激酶(ERK),ERK抑制结节硬化症复合物(TSC1/TSC2),后者是mTOR的抑制剂[3]。激活糖原合成酶激酶-3(GSK-3)导致TSC1/2活性增加,这样可抑制mTOR信号通路。mTOR的下游靶点是核糖体S6蛋白激酶(S6Ks)及真核生物起始因子4E(eIF4E)的结合蛋白(4E-BP),调节蛋白质的合成[4]。磷酸化真核生物延长因子2(eEF2)则抑制蛋白质的翻译[5],刺激eEF2去磷酸化使蛋白翻译增加,TOR阻滞效应是去磷酸化,暗示这是mTOR介导的效应。

1 mTOR与NMDA受体

NMDA受体是谷氨酸盐离子通道型受体,使Ca2+、Na+进入细胞内,K+流出细胞外,其激活需要谷氨酸和甘氨酸受体的共同活化,使细胞膜去极化以使Mg2+从受体通道移除。每个NMDA受体由四个亚单位组成,目前已发现共有七个亚型:GluN1、GluN2 A、GluN2B、GluN2C、GluN2D、GluN3 A、GluN3B。NMDA受体的功能根据组成亚单位和在细胞内位置不同而异[6],对轴突、树突分枝的延伸及急性应激时海马突触可塑性的改变起着重要的作用[7],提示NMDA受体拮抗剂氯胺酮可能通过调节突触形态来产生抗抑郁作用。研究表明,人[8]和动物模型[9]注射氯胺酮后能够发挥快速、长效的抗抑郁作用,包括激活ERK、AKt依赖的mTOR信号通路以及逆转前额叶皮质中由应激导致的突触蛋白的下降[10],但仅在激活后通道处于开放状态时才能产生阻滞作用。阻滞NMDA受体,使下游p70蛋白的核糖体S6蛋白激酶(P70 S6K)抑制下游真核生物延长因子2激酶(eEF2K),从而减少eEF2蛋白的磷酸化,解除对蛋白翻译的抑制,导致BDNF在海马中的表达增加[11]。经典的抗抑郁药物有:依地普伦、帕罗西汀等,在大鼠海马培养中,它们增加mTOR磷酸化的水平和上游调节因子AKt、ERK的磷酸化形式[12],同时也增加突触蛋白的水平和海马树突的生长。

Miller等[13]证明拮抗GluN2B促进mTOR依赖的抗抑郁作用,并增加皮质神经元蛋白翻译和突触可塑性,GluN2B能更有效的抑制mTOR功能和蛋白生成,因此可能是氯胺酮快速起效的一个靶点。另有研究用氯胺酮和一种谷氨酸NMDA2B受体拮抗剂R0(25)-6981治疗慢性应激模型老鼠,均可通过mTOR持续逆转抑郁行为及减少前额叶皮质中突触后兴奋性电流[10],且与非特异性NMDA受体拮抗剂有相似的抗抑郁作用[14]。其它谷氨酸NMDA2B受体拮抗剂CP-101,606(traxoprodil)对难治性重度抑郁症患者也具有快速抗抑郁作用[15]。

2 mTOR与AMPA受体

氯胺酮激活mTOR信号通路及产生抗抑郁作用依赖于谷氨酸盐-AMPA受体的激活[16],因此提高谷氨酸盐递质传递或活化AMPA受体均能产生快速有效的抗抑郁作用。氯胺酮的突触发生作用是通过AMPA受体“去抑制”谷氨酸传递产生的,阻断AMPA受体可抑制氯胺酮的抗抑郁作用[17]。注射氯胺酮后,将减少大鼠前额皮层γ-氨基丁酸能中间神经元的自发活动,因而使谷氨酸能椎体神经元的代谢率增加[18],这一点值得关注。椎体神经元的活动能增加皮质的兴奋性和谷氨酸水平,因而可活化AMPA受体。同样具有抗抑郁作用的抗惊厥药,如拉莫三嗪和利鲁唑,可使AMPA受体在海马神经元细胞膜的传输和利用率增加[19]。此外,AMPA受体激动剂也能产生抗抑郁作用并兴奋mTOR信号通路[20]。研究表明mTOR信号通路活化AMPA是离子型谷氨酸能神经传递药物调节突触可塑性和产生抗抑郁作用的基本机制[21]。mTOR信号通路的激活可被AMPA受体拮抗剂(NBQX)完全阻滞。细胞和行为学研究证明,对mTOR信号通路的兴奋和蛋白质合成的促进取决于对AMPA受体的活化[22]。

谷氨酸盐在氯胺酮抗抑郁作用中起作用的另一个证据是:阻滞谷氨酸盐受体2/3亚型(mGluR2/3)突触前自身抑制受体,也可产生依赖于mTOR信号通路的快速抗抑郁作用[23]。mGluR2/3拮抗剂(LY341495),快速激活mTOR和下游通路组成成分P70 S6K、真核生物起始因子4E结合蛋白1(4E-BP1)及持续增加突触后蛋白水平[23]。东莨菪碱是一种毒蕈碱胆碱能受体(mAChR)拮抗剂,在临床试验中表现为快速抗抑郁作用[24]与老鼠前额皮质的突触发生和mTORC1信号的快速激活相关[25]。这些作用可以被AMPA阻滞剂拮抗,这表明谷氨酸能神经传递共有的作用与氯胺酮NMDA受体拮抗作用相似。

3 mTOR与脑源性神经营养因子(brain derived neurotrophic factor,BDNF)

BDNF是mTOR信号通路和突触可塑性、树突蛋白合成、棘成熟、突触递质传递的重要调节因子[25]。在神经元中,BDNF通过磷酸化修饰调节mTORC1的活性,进而活化G蛋白偶联受体(GPCRS)或者离子通道受体[26]。Hoeffer等研究表明,刺激AMPA受体导致功能依赖性的BDNF释放,BDNF又反过来活化AKt、ERK,兴奋mTOR信号通路和诱导突触蛋白的合成[22]。Lepack等认为,氯胺酮引起BDNF的增加是通过激活突触后AMPA受体,使细胞去极化,激活L型电压依赖性钙通道,使Ca2+内流增加,进而使释放BDNF的胞吐作用增强[27],并进一步导致海马中突触可塑性的巨大改变(增加表面AMPA受体的表达)[28]。但也有研究表明,经典的抗抑郁治疗确实可增加脑边缘系统中BDNF的表达,但没有证据证明BDNF的释放也增加,以此说明BDNF的释放是依赖于活化的AMPA受体[25],后者可能是氯胺酮快速抗抑郁作用的关键之处,还有待进一步的研究[16]。BDNF的释放还可兴奋原肌球蛋白激酶B(TrKB)受体及磷酸肌酸激酶和ERK信号通路,它们均是氯胺酮兴奋mTOR信号通路所需要的[17],也能通过真核生物起始因子4E结合蛋白激酶(4E-BPS)、S6KS蛋白激活mTOR信号通路,并增加在海马、皮质初级神经元中去磷酸化的eEF2的水平,提高蛋白合成的速率,从而增加神经元树突中蛋白的合成。

BDNF有几个易突变片段[29]。甲硫氨酸等位基因出现于20%~30%的人群中,伴有功能缺失,并增加那些曾经受过创伤或应激的人患抑郁症的风险[30]。然而也有研究认为含缬氨酸的BDNF更易导致抑郁症的发生及降低抗抑郁治疗的有效率[31],表明BDNF和其它基因的多态性与环境因素之间存在复杂关系。抑郁症患者BDNF水平较正常人有所下降,可能是导致抑郁症的结构改变和行为症状的原因,而抗抑郁治疗后BDNF将增加[32]。抗抑郁药物治疗和电休克治疗可恢复BDNF在前额叶皮质和海马中的mRNA水平,外源性给予BDNF到中脑和海马[33]中,也可产生抗抑郁作用。促分裂原活化蛋白激酶磷酸酶-1(MKP-1)是BDNF-ERK级联反应的一个负性调节器,研究发现抑郁症患者海马中的MKP-1的水平显著增高[34]。异常的、持续增高的MKP-1,使ERK的表达下降,导致BDNF-ERK信号通路减少,也引起功能依赖性的mTOR信号通路的活化减少[16]。

BDNF也可通过三磷酸肌醇蛋白激酶(PI3K)/AKt、GSK-3信号通路传递信号产生抑郁和焦虑的症状[35]。在运动后,BDNF能活化原肌球蛋白激酶(Trk)受体下游的PI3K/AKt/mTORC1信号通路,mTORC1的激活又导致神经树突中蛋白合成增加,这也能解释在脑内mTORC1的激活是突触可塑性和长程增强作用所必需的[36]。运动后也可通过上调reelin活化mTORC1,但运动后reelin的增加仅在仍处于发育状态的大脑中,而在健康成年人大脑中不会增加[37],尽管mTORC1的活性和BDNF仍增加[38],表明BDNF是介导mTORC1活化的主要通路。

实际上BDNF-TrKB和mTOR信号通路涉及的是氯胺酮和mGlu2/3拮抗剂[39]作用的维持而不是即刻的起效。除外mTOR信号通路,BDNF改变突触可塑性和抗抑郁的作用还包含其它机制,如:在成年老鼠海马中,细胞外信号调节激酶(MAPK)的激活、及磷酸化环磷酸腺苷(cAMP)的增加[40]。研究表明,在NMDA受体拮抗剂的快速抗抑郁作用中,海马中mTOR的增加不是必须的,而是依赖于BDNF蛋白的快速翻译[11]。

4 mTOR与血管内皮生长因子(vascular endothelial growth factor,VEGF)

VEGF是一种神经营养因子。在给予经典抗抑郁药物如:选择性5-羟色胺再摄取抑制剂和非选择性5-羟色胺再摄取抑制剂治疗后,VEGF和它的受体Flk-1(VEGFR2)在海马中表达增加,诱导抗抑郁作用的产生,同时运动缓解抑郁样症状也是通过激活VEGF/FIK-1信号通路来实现的[41]。在临床研究中,自杀成功的患者体内可检测到低水平的血浆VEGF[42],与完全睡眠剥夺患者的抗抑郁作用相关的是血浆中VEGF水平升高[43]。在应激抑郁症模型中,应激可减少海马中VEGF的水平,如当海马齿状回受辐照后,可降低VEGF的表达[44]。一些非药理学的抗抑郁治疗方法,如:电休克(electroconvulsive shock,ECS)治疗,锻炼或者情绪稳定剂(拉莫三嗪等)[45],可使VEGF的表达上调。研究证明,VEGF通过活化mTORC1信号通路实现细胞增殖[46]。尽管在抑郁障碍治疗中,VEGF的作用越来越重要,但是与前体VEGF之间没有明确的关联,否则可以将其作为抑郁症和(或)抗抑郁治疗效果的生物标记[47]。

今后的研究应该进一步阐明mTOR信号通路的调节功能和参与抗抑郁作用时错综复杂的信号通路的各个环节。影响谷氨酸盐传递、BDNF-mTOR信号通路、突触发生的新的药物作用靶点,是研发安全、快速、有效的抗抑郁药的方向。若能研发一种药物,它能够调节PI3K-AKt-mTOR信号通路中的一个或者多个蛋白激酶的活性,并只具有NMDA受体拮抗剂如氯胺酮的抗抑郁作用而不产生其相关的副作用,将会使抗抑郁治疗进入一个新的阶段。

[1] Cornu M,Albert V,Hall MN.mTOR in aging,metabolism,and cancer[J].Current Opinion in Genetics & Development,2013,23(1):53-62.

[2] Wullschleger S.TOR signaling in growth and metabolism[J].Cell,2006,124(3):471-484.

[3] Inoki K,Ouyang H,Zhu T,et al.TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth[J].Cell,2006,126(5):955-968.

[4] Laplante M,Sabatini D.mTOR Signaling in Growth Control and Disease[J].Cell,2012,149(2):274-293.

[5] Dreyer HC,Drummond MJ,Pennings B,et al.Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle[J].2008,294(2):392-400.

[6] Abdallah CG,Sanacora G,Duman RS,et al.Ketamine and Rapid-Acting Antidepressants:A window into a new neurobiology for Mood Disorder Therapeutics[J].Annual Review of Medicine,2015,66(66):509-523.

[7] Wang M,Yang Y,Dong Z,et al.NR2B-containing N-methyl-D-aspartate subtype glutamate receptors regulate the acute stress effect on hippocampal long-term potentiation/long-term depression in vivo[J].Neuroreport,2006,17(12):1343-1346.

[8] Ibrahim L,Diazgranados N,Luckenbaugh DA,et al.Rapid decrease in depressive symptoms with an N-methyl-d-aspartate antagonist in ECT-resistant major depression[J].Progress in neuro-psychopharmacology & biological psychiatry,2011,35(4):1155-1159.

[9] Akinfiresoye L,Tizabi Y.Antidepressant effects of AMPA and ketamine combination:role of hippocampal BDNF,synapsin,and mTOR[J].Psychopharmacology,2013,230(2):291-298.

[10]Li N,Liu RJ,Dwyer JM,et al.Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure[J].Biological Psychiatry,2011,69(8):754-761.

[11]Autry AE,Adachi M,Nosyreva E,et al.NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses[J].Nature,2011,475(7354):91-95.

[12]Park SW.Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons[J].International Journal of Neuropsychopharmacology,2014,17(11):1831-1846.

[13]Miller OH,Yang L,Wang CC,et al.GluN2B-Containing NMDA Receptors Regulate Depression-Like Behavior and are Critical for the Rapid Antidepressant Actions of Ketamine[J].Elife Sciences,2014,3(3):3581-3602

[14]Niciu MJ,Henter ID,Luckenbaugh DA,et al.Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression:ketamine and other compounds[J].Annual Review of Pharmacology & Toxicology,2014,54(1):119-139.

[15]Preskorn SH,Baker B,Kolluri S,et al.An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist,CP-101,606,in patients with treatment-refractory major depressive disorder[J].Journal of Clinical Psychopharmacology,2008,28(6):631-637.

[16]Duman RS,Li N,Liu RJ,et al.Signaling pathways underlying the rapid antidepressant actions of ketamine[J].Neuropharmacology,2012,62(1):35-41.

[17]Li N,Lee B,Liu RJ,et al.mTOR-dependent synapse formation underlies the rapid antidepressant effects of nmda antagonists[J].Science,2010,329(5994):959-964.

[18]Homayoun H,Moghaddam B.NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2007,27(43):11496-11500.

[19]Du J,Suzuki K,Wei Y,et al.The anticonvulsants lamotrigine,riluzole,and valproate differentially regulate ampa receptor membrane localization:relationship to clinical effects in mood disorders[J].Neuropsychopharmacology,2007,32(4):793-802.

[20]Jourdi H,Hsu YT,Zhou M,et al.positive ampa receptor modulation rapidly stimulates bdnf release and increases dendritic mrna translation[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2009,29(27):8688-8697.

[21]Chen KT,Tsai MH,Wu CH,et al.AMPA Receptor-mTOR activation is required for the antidepressant-like effects of sarcosine during the forced swim test in rats:insertion of AMPA receptor may play a role[J].Frontiers in Behavioral Neuroscience,2015,9(1):162-172.

[22]Hoeffer CA,Klann E.mTOR signaling:At the crossroads of plasticity,memory and disease[J].Trends in Neurosciences,2009,33(2):67-75.

[23]Dwyer JM.mTOR activation is required for the antidepressant effects of mGluR2/3 blockade[J].International Journal of Neuropsychopharmacology,2012,15(4):429-434.

[24]Drevets WC,Zarate CA,Furey ML.Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine:a review[J].Biological Psychiatry,2012,73(12):1156-1163.

[25]Voleti B,Navarria A,Liu RJ,et al.Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling,synaptogenesis,and antidepressant behavioral responses[J].Biological Psychiatry,2013,74(10):742-749.

[26]Pilar-Cúellar F,Vidal R,Díaz A,et al.Signaling pathways involved in antidepressant-induced cell proliferation and synaptic plasticity[J].Current Pharmaceutical Design,2013,20(23):3776-3794.

[27]Lepack AE,Fuchikami M,Dwyer JM,et al.BDNF Release is Required for the Behavioral Actions of Ketamine[J].International Journal of Neuropsychopharmacology,2015,18(1):33-38.

[28]Nosyreva E,Szabla K,Autry AE,et al.Acute suppression of spontaneous neurotransmission drives synaptic potentiation[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2013,33(16):6990-7002.

[29]Casey BJ,Glatt CE,Tottenham N,et al.Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development[J].Neuroscience,2009,164(1):108-120.

[30]Gatt JM,Nemeroff CB,Dobsonstone C,et al.Interactions between BDNF Val66 Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety.[J].Molecular Psychiatry,2009,14(7):681-695.

[31]Tsai SJ,Hong CJ,Liou YJ.Effects of BDNF polymorphisms on antidepressant action[J].Psychiatry Investigation,2010,7(4):236-242.

[32]Deuschle M,Gilles M,Scharnholz B,et al.Changes of serum concentrations of brain-derived neurotrophic factor (bdnf) during treatment with venlafaxine and mirtazapine:role of medication and response to treatment[J].Pharmacopsychiatry,2012,46(2):54-58.

[33]Shirayama Y,Chen AC,Nakagawa S,et al.Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2002,22(8):3251-3261.

[34]Vanja D,Mounira B,Pawel L,et al.Negative regulator of MAP Kinase is increased in depression and is necessary and sufficient for expression of depressive behavior[J].Nature Medicine,2010,16(11):1328-1332.

[35]Lang UE,Borgwardt S.Molecular mechanisms of depression:perspectives on new treatment strategies[J].Cellular Physiology & Biochemistry International Journal of Experimental Cellular Physiology Biochemistry & Pharmacology,2013,31(6):761-777.

[36]Stoica L,Zhu PJ,Huang W,et al.Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(9):3791-3796.

[37]Hesari F,Sale E.Reelin and regular exercise in the brain cortex of healthy adult rats[J].Journal of Animal Science Advances,2013,3(11):569-574.

[38]Zheng HF,Chan HL,Mi KS,et al.Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats[J].Neuroscience Research,2013,76(4):187-194.

[39]Koike H,Fukumoto K,Iijima M,et al.Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression[J].Behavioural Brain Research,2013,238(2):48-52.

[40]Schmidt HD,Duman RS.Peripheral BDNF Produces antidepressant-like effects in cellular and behavioral models[J].Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology,2010,35(12):2378-2391.

[41]Elfving B,Wegener G.Electroconvulsive seizures stimulate the vegf pathway via mTORC1[J].Synapse,2012,66(4):340-345.

[42]Isung J,Mobarrez F,Nordström P,et al.Low plasma vascular endothelial growth factor (VEGF) associated with completed suicide[J].World Journal of Biological Psychiatry,2012,13(6):468-473.

[43]Ibrahim L,Duncan W,Luckenbaugh DA,et al.Rapid antidepressant changes with sleep deprivation in major depressive disorder are associated with changes in vascular endothelial growth factor (VEGF):A pilot study [J].Brain Research Bulletin,2011,86(1-2):129-133.

[44]Warner-Schmidt JL,Duman RS.VEGF as a potential target for therapeutic intervention in depression[J].Current Opinion in Pharmacology,2008,8(1):14-19.

[45]Sun R,Li N,Li T.VEGF regulates antidepressant effects of lamotrigine[J].European Neuropsychopharmacology,2012,22(6):424-430.

[46]Takei N,Nawa H.mTOR signaling and its roles in normal and abnormal brain development[J].Frontiers in Molecular Neurosciemce,7(1):28.

[47]Halmai Z,Dome P,Dobos J,et al.Peripheral vascular endothelial growth factor level is associated with antidepressant treatment response:results of a preliminary study[J].Journal of Affective Disorders,2013,144(3):269-273.

Progress of researching target of rapamycin signaling pathway on antidepressant effects

WEN Weng,LAN Zhi-xun

R749.053

B

1672-6170(2017)02-0143-04

2016-11-19;

2017-01-10)

猜你喜欢
氯胺酮谷氨酸拮抗剂
氯胺酮及其异构体和代谢物抗抑郁研究进展☆
淫羊藿总黄酮对谷氨酸和咖啡因损伤PC12细胞的保护作用
N-月桂酰基谷氨酸盐性能的pH依赖性
问:如何鉴定谷氨酸能神经元
GPⅡb/Ⅲa受体拮抗剂在急性冠脉综合征中的应用
治疗心力衰竭新药:血管紧张素受体拮抗剂及脑啡肽酶双重抑制剂LCZ696
氯胺酮对学习记忆能力的影响
氯胺酮联合丙泊酚在小儿麻醉中的应用效果观察
合理选择降压药物对改善透析患者预后的意义
氧自由基和谷氨酸在致热原性发热机制中的作用与退热展望