一种“绿色”半导体器件冷暖空调器的设计

2017-04-23 03:34罗欣
电子技术与软件工程 2017年5期
关键词:半导体器件绿色

罗欣

摘 要 基于当今日益严重的“雾霾”环境污染,为了减少现有普通空调所使用制冷剂对空气环境的影响,并有效防止现有室外机部分所产生的不安全因素,提出了一种不需要制冷剂冷却,直接利用半导体调温器件进行室内空气热交换,并通过模块转换的方式实现空调的冷暖转变的半导体冷暖空调,以取代现有的商业空调,达到利用半导体器件进行“绿色”冷暖空气调节的目的。

【关键词】半导体器件 模式转换 冷暖空调 温度调节

1 引言

利用半导体调温技术对室内进行温度调节是一种新型温度调节技术,与现有的常规压缩式制冷机相比,具有重量轻、寿命长,工作起来无噪声等优点,同时由于不必使用气体冷却剂工质,所以也不会构成对环境污染,成为了名副其实的“绿色”空调。目前应用半导体温度调节技术的场所已经来越多,已经广泛应用于汽车,医疗等部门。但是由于半导体器件的特性,其P-N结的固定结构使得半导体空调的制冷和制热之间的转换比较困难,所以一般由半导体致冷器制成的空调器都是单一的制冷空调机,而这种单纯制冷空调尚不能满足市场的商业需求。如何改变现有的半导体调温结构,实现半导体制冷和制热模式的有效转换,已经是当今半导体调温技术进一步发展的难题,也是真正让半导体调温技术实现商业化价值的关键。

本论文提出一种利用半导体调温器件模块化设置,通过模块转动方式实现半导体制冷和制热模式的有效转换,到达利用半导体调温器件既能制冷又能制热的目的,通过半导体冷暖空调结构设计,使得半导体冷暖空调能满足市场的商业需求,实现“绿色”空调的商业化应用。

2 半导体冷暖空调原理

半导体温度调节都是通过半导体调温片来实现的,所谓半导体调温片采用的就是具有P-N结的热电偶对,采取直流供电,利用直流电流通过P-N结时所产生的不同温度效应来实现热交换,这种效应也就是一种热电效应。通常都认为这种热电效应是建立在珀尔帕效应基础上实现的,但实际上这种效应是建立在五种不同的效应组成的基础上的,这就是通常所说的赛贝克效应、珀尔帖效应、汤姆逊效应、焦耳效应,以及富里叶效应。这五种效应的基本原理和作用如下:

2.1 赛贝克效应

所谓赛贝克效应是由俄罗斯科学家赛贝克于19世纪所发现的一种温度效应,即两种不同导体(或半导体)所组成的闭合回路中,如果两个接头具有不同的温度,则会在线路中产生电流,这种电流称被为温差电流,这个闭合回路便构成温差电偶,产生电流的电动势称为温差电动势,温差电动势的数值只与两个接头的温度有关。这种温度效应称为塞贝克效应(图1)。

2.2 珀尔帖效应

法国科学家珀尔贴发现了热电致冷和致热现象-即温差电效应,所谓温差电效应就是在电流通过两种不同导体形成的回路时,在两种不同导体所形成回路的结点处,随着电流方向的不同会分别出现吸热或放热的效应现象,这种效应现象就称之为珀尔帖效应。珀尔帖效应的原理如图2所示。

2.3 汤姆逊效应

所谓汤姆逊效应实质就是一种温度梯度的效应。1856年英国物理学家W.汤姆孙发现当电流流过不同温度的导体时,也会产生吸热或放热的效应现象,这种效应现象是由英国物理学家W.汤姆孙发现的,所以称之为汤姆逊效应,汤姆逊效应的原理如图3所示。

2.4 焦耳效应

所谓焦耳效应就是指当电流流过导体时所引起温度变化的一种现象,而且这种效应是一种不可逆的效应,同时也不属于温差电效应,但现在经常将焦耳效应与焦汤效应结合起来考虑。

2.5 傅里叶效应

所谓傅付里叶效应就是指单位时间内经过均匀介质沿某一方向传导的热量与垂直这个方向的面积和该方向温度梯度的乘积成正比效应,而热量传递的方向则与温度升高的方向相反。

综合上述五种效应组合,可以看出所谓半导体调温就是利用半导体材料,当电流流经不同的导体,尤其是半导体材料所形成的结点回路时,在结点处会产生放热或吸热(制冷)现象而实现调温的。

但是现有的半导体调温技术之所以难以推广,主要是两个问题,其一是功效较低,难以与传统的制冷剂空调抗衡;其二是现有半导体的调温材料如何进行冷热转换的问题。这其中第一个问题在新的高效半导体热电元件诞生后已经基本得到解决,目前的高效半导体热电元件的优值系数已经超过13×10-3K-1,在温差50℃时,高效半导体热電元件的制冷系数大于3,制冷效率甚至高于压缩机制冷。而第二个问题正是当前所需要解决的主要问题,当前认为半导体的冷热转换可以直接通过改变电流的方向实现,但实际应用中发现采取这样的冷热转换方式不利于半导体的调温材性能的利用。众所周知,半导体主要是为N型元件和P型元件二种材料组合,其中N型元件通过电子载流子进行导电,而P型元件通过空穴载流子进行导,在N型元件接入直流电正极,P型元件接入负极时,N型元件中的电子在电场作用下将由上向下移动,并在下端与电源的正电荷聚合,在聚合时还会放热;而P型元件中的空穴在电场作用下将也会向下移动,并在下端与电源的负电荷发生聚合,聚合时也会放热;同时,N型元件的电子与P型元件的空穴在上端分离,分离时会吸收热量。但是N型元件和P型元件对于吸热和放热的性能是不一样的,而且制冷或制热之间的转换如果长期通过电流改变容易造成器件损坏;为了有效利用N型元件和P型元件的性能我们现在都只是利用半导体的N型元件和P型元件来进行制冷,这也是当前的半导体调温主要只是用于做半导体制冷的主要原因。

通过上面的分析可以得知,采用简单的电流换向实现半导体调温器件的冷热模式的转变是不理想的,因此本设计主要通过结构的改进来实现半导体调温器件的冷热模式的转变,将半导体调温器件设计成一种模块,并将此模块安装在一个带有冷热腔室的壳体内,通过半导体调温器件模块的转动来实现半导体调温器件的冷热模式的转变,结构原理如图4。

通过图4可以看出,本设计的主要原理是将半导体调温器件设计成一种可以在壳体内转动的模块,将半导体调温器件模块通过一个转轴安装在空调的壳体内,根据半导体P-N结的调温特性,在需要对室内进行降温时,将半导体P-N结制冷的一面面对室内;在需要对室内升温时,将半导体P-N结发热的一面面对室内,通过转轴的转换即可实现在壳体内的半导体调温器件的冷热模式的转变。采用这种冷热模式的转变方法,可以不改变原半导体调温器件的电流方向,保持半导体调温器件P-N结的各自优势,只需通过器件的面向改变实现冷热模式的转变。

3 半导体冷暖空调结构设计

根据上述的设计思路,本设计所提出的结构设计方案主导思想就是将半导体调温组件模块化,并达到能在一定空间能转动,其设计过程如下:

3.1 半导体调温组件结构设计

采用高效半导体热电元件堆叠成块,使每个元件相连接的都是不同导电类型的元件,串联起来形成大功率的半导体调温组件,并在调温组件的两面分别加装散热翅片,形成一个圆筒状体,在圆筒状体组件的两端设置转轴,并在转轴的一端设置半导体调温组件的N型元件导电环和P型元件导电环,这样就形成了半导体调温组件(图5)。

半导体调温组件制冷时,将冷端面置于室内吸热,热端面置于面向室外,并通过风扇将热端面的热量吹到室外,以达到降低室内温度的目的;而在冬季需要给室内升温时,则通过调整半导体调温组件的转向来改变半导体调温组件的冷热位置关系;将半导体调温组件方向转变180度,此时半导体调温组的冷端面就变成了面向室外吸热了,而热端面变成了面向室内放热,从而达到加热室内温度的空调目的。

其中,半导体调温组件的上下面均采用陶瓷片,并经过掺杂处理,以此提高导热性能,主要成分是95%氧化铝。在它的表面烧结有金属化涂层。

与陶瓷片连接的是散热翅片,散热翅片纵向排列,主要起导热作用。通过锡焊接在陶瓷片的金属化涂层上。

上下导流片之间是半导体致冷元件,它的主要成分是碲化鉍,是半导体调温组件的主功能部件,分N型元件和P型元件,通过锡焊接在导流片上。

3.2 整体空调结构设计

在设计好半导体调温组件后,在整体结构设计上主要应考虑半导体调温组件的安装、通风的方式,以及半导体调温组件模块的转动控制几部分。整个空调器的结构如附图6和图7所示。

从上图可以看出,半导体空调的整体包括一个箱体,箱体内分为前箱体和后箱体两部分,前箱体面向室内,后箱体紧贴着墙壁;在前箱体和后箱体两部分之间设有用于制冷或发热的半导体器件板,通过半导体器件板将前箱体和后箱体两部分分开,分别形成室内换热腔体和室外换热腔体,通过室内换热腔体和室外换热腔体与半导体器件板的换热实现室内的空气调节;所述半导体器件板通过转轴安装在前箱体和后箱体两部分之间隔离区间内,转轴设置在隔墙内,并在转轴的一端设有用于翻转半导体器件板的旋转装置,通过旋转装置将半导体器件板绕转轴翻转,以此实现半导体器件板对室内的换热或制冷转换,达到制冷或加热的空调目的。

其中,室内换热腔体是在前箱体一端设有室内入风口,内入风口安装有室内风扇,另一端设有室内出风口,室内入风口与室内出风口通过半导体器件板一侧的室内流道连通,室内风扇吹出的风经过室内流道,进入另一端,再通过室内出风口排出。前箱体整个下前角部分设有室内出风流道,室内出风口的风是经由室内出风流道排出的。室外换热腔体是在后箱体的两端分别设有与室外相通的室外入风口和室外出风口,室外入风口和室外出风口的一部分分别嵌入墙体内,且面向室外,室外入风口和室外出风口通过位于半导体器件板另一侧的室外流道连通,形成后箱体换热腔体,在室外入风口处设有室外风扇,室外风扇将室外空气引入,通过室外流道,再从室外出风口排出。室外入风口位于室外风扇之前的风道上设有空气过滤网,通过空气过滤网对室外进入后箱体的空气进行过滤,防止杂物进入。

本设计的主要特点在于半导体器件板的旋转装置为电动翻转装置或手动翻转装置都可以;采用电动翻转装置时,在转轴的端部连接有翻转电机,通过电机带动转轴翻转,从而实现半导体器件板的翻转;采用手动翻转装置时,直接通过一个转盘就可以进行翻转。

为了提高热胶换效率,在半导体器件板的两面都带有散热翅片,散热翅片分别深入到室内流道和室外流道中,使得经过室内流道和室外流道的风能更加加快热交换的效果。同时,为了防止室外的空气与室内交流,在室外流道与箱体之间设有保温层,防止室外换热腔体内的温度传到室内。

4 半导体冷暖空调结构分析

采用上述结构的半导体空调,通过一个可转动的半导体器件板,实现半导体器件板对室内制冷或加热之间的转换,并直接将整个箱体分为前箱体和后箱体两个部分,直接将整个空调器箱体安装在室内的墙壁上,分别通过室外换热腔体和室内换热腔体进行热交换,达到空气调节的目的,这样有几大好处:

(1)冷热转换模式通过模块式结构转动实现转换,不采用电源反接,可以避免电源反接所给半导体器件的反向冲击,防止半导体器件出现“崩溃”现象,可以完全利用半导体N型元件和P型元件的各自优势,实现制冷和制热。

(2)可以完全省去室外机部分,只需通过一个进风口和一个排风口,两个风口就可以将换热腔体的热交换空气与室外空气进行交换,避免了室外机造成安全隐患的因素;

(3)方便安装,将室外换热腔体和室内换热腔体统一设置在室内的壳体内,安装时不用操作人员再到室外进行安装作业,完全杜绝了空调安装的室外作业事故发生;

(4)結构简单,不需要制冷剂的交换,因此也就没有连接管道,便于维修和养护,安装容易。

(5)可连续工作,使用安静无噪音,直接通过半导体器件进行热交换,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,没有压缩机运转的噪音;

(6)环保绿色运行,本发明采取半导体换热,取代了常规的压缩机技术,不需要任何制冷剂,也就避免了常规制冷剂对环境的污染。

(7)半导体制冷片采用高效半导体热电元件,具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1[6]。因此使用一个片件就可以代替分立的加热系统和制冷系统。

(8)半导体制冷片采用电流换能型片件,以输入电流的方式实施控制,可实现高精度的温度调节,并通过温度检测和控制手段,实现遥控、程控、计算机等控制,便于形成自动控制系统。

(9)半导体调温的温差范围,可从+90℃到-130℃任意调节。

5 结论

本文设计了一种通过半导体调温组件模块转动,实现半导体调温器件的冷热模式的转变的半导体冷暖空调。文中详细描述了半导体调温组件模块转动方式的半导体冷暖空调的结构,并对半导体调温组件模块转动方式作了详细的设计说明,由于采用直流电环供电,且转动的速度较低,因此在转动中的通电不会受到任何影响,可以有效改变现有半导体空调难以实现冷热模式转换的问题,具有很好的商业实用价值,从而实现真正的“绿色”空调。

参考文献

[1]张芸芸,李茂德,徐纪华.半导体制冷空调器的应用前景[J].应用能源技术,2007(06):32-34.Zhang Yunyun, Li Maode,.Application prospect of semiconductor refrigeration air conditioner[J].Applied energy technology,2007(06):32-34.

[2]唐春晖.半导体制冷一一21世纪的绿色“冷源”[J].半導体技术,2005,30(05):32-33.Tang Chunhui.Semiconductor refrigeration one by one in twenty-first Century the green "cold source"[J].Semiconductor technology,2005(05):32-33.

[3]刘巧燕,林开云.热电制冷在汽车上的应用研究[J].成都航空职业技术学院学报,2005,64(03):52-54.Liu Qiaoyan, Lin cayenne. Application of thermoelectric refrigeration in the car on the [J].Journal of Chengdu Aeronautic Vocational and Technical College, 2005,64(03):52-54.

[4]倪美琴,陈兴华.关注半导体制冷与发展[J].制冷与空调,200l,1(01):42-44.Ni Meiqin,Chen Xinghua.Focusing on semiconductor refrigeration and development[J].Refrigeration and air conditioning,200l,1(01):42-44.

[5]罗清海,汤广发,李涛.半导体制冷空调的应用与发展前景[J].《制冷与空调》,2005,5(06):5-9.Luo Qinghai, Tang Guang Fa, Li Tao.Application and development prospect of semiconductor refrigeration and air conditioning[J].Refrigeration and air conditioning,2005,5(06):5-9.

[6]徐德胜.半导体制冷与应用技术[M].2版.上海:上海交通大学出版社,1992:26-58.Xu Desheng.Semiconductor refrigeration and application technology [M].2 edition. Shanghai: Shanghai Jiao Tong University press, 1992:26-58.

[7]唐亚林,徐志亮.半导体制冷空调器设计的关键技术分析[J].制冷与空调,2015,15(07):1-4.Tang Yalin, Xu Zhiliang. Key technical analysis of the design of semiconductor refrigeration air conditioner[J]. Refrigeration and air conditioning, 2015,15(07):1-4.

[8]李冰.半导体制冷技术及其发展[J].山西科技,2009(04):95-95.Li Bing.Semiconductor refrigeration technology and its development [J].Shanxi science and technology,2009(04):95-95

猜你喜欢
半导体器件绿色
节俭绿色
绿色低碳
绿色环保
绿色大地上的巾帼红
任务驱动教学法在《半导体器件基础》课程中的应用研究
浅淡谐波治理
通过伏安特性理解半导体器件的开关特性