小远志中口山酮类化学成分及生物活性研究

2017-06-05 15:22周凌云余小红耿圆圆
林产化学与工业 2017年2期
关键词:分子式远志甲氧基

周凌云, 余小红, 耿圆圆, 华 燕

(1.皖南医学院 药学院,安徽 芜湖241002;2.西南林业大学 林学院,云南 昆明 650224)

小远志中口山酮类化学成分及生物活性研究

ZHOU Lingyun

周凌云1,2, 余小红2, 耿圆圆2, 华 燕2*

(1.皖南医学院 药学院,安徽 芜湖241002;2.西南林业大学 林学院,云南 昆明 650224)

以小远志干燥根茎为原料,采用乙醇提取、硅胶柱层析、Sephadex LH-20、MCI-gel和半制备型HPLC分离等方法对小远志中口山酮类化学成分进行研究。从中分离得到18个口山酮类化合物,根据理化性质及ESI-MS、1H NMR、13C NMR等波谱数据,分别鉴定为:1,7-二羟基口山酮(1),3,6-二羟基-1,2,7,8-四甲氧基口山酮(2),1,7-二羟基-5,6-二甲氧基口山酮(3),1,5-二羟基-6,7-二甲氧基口山酮(4),6-羟基-1,7-二甲氧基口山酮 (5),7-羟基-1-甲氧基口山酮(6),3,8-二羟基-1,2,4-三甲氧基口山酮(7),6,8-二羟基-1,2,3-三甲氧基口山酮(8),1,3,6-三羟基-2,7,8-三甲氧基口山酮(9),3-羟基-1,2,8-三甲氧基口山酮(10),1,3,7-三羟基口山酮(11),1,6-二羟基-2,3-二氧亚甲基-7,8-二甲氧基口山酮(12),1,7-二羟基-2,3-二甲氧基口山酮(13),1,6-二羟基-5,7-二甲氧基口山酮(14),3,7-二羟基-1,2-二甲氧基口山酮(15),3,7-二羟基-1,2,8-三甲氧基口山酮(16),1,2,3,7-四甲氧基口山酮(17),1,6-二羟基-3,5,7,8-四甲氧基口山酮(18),除化合物13外,其它化合物均为首次从该植物中分离得到。对其中分离所得量较多的化合物1~7进行了抗氧化及抗菌实验,发现化合物4和1有较好的抗氧化活性,对ABTS·的IC50值分别为12和13 mg/L;化合物3对金黄色葡萄球菌有一定的抑制作用,MIC值为217 μmol/L。

小远志;口山酮类化学成分; 抗氧化;抗菌

口山酮是一类重要的天然产物,具有广泛的生理活性[1-2],在很多高等植物中均有分布,而该类化学成分最重要的来源为远志科植物,该科包括22个属,1 300余种[3]。小远志(PolygalasibiricaL. var.megalophaFr.)为云南特有品种,仅分布在云南中部和西北部。小远志民间药用清热解毒,祛风止痛[4]。国内外对该种植物化学成分研究较少,主要为黄酮类和多糖类成分[5-9]。现代药理研究表明小远志多糖有抗肿瘤活性[10],小远志醇提取物有抗蛇毒活性[11]。然而,对于小远志口山酮类化合物报道较少,宛瑜等[5]从小远志中分离鉴定了7个口山酮类成分,但对其生物活性没有进行深入研究。为充分揭示小远志中口山酮类成分,发掘其药用价值,本研究对小远志中口山酮类化学成分进行了系统分析,并进一步测定了其抗氧化和抗菌活性。

1 实 验

1.1 材料、试剂与仪器

小远志(PolygalasibiricaL. var.megalophaFr.),采自云南省昭通市永善县,由西南林业大学林学院杜凡教授鉴定为远志科植物小远志,标本(2012010)保存在西南林业大学林学院植物资源利用系药用植物教研室。柱色谱硅胶、薄层色谱硅胶,青岛海洋化工厂;反相填充材料RP-18(40~60 μm),Merk公司;Sephadex LH-20 (40~70 μm),瑞典Amersham Pharmacia公司;D101 大孔树脂,山东鲁抗医药股份有限公司;MCI-gel (70~150 μm),Mitsubishi Chemical Corporation;常用分离试剂,工业级重蒸;乙腈,色谱纯;ABTS,北京酷来搏科技有限公司;万古霉素,上海生工生物工程技术有限公司。白色念珠菌(Moniliaalbican)、金黄色葡萄球菌(Staphylococcusaureus)、大肠埃希氏菌(Escherichiacoli)和绿脓杆菌(Pseudomonasaeruginosa),均由西南林业大学微生物实验室提供。

电喷雾电离质谱(ESI-MS)在甲醇中由Waters Xevo TQ-S三重四级杆串联质谱仪或Bruker HTC/Esquire spectrometer液相-离子阱色谱联用仪测定;1H NMR和13C NMR谱由Bruker AM-400 MHz和Avance III-600 MHz超导核磁共振仪测定;半制备采用Agilent-HP 1100高效液相色谱仪,HPLC半制备柱(Agilent,Zorbax SB-C18,250 mm × 9.4 mm,5 μm)进行分离纯化。UV-2450紫外可见分光光度计,北京岛津仪器有限公司。

1.2 提取分离

小远志干燥根茎约5 kg,粉碎后过筛(178 μm),用75%的乙醇回流提取3次,每次40 L,分别提取4、2和2 h,合并提取液,减压浓缩得到浸膏约1.7 kg。浸膏稀释3倍,用温水超声波溶解,抽滤后过D101大孔吸附树脂,先用9 L水洗脱,再用12 L 65%乙醇洗脱,洗脱液减压浓缩得到500.0 g粗提样品,经硅胶柱层析,用氯仿-甲醇 (30 ∶1~ 0 ∶1,体积比) 梯度洗脱,合并后得到8个部分Fr.1~Fr.8。

Fr.1 (6.1g) 经硅胶柱层析,用石油醚-丙酮(20 ∶1~ 0 ∶1,体积比) 洗脱,TLC检测后合并得到5个组分Fr.1.1~ Fr.1.5。组分Fr.1.2经过结晶和重结晶后得到化合物1 (620.7 mg);组分Fr.1.3经过硅胶柱层析,用石油醚-丙酮(15 ∶1~3 ∶1,体积比)和凝胶Sephadex LH-20(甲醇)反复洗脱,得到了化合物3 (169.7 mg),4(71.9 mg) 和5(50.0 mg);组分Fr.1.4经过反复硅胶(石油醚-丙酮,体积比15 ∶1~1 ∶1;氯仿-甲醇,体积比20 ∶1~5 ∶1)和凝胶Sephadex LH-20(甲醇)柱层析,最后经半制备型HPLC分离,以乙腈-水 (45 ∶55, 体积比) 为流动相,得到了化合物13 (1.8 mg),18 (1.3 mg)。

Fr.2 (6.6 g) 首先用MCI-gel进行脱色,脱色后的样品经TLC检测后合并得到4个组分Fr.2.1~ Fr.2.4。组分Fr.2.1经过反复硅胶(石油醚-丙酮,体积比10 ∶1~1 ∶1;氯仿-甲醇,体积比20 ∶1~3 ∶1)和凝胶Sephadex LH-20(甲醇),最终得到了化合物6 (15.1 mg) 和7 (23.8 mg);组分Fr.2.2经过反复硅胶(石油醚-丙酮,体积比10 ∶1~0 ∶1;氯仿-甲醇,体积比10 ∶1~2 ∶1)和凝胶Sephadex LH-20(甲醇),最后经半制备型HPLC分离,以乙腈-水 (40 ∶60, 体积比) 为流动相,最终得到了化合物9 (3.0 mg);组分Fr.2.3经过反复硅胶(石油醚-丙酮,体积比4 ∶1~0 ∶1;氯仿-甲醇,体积比8 ∶1~2 ∶1)和凝胶Sephadex LH-20(甲醇),最后经半制备型HPLC分离,以乙腈-水 (38 ∶72, 体积比) 为流动相,最终得到了化合物12 (1.8 mg)。

Fr.3 (16.5 g) 首先用MCI-gel进行脱色,脱色后的样品经RP-18,用甲醇-水(30 ∶70~90 ∶10,体积比)洗脱,TLC检测后合并得到4个组分Fr.3.1~ Fr.3.4。组分Fr.3.1经过硅胶柱层析,用石油醚-丙酮(5 ∶1~0 ∶1,体积比)和凝胶Sephadex LH-20(甲醇)反复洗脱,最后经半制备型HPLC分离,以乙腈-水 (38 ∶62, 体积比) 为流动相,最终得到了化合物10 (3.0 mg)和11 (4.2 mg);组分Fr.3.2经过硅胶柱层析,用石油醚-丙酮(2 ∶1~0 ∶1,体积比)和凝胶Sephadex LH-20(甲醇)反复洗脱,最后经半制备型HPLC分离,以乙腈-水 (35 ∶65, 体积比) 为流动相,最终得到了化合物14 (3.0 mg),15 (2.0 mg),16 (2.0 mg) 和17 (1.3 mg);组分Fr.3.3经过反复硅胶(石油醚-丙酮,体积比5 ∶1~0 ∶1;氯仿-甲醇,体积比8 ∶1~2 ∶1)和凝胶Sephadex LH-20(甲醇),最后经半制备型HPLC分离,以乙腈-水 (35 ∶65, 体积比) 为流动相,最终得到了化合物2 (2.5 mg) 和17 (1.0 mg);组分Fr.3.4经过反复硅胶(石油醚-丙酮,体积比3 ∶1~0 ∶1;氯仿-甲醇,体积比5 ∶1~2 ∶1)和凝胶Sephadex LH-20(甲醇),最后经半制备型HPLC分离,以乙腈-水 (33 ∶67, 体积比) 为流动相,最终得到了化合物8 (1.2 mg)。

1.3 生物活性测定

1.3.1 抗氧化活性测定 参考文献[12]报道的ABTS总自由基清除试验方法,测定化合物1~7(分离所得量少的单体化合物未进行测定)及对照品维生素C的抗氧化能力。

1.3.2 抗菌活性测定 参考文献[13~14]报道的抗菌实验方法,测定化合物1~7和对照品万古霉素对白色念珠菌(M.albican)、金黄色葡萄球菌(S.aureus)、大肠埃希氏菌(E.coli)和绿脓杆菌(P.aeruginosa)的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)。

2 结果与分析

2.1 结构鉴定

化合物1:黄色针晶;分子式:C13H8O4,相对分子质量为228;ESI-MS(m/z):227 [M-H]-;1H NMR (400 MHz, 丙酮-d6)δ:12.70 (1H, s, OH-1), 9.04 (1H, s, OH-7), 7.67 (1H, t,J=8.4 Hz, H-3), 7.58 (1H, d,J=3.1 Hz, H- 8), 7.49 (1H, d,J=9.3 Hz, H-5), 7.41 (1H, dd,J=9.1, 3.1 Hz, H- 6), 6.97 (1H, d,J=8.4, Hz, H- 4), 6.74 (1H, d,J=8.3Hz, H-2);13C NMR (100 MHz, 丙酮-d6)δ:162.7 (s, C-1), 110.5 (d, C-2), 137.8 (d, C-3), 107.7 (d, C- 4), 120.2 (d, C-5), 126.1 (d, C- 6), 155.0 (s, C-7), 109.1 (d, C- 8), 182.9 (s, C-9), 157.3 (s, C- 4a), 121.8 (s, C- 8a), 107.8 (s, C-9a), 151.0 (s, C-10a)。该化合物的光谱数据与文献[15]对照基本一致,故鉴定为1,7-二羟基口山酮。

化合物2:黄色粉末;分子式:C17H16O8,相对分子质量为348;ESI-MS(m/z):349 [M+H]+,371 [M+Na]+和387 [M+K]+;1H NMR (600 MHz, DMSO-d6)δ:6.48 (2H, s, H- 4, 5), 3.78 (6H, s, 1, 8-OMe), 3.73 (6H, s, 2, 7-OMe);13C NMR (150 MHz, DMSO-d6)δ:152.7 (s, C-1, 8), 138.9 (s, C-2, 7), 158.4 (s, C-3, 6), 98.9 (d, C- 4, 5), 172.5 (s, C-9), 153.0 (s, C- 4a, 10a), 108.2 (s, C- 8a, 9a), 61.4 (q, 1, 8-OMe), 60.6 (q, 2, 7-OMe)。该化合物的光谱数据与文献[16]对照基本一致,故鉴定为3,6-二羟基-1,2,7,8-四甲氧基口山酮。

化合物3:黄色粉末;分子式:C15H12O6,相对分子质量为288;ESI-MS(m/z):311 [M+Na]+和289 [M+H]+;1H NMR (400 MHz, DMSO-d6)δ:13.20 (1H, s, OH-1), 7.55 (1H, t,J= 8.4 Hz, H-3), 6.84 (1H, d,J= 8.1 Hz, H- 4), 6.68 (1H, s, H- 8), 6.66 (1H, d,J= 11.1 Hz, H-2), 3.84 (3H, s, 6-OMe), 3.77 (3H, s, 5-OMe);13C NMR (100 MHz, DMSO-d6)δ:161.2 (s, C- 1), 110.0 (d, C-2), 136.1 (d, C-3), 106.0 (d, C- 4), 153.3 (s, C-5), 138.9 (s, C- 6), 153.8 (s, C-7), 99.3 (d, C- 8), 180.4 (s, C-9), 154.8 (s, C- 4a), 107.9 (s, C- 8a), 107.5 (s, C-9a), 154.8 (s, C-10a), 61.7 (q, 5-OMe), 60.8 (q, 6-OMe)。该化合物的光谱数据与文献[17]对照基本一致,故鉴定为1,7-二羟基-5,6-二甲氧基口山酮。

化合物4:黄色结晶;分子式:C15H12O6,相对分子质量为288;ESI-MS(m/z):311 [M+Na]+和289 [M+H]+;1H NMR (400 MHz, DMSO-d6)δ:12.88 (1H, s, OH-1), 7.65 (1H, t,J=8.3 Hz, H-3), 7.26 (1H, s, H- 8), 7.07 (1H, d,J=7.7 Hz, H- 4), 6.76 (1H, d,J=7.5 Hz, H-2), 3.90 (3H, s, 6-OMe), 3.89 (3H, s, 7-OMe);13C NMR (100 MHz, DMSO-d6)δ:160.8 (s, C-1), 110.0 (d, C-2), 136.4 (d, C-3), 107.2 (d, C- 4), 134.9 (s, C-5), 146.5 (s, C- 6), 148.2 (s, C-7), 99.4 (d, C- 8), 180.3 (s, C-9), 155.5 (s, C- 4a), 111.2 (s, C- 8a), 107.7 (s, C-9a), 146.3 (s, C-10a), 61.0 (q, 6-OMe), 56.0 (q, 7-OMe)。该化合物的光谱数据与文献[18]对照基本一致,故鉴定为1,5-二羟基- 6,7-二甲氧基口山酮。

化合物5:白色粉末;分子式:C15H12O5,相对分子质量为272;ESI-MS(m/z):317 [M+K]+,311 [M+Na]+和289 [M+H]+;1H NMR (400 MHz, DMSO-d6)δ:7.62 (1H, t,J=8.5 Hz, H-3), 7.39 (1H, s, H- 8), 7.04 (1H, d,J=7.8 Hz, H- 4), 6.90 (1H, d,J=8.2 Hz, H-2), 6.84 (1H, s, H-5), 3.86 (3H, s, 1-OMe), 3.84 (3H, s, 7-OMe);13C NMR (100 MHz, DMSO-d6)δ:160.0 (s, C-1), 106.1 (d, C-2), 134.4 (d, C-3), 109.5 (d, C- 4), 102.3 (d, C-5), 153.8 (s, C- 6), 146.0 (s, C-7), 105.6 (d, C- 8), 173.6 (s, C-9), 157.4 (s, C- 4a), 114.4 (s, C- 8a), 111.3 (s, C-9a), 150.5 (s, C-10a), 56.1 (q, 1-OMe), 56.8 (q, 7-OMe)。该化合物的光谱数据与文献[19]对照基本一致,故鉴定为6-羟基-1,7-二甲氧基口山酮。

化合物6:黄色粉末;分子式:C14H10O4,相对分子质量为242;ESI-MS(m/z):265 [M+Na]+;1H NMR (600 MHz, DMSO-d6)δ:7.67 (1H, t,J=8.5 Hz, H-3), 7.42 (1H, d,J=8.9 Hz, H-5), 7.38 (1H, d,J=2.8 Hz, H- 8), 7.21 (1H, dd,J=9.2, 2.5 Hz, H- 6), 7.08 (1H, d,J=8.3 Hz, H- 4), 6.92 (1H, d,J= 7.9 Hz, H-2), 3.87 (3H, s, 1-OMe);13C NMR (150 MHz, DMSO-d6)δ:160.2 (s, C-1), 109.7 (d, C-2), 135.5 (d, C-3), 105.9 (d, C- 4), 118.9 (d, C-5), 123.8 (d, C- 6), 153.9 (s, C-7), 108.9 (d, C- 8), 174.9 (s, C-9), 157.5 (s, C- 4a), 123.1 (s, C- 8a), 111.2 (s, C-9a), 148.1 (s, C-10a), 56.3 (q, 1-OMe)。该化合物的光谱数据与文献[20]对照基本一致,故鉴定为7-羟基-1-甲氧基口山酮。

化合物7:黄色晶体;分子式:C16H14O7,相对分子质量为318;ESI-MS(m/z):357 [M+K]+,341 [M+Na]+和319 [M+H]+;1H NMR (600 MHz, DMSO-d6)δ:13.88 (1H, s, OH- 8), 7.58 (1H, t,J= 8.1 Hz, H- 6), 6.95 (1H, d,J=8.4 Hz, H-5), 6.70 (1H, d,J=8.0 Hz, H-7), 3.82 (3H, s, 1-OMe),3.73 (3H, s, 2-OMe),3.73 (3H, s, 4-OMe);13C NMR (150 MHz, DMSO-d6)δ:133.4 (s, C-1), 150.3 (s, C-2), 153.3 (s, C-3), 140.5 (s, C- 4), 107.6 (d, C-5), 137.3 (d, C- 6), 111.4 (d, C-7), 162.9 (s, C- 8), 182.5 (s, C-9), 149.1 (s, C- 4a), 108.6 (s, C- 8a), 109.5 (s, C-9a), 156.6 (s, C-10a), 62.0 (q, 1-OMe), 61.8 (q, 2-OMe), 61.7 (q, 4-OMe)。该化合物的光谱数据与文献[21]对照基本一致,故鉴定为3,8-二羟基-1,2,4-三甲氧基口山酮。

化合物8:黄色粉末;分子式:C16H14O7,相对分子质量为318;ESI-MS(m/z):317 [M-H]-;1H NMR (600 MHz, DMSO-d6)δ:13.88 (1H, s, OH- 8), 8.28 (1H, s, OH- 6), 6.46 (1H, s, H- 4), 6.44 (1H, s, H-7), 6.23 (1H, d, s, H-5), 3.81 (3H, s, 1-OMe),3.79 (3H, s, 2-OMe),3.74 (3H, s, 3-OMe);13C NMR (150 MHz, DMSO-d6)δ:152.5 (s, C-1), 139.7 (s, C-2), 154.1 (s, C-3), 96.3 (d, C- 4), 91.4 (d, C-5), 164.8 (s, C- 6), 99.5 (d, C-7), 162.5 (s, C- 8), 178.9 (s, C-9), 155.9 (s, C- 4a), 108.6 (s, C- 8a), 102.3 (s, C-9a), 155.9 (s, C-10a), 61.3 (q, 1-OMe), 60.1 (q, 2-OMe), 55.6 (q, 3-OMe)。该化合物的光谱数据与文献[22]对照基本一致,故鉴定为6,8-二羟基-1,2,3-三甲氧基口山酮。

化合物9:黄色粉末;分子式:C16H14O8,相对分子质量为334;ESI-MS(m/z):335 [M+H]+,357 [M+Na]+和373 [M+K]+;1H NMR (600 MHz, MeOD)δ:6.64 (1H, s, H-5), 6.32 (1H, s, H- 4), 3.95 (3H, s, 8-OMe), 3.88 (3H, s, 7-OMe), 3.85 (3H, s, 2-OMe);13C NMR (150 MHz, MeOD)δ:154.5 (s, C-1), 131.9 (s, C-2), 155.9 (s, C-3), 94.4 (d, C- 4), 100.6 (d, C-5), 159.8 (s, C- 6), 140.2 (s, C-7), 153.9 (s, C- 8), 181.8 (s, C-9), 159.2 (s, C- 4a), 108.4 (s, C- 8a), 103.8 (s, C-9a), 155.8 (s, C-10a), 60.9 (q, 2-OMe), 61.7 (q, 7-OMe), 62.4 (q, 8-OMe)。该化合物的光谱数据与文献[16]对照基本一致,故鉴定为1,3,6-三羟基-2,7,8-三甲氧基口山酮。

化合物10:黄色粉末;分子式:C16H14O6,相对分子质量为302;ESI-MS(m/z):301 [M+H]-;1H NMR (600 MHz, DMSO-d6)δ:7.58 (1H, t,J=8.2 Hz, H- 6), 6.97 (1H, d,J=8.4 Hz, H-5), 6.87 (1H, d,J=8.1 Hz, H-7), 6.54 (1H, s, H- 4), 3.84 (3H, s, 8-OMe),3.79 (3H, s, 1-OMe),3.74 (3H, s, 2-OMe);13C NMR (150 MHz, DMSO-d6)δ:152.8 (s, C-1), 139.2 (s, C-2), 156.4 (s, C-3), 98.9 (d, C- 4), 108.9 (d, C-5), 133.9 (d, C- 6), 106.1 (d, C-7), 159.9 (s, C- 8), 173.1 (s, C-9), 152.8 (s, C- 4a), 112.3 (s, C- 8a), 108.9 (s, C-9a), 156.4 (s, C-10a), 61.4 (q, 1-OMe), 60.5 (q, 2-OMe), 56.0 (q, 8-OMe)。该化合物的光谱数据与文献[23]对照基本一致,故鉴定为3-羟基-1,2,8-三甲氧基口山酮。

化合物11:黄色粉末;分子式:C13H8O5,相对分子质量为244;ESI-MS(m/z):243 [M-H]-;1H NMR (400 MHz, 丙酮-d6)δ:12.96 (1H, s, OH-1), 754 (1H, s, H- 8), 7.39 (1H, d,J=8.9 Hz, H-5), 7.29 (1H, d,J=8.8 Hz, H-6), 6.38 (1H, s, H- 4), 6.23 (1H, s, H-2);13C NMR (100 MHz, 丙酮-d6)δ:164.5 (s, C-1), 98.6 (d, C-2), 166.5 (s, C-3), 94.5 (d, C- 4), 119.6 (d, C-5), 125.0 (d, C- 6), 154.9 (s, C-7), 109.2 (d, C- 8), 181.9 (s, C-9), 158.9 (s, C- 4a), 121.8 (s, C- 8a), 103.3 (s, C-9a), 150.6 (s, C-10a)。该化合物的光谱数据与文献[24]对照基本一致,故鉴定为1,3,7-三羟基口山酮。

化合物12:黄色粉末;分子式:C16H12O8,相对分子质量为332;ESI-MS(m/z):333 [M+H]+;1H NMR (600 MHz, MeOD)δ:6.57 (1H, s, H-5), 6.46 (1H, s, H- 4), 6.10 (2H, s, -O-CH2-O), 3.93 (3H, s, 8-OMe),3.86 (3H, s, 7-OMe);13C NMR (150 MHz, MeOD)δ:154.2 (s, C-1), 130.3 (s, C-2), 159.5 (s, C-3), 89.5 (d, C- 4), 100.9 (d, C-5), 159.8 (s, C- 6), 141.2 (s, C-7), 155.3 (s, C- 8), 181.5 (s, C-9), 153.5 (s, C- 4a), 107.4 (s, C- 8a), 106.1 (s, C-9a), 156.3 (s, C-10a), 103.9 (t, -O-CH2-O), 62.3 (q, 8-OMe), 61.6 (q, 7-OMe)。该化合物的光谱数据与文献[25]对照基本一致,故鉴定为1,6-二羟基-2,3-二氧亚甲基-7,8-二甲氧基口山酮。

化合物13:黄色粉末;分子式:C15H12O6,相对分子质量为288;ESI-MS(m/z):311 [M+Na]+和289 [M+H]+;1H NMR (600 MHz, MeOD)δ:13.20 (1H, s, OH-1), 7.55 (1H, t,J=8.4 Hz, H-5), 6.84(1H, d,J=8.1 Hz, H- 4), 6.68(1H, s, H- 8), 6.66 (1H, d,J=11.1 Hz, H- 6), 3.84 (3H, s, 2-OMe), 3.77 (3H, s, 3-OMe);13C NMR (150 MHz, MeOD)δ:154.5 (s, C-1), 132.8 (s, C-2), 161.6 (s, C-3), 91.9 (d, C- 4), 120.0 (d, C-5), 125.7 (d, C- 6), 156.3 (s, C-7), 109.1 (d, C- 8), 182.3 (s, C-9), 155.5 (s, C- 4a), 121.8 (s, C- 8a), 104.7 (s, C-9a), 151.3 (s, C-10a), 61.1 (q, 2-OMe), 56.9 (q, 3-OMe)。该化合物的光谱数据与文献[26]对照基本一致,故鉴定为1,7-二羟基-2,3-二甲氧基口山酮。

化合物14:黄色粉末;分子式:C15H12O6,相对分子质量为288;ESI-MS(m/z):287 [M-H]-;1H NMR (600 MHz, DMSO-d6)δ:13.41 (1H, s, OH-1), 8.25 (1H, s, OH-6), 7.57 (1H, t,J=8.1 Hz, H-3), 7.16 (1H, s, H- 8), 7.00 (1H, d,J=7.9 Hz, H- 4), 6.70 (1H, d,J= 8.2 Hz, H-2), 3.85 (3H, s, 7-OMe), 3.83 (3H, s, 5-OMe);13C NMR (150 MHz, DMSO-d6)δ:161.0 (s, C-1), 109.5 (d, C-2), 135.4 (d, C-3), 106.8 (d, C- 4), 134.8 (s, C-5), 148.5 (s, C- 6), 147.4 (s, C-7), 98.9 (d, C- 8), 180.2 (s, C-9), 155.4 (s, C- 4a), 117.8 (s, C- 8a), 107.6 (s, C-9a), 134.7 (s, C-10a), 60.2 (q, 5-OMe), 55.7 (q, 7-OMe)。该化合物的光谱数据与文献[27]对照基本一致,故鉴定为1,6-二羟基-5,7-二甲氧基口山酮。

化合物15:黄色粉末;分子式:C15H12O6,相对分子质量为288;ESI-MS(m/z):289 [M+H]+,311 [M+Na]+和327 [M+K]+;1H NMR (600 MHz, MeOD)δ:7.49 (1H, d,J=2.8 Hz, H- 8), 7.30 (1H, d,J=9.0 Hz, H-5), 7.17 (1H, dd,J=8.8, 2.8 Hz, H- 6), 6.59 (1H, s, H- 4), 3.92 (3H, s, 1-OMe), 3.87 (3H, s, 2-OMe);13C NMR (150 MHz, MeOD)δ:155.0 (s, C-1), 141.1 (s, C-2), 156.8 (s, C-3), 101.1 (d, C- 4), 119.4 (d, C-5), 123.8 (d, C- 6), 150.0 (s, C-7), 110.0 (d, C- 8), 177.0 (s, C-9), 162.1 (s, C- 4a), 124.2 (s, C- 8a), 110.0 (s, C-9a), 155.0 (s, C-10a), 62.2 (q, 1-OMe), 61.6 (q, 2-OMe)。该化合物的光谱数据与文献[28]对照基本一致,故鉴定为3,7-二羟基-1,2-二甲氧基口山酮。

化合物16:黄色粉末;分子式:C16H14O7,相对分子质量为318;ESI-MS(m/z):357 [M+K]+,341 [M+Na]+和319 [M+H]+;1H NMR (600 MHz, DMSO-d6)δ:7.17 (1H, d,J=8.9 Hz, H- 6), 7.04 (1H, d,J=8.8 Hz, H-5), 6.27 (1H, s, H- 4), 3.84 (3H, s, 1-OMe),3.80 (3H, s, 8-OMe),3.74 (3H, s, 2-OMe);13C NMR (150 MHz, DMSO-d6)δ:152.7 (s, C-1), 138.1 (s, C-2), 156.4 (s, C-3), 99.4 (d, C- 4), 112.6 (d, C-5), 121.9 (d, C- 6), 146.3 (s, C-7), 145.3 (s, C- 8), 173.4 (s, C-9), 154.1 (s, C- 4a), 117.2 (s, C- 8a), 108.9 (s, C-9a), 148.8 (s, C-10a), 61.5 (q, 1-OMe), 61.2 (q, 2-OMe), 60.4 (q, 8-OMe)。该化合物的光谱数据与文献[23]对照基本一致,故鉴定为3,7-二羟基-1,2,8-三甲氧基口山酮。

化合物17:黄色粉末;分子式:C17H16O6,相对分子质量为316;ESI-MS(m/z):315 [M-H]-;1H NMR (600 MHz, DMSO-d6)δ:7.68 (1H, d,J=2.3 Hz, H- 8), 7.37 (1H, d,J=8.9 Hz, H-5), 7.24 (1H, dd,J=8.8, 2.3 Hz, H- 6), 6.63 (1H, s, H- 4), 4.13 (3H, s, 1-OMe), 4.03 (3H, s, 2-OMe), 3.93 (3H, s, 3-OMe), 3.88 (3H, s, 7-OMe);13C NMR (150 MHz, DMSO-d6)δ:153.4 (s, C-1), 139.5 (d, C-2), 158.7 (s, C-3), 96.1 (d, C- 4), 116.5 (s, C-5), 123.6 (s, C- 6), 154.5 (s, C-7), 106.3 (s, C- 8), 175.2 (s, C-9), 156.1 (s, C- 4a), 122.7 (s, C- 8a), 110.3 (s, C-9a), 149.7 (s, C-10a), 61.9 (q, 1-OMe), 61.3 (q, 2-OMe), 56.1 (q, 3-OMe), 55.8 (q, 7-OMe)。该化合物的光谱数据与文献[24]对照基本一致,故鉴定为1,2,3,7-四甲氧基口山酮。

化合物18:黄色粉末;分子式:C17H16O8,相对分子质量为348;ESI-MS(m/z):347 [M-H]-;1H NMR (600 MHz, CDCl3)δ:13.32 (1H, s, OH-1), 6.44 (1H, s, H-2), 6.33 (1H, s, H- 4), 4.04 (3H, s, 8-OMe), 4.02 (3H, s, 5-OMe), 3.98 (3H, s, 7-OMe), 3.88 (3H, s, 3-OMe);13C NMR (150 MHz, CDCl3)δ:163.6 (s, C-1), 97.3 (d, C-2), 166.1 (s, C-3), 92.3 (d, C- 4), 138.0 (s, C-5), 151.6 (s, C- 6), 148.4 (s, C-7), 131.7 (s, C- 8), 180.3 (s, C-9), 156.6 (s, C- 4a), 108.7 (s, C- 8a), 103.6 (s, C-9a), 147.3 (s, C-10a), 62.1 (q, 8-OMe), 61.8 (q, 5-OMe), 61.8 (q, 7-OMe), 55.8 (q, 3-OMe)。该化合物的光谱数据与文献[29]对照基本一致,故鉴定为1,6-二羟基-3,5,7,8-四甲氧基口山酮。

化合物1~18的结构如图1所示。

2.2 生物活性测定结果

2.2.1 抗氧化活性 以Vc(IC50= 7 mg/L)作为阳性对照,测试了化合物1~7对ABTS自由基的清除能力,结果见表1。结果显示化合物1和4具有较好的抗氧化活性,其IC50值分别为13和12 mg/L。

表1 化合物1~7对ABTS自由基的清除能力

图1 化合物1~18的结构

2.2.2 抗菌活性 以万古霉素(MIC=0.69 μmol/L,MBC=1.38 μmol/L)作为阳性对照,所测定的化合物1~7中仅化合物3对金黄色葡萄球菌表现出一定的抑制作用,其MIC值为217 μmol/L。

3 结 论

本研究对小远志中口山酮化学成分进行了系统研究,从中分离到了18个化合物,除化合物13外,其它化合物均为首次从该植物中分离得到。对分离所得量较多的化合物1~7进行抗氧化和抗菌活性测定,发现化合物4和1有较好的抗氧化活性,对ABTS·的IC50值分别为12和13 mg/L;化合物3对金黄色葡萄球菌有一定的抑制作用,MIC值为217 μmol/L。

[1]杨学东, 徐丽珍, 杨世林. 远志属植物中口山酮类成分及其药理研究进展[J]. 天然产物研究与开发, 2000, 12 (5): 88-93. YANG X D, XU L Z, YANG S L. Advances in the research of chemistry and pharmacology of xanthones extracted fromPolygalaL.[J]. Nature Product Research and Development, 2000, 12 (5): 88-93.

[2] LIN L L, HUANG F, CHEN S B, et al. Xanthones from the roots ofPolygolacaudataand their antioxidation and vasodilatation activitiesinvitro[J]. Planta Medica, 2005, 71(4): 372-375.

[3] 张培轩, 段瑞, 黄鹏. 中国远志属药用植物资源及地理分布[J]. 基层中药杂志,2002,16(6):42-43. ZHANG P X, DUAN R, HUANG P. Medicinal plant resources and geographical distribution ofPolygala[J]. Primary Journal of Chinese Materia Medica,2002,16(6):42-43.

[4]中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京:科学出版社, 2013. Flora of China Editorial Committee. Flora of China[M]. Beijing: Science Press, 2013.

[5] 宛瑜,郁惠珍,叶玲,等. 从小远志中分离黄酮醇和口山酮衍生物[J]. 西南大学学报:自然科学版,2008,30(7):51-55. WAN Y, YU H Z, YE L, et al. Flavonol and xanthone derivatives fromPolygalasibiricaL. varmegalophaFr.[J]. Journal of Southwest University: Natural Science Edition,2008,30(7):51-55.

[6]陈良凤, 周俊,宛瑜, 等. 小远志多糖一级结构的初步研究[J]. 有机化学, 2013, 33 (2): 365-369. CHEN L F, ZHOU J, WAN Y, et al. Preliminary study on the primary structure ofPolygalasibiricaL.varmegalophaFr. polysaccrides[J]. Chinese Journal of Organic Chemistry, 2013, 33 (2): 365-369.

[7]魏永俊, 周秋菊, 黄树颖, 等. 小远志多糖的提取及纯化[J]. 江苏师范大学学报: 自然科学版, 2014, 32 (1): 60-63. WEI Y J, ZHOU Q J, HUANG S Y, et al. Extraction and purification ofPolygalasibiricaL. varmegalophaFr. polysaccharides[J]. Journal of Jiangsu Normal University: Natural Science Edition, 2014, 32 (1): 60-63.

[8]李强, 耿圆圆, 王军民, 等. 小远志中三个黄酮醇苷[J]. 西部林业科学, 2015, 44 (5): 72-75. LI Q, GENG Y Y, WANG J M, et al. Three flavonol glycosides fromPolygalasibiricavar.megalopha[J]. Journal of West China Forestry Science, 2015, 44 (5): 72-75.

[9] HUANG Y J, ZHOU L Y, WANG J M, et al. Two new flavonol glycosides fromPolygalasibiricaL. varmegalophaFr. [J]. Molecules, 2015, 20 (12): 21494-21500.

[10]吴翚, 周俊, 宛瑜, 等. 小远志总多糖的微波提取及抗肿瘤活性研究[J]. 徐州师范大学学报: 自然科学版, 2004, 22(3): 52-54. WU H, ZHOU J, WAN Y, et al. The total polysaccharide extracted fromPolygalasibiricaL. var.megalophaFr. by microwave and the study on its anti-tumor activity[J]. Journal of Xuzhou Normal University: Nature Science Edition, 2004, 22(3): 52-54.

[11]郁惠珍, 吴翚. 小远志醇提物抗蛇毒活性初探[J]. 中国民族民间医药, 2008, 17 (1): 3-5. YU H Z, WU H. Studies on anti-snake venom activity of ethanol extract fromPolygalasibiricaL.varmegalophaFr.[J]. Chinese Journal of Ethnomedicine and Ethnopharmaey, 2008, 17 (1): 3-5.

[12] LEE I K, YUN B S. Hispidin analogs from the mushroomInonotusxeranticusand their free radical scavenging activity[J]. Biorganic and Medicinal Chemistry Letters, 2006, 16 (9): 2376-2379

[13] GUZ N R, STERMITZ F R. Spectral comparisons of coniferyl and cinnamyl alcohol epoxide derivatives with a purportedcis-epoxyconiferyl alcohol isolate[J]. Phytochemistry, 2000, 54 (8): 897-899.

[14] YANG C X, ZUO G Y, HAN J, et al.Invitroantimicrobial activities of 26 Yunnan plants extracts against multi-drug resistant pathogens[J]. African Journal of Microbiology Research, 2012, 6 (19): 400-405.

[15] MAKN K, LI W K, ZHANG M, et al. Effects of euxanthone on neuronal differentiation [J]. Life Sciences, 2000, 66 (4): 347-354.

[16] HUA Y, CHEN C X, LIU Y Q, et al. Three new xanthones fromPolygalacrotalarioides[J]. Chinese Chemical Letters, 2006, 17 (6): 773-775.

[17] NAONOBU T, YOSHIHISA T. Xanthones fromHypericumchinense[J]. Phytochemistry, 2006, 67(19):2146-2151.

[18] QUILLINAN A J, SCHEINMANN F. Extractives from Guttiferae. Part XXIX. Synthesis of celebixanthone methyl ether and related 1,5,6,7-tetraoxygenated xanthones[J]. Journal of Chemistry Society, Perkin Translation 1, 1975, 3 (3): 241-245.

[19] HIDEKI T, MUNEKAZU I, KOHICHI M, et al. Three xanthones fromPoeciloneuronpauciflorumandMammeaacuminata[J]. Phytochemistry, 1997, 45 (1): 133-136.

[20] LI W K, CHAN C L, LEUNG H W, et al. Xanthones fromPolygalacaudata[J]. Phytochemistry, 1999, 51 (7): 953-958.

[21] HABIB A M, KALAKOTA S R, THOMAS G M, et al. New xanthones fromPsorospermumfebrifugum[J]. Journal of Natural Products, 1987, 50 (2): 141-145.

[22] 徐华松, 华燕. 西南远志中口山酮类化合物的分离与鉴定[J]. 西南林学院学报, 2010, 30 (3): 92-94. XU H S, HUA Y. Isolation and identification of xathones extracted fromPolygalacrotalarioides[J]. Journal of Southwest Forestry University, 2010, 30 (3): 92-94.

[23] ZHANG L J, YANG X D, XU L Z, et al. Three new xanthones from the roots ofSecuridacainappendiculata[J]. Heterocycles, 2005, 65 (7): 1685-1690.

[24] WU X Y, LIU M, WU Y L, et al. Separation and identification of new sucrose esters from root ofPolygalatenuifoliaWilld.[J]. Journal of Shenyang Pharmaceutical University, 2010, 27(10): 788-792.

[25] HUA Y, CHEN C X, LIU Y Q, et al. Two new xanthones fromPolygalacrotalarioides[J]. Journal of Asian Natural Products Research, 2007, 9 (3): 273-275.

[26] PINHEIRO T R, FILHO V C, KITA T, et al. Three xanthones fromPolygalacyparissias[J]. Phytochemistry, 1998, 48 (4): 725-728.

[27] FRANCO C, FILIPPO C, LEONARDO B, et al. Quercetin as the active principle ofHypericumhircinumexerts a selective inhibitory activity against MAO-A: Extraction, biological analysis, and computational study[J]. Jounral of Nature Products, 2006, 69 (6): 945-949.

[28] FU J, ZHANG D M, CHEN R Y. Three new xanthones from the roots ofPolygalajaponicaHoutt.[J]. Journal of Asian Natural Products Research, 2006, 8 (1/2): 41-46.

[29] PARRA M, PICHER M T, SEOANE E, et al. New xanthones isolated fromCentauriumlinarifolium[J]. Jounral of Nature Products, 1984, 47 (1): 123-126.

Chemical Constituents and Bioactivities of Xanthones fromPolygalasibiricaL. var.megalophaFr.

ZHOU Lingyun1,2, YU Xiaohong2, GENG Yuanyuan2, HUA Yan2

(1. School of Pharmacy,Wannan Medical College, Wuhu 241002, China;2. College of Forestry, Southwest Forestry University, Kunming 650224, China)

Eighteen compounds were isolated by ethanol extraction, silica gel column chromatography, Sephadex LH-20 column chromatography, MCI-gel column chromatography and semi-preparative HPLC from the dried roots ofPolygalasibiricaL. var.megalophaFr. Their structures were identified as 1,7-dihydroxy xanthone (1), 3,6-dihydroxy-1,2,7,8-tetramethoxy xanthone (2), 1,7-dihydroxy-5,6- dimethoxy xanthone (3), 1,5-dihydroxy-6,7-dimethoxy xanthone (4), 6-hydroxy-l,7-dimethoxy xanthone (5), 7-hydroxy-1-methoxy xanthone (6), 3,8-dihydroxy- 1,2,4-trimethoxy xanthone (7), 6,8-dihydroxy-1,2,3-trimethoxy xanthone (8), 1,3,6-trihydroxy-2,7,8-trimethoxy- xanthone (9), 3-hydroxy-1,2,8-trimethoxy xanthone (10), 1,3,7-trihydroxy xanthone (11), 1,6-dihydroxy-2,3-methylene-dioxy-7,8-dimethoxy xanthone (12),1,7-dihydroxy-2,3-dimethoxy xanthone (13), 1,6-dihydroxy-5,7-dimethoxy xanthone (14), 3,7-dihydroxy-1,2-dimethoxy xanthone (15), 3,7- dihydroxy- 1,2,8-trimethoxy xanthone (16), 1,2,3,7-tetramethoxy xanthone (17), 1,6-dihydroxy-3,5,7,8-tetramethoxy xanthone (18) by ESI-MS,1H NMR,13C NMR. All compounds except 13 were isolated from this plant for the first time. The antioxidant and antimicrobial activities of compound 1-7 were studied. And the results showed that the compound 4(IC50= 12 mg/L)and compound 1(IC50= 13 mg/L)showed good ABTS scavenging activity and compound 3(MIC = 217 μmol/L)had certain inhibitory activity againstStaphylococcusaureus.

Polygala.sibiricaL. var.megalophaFr.; xathones; antioxidant; antimicrobial

10.3969/j.issn.0253-2417.2017.02.016

2016- 07- 05

国家自然科学基金资助项目(31260083);皖南医学院校重点科研项目培育基金(WK2016Z06)

周凌云(1980— ),男,安徽芜湖人,博士生,主要从事中药活性成分研究

*通讯作者:华 燕,女,教授,博士生导师,主要从事天然药物化学的研究;E-mail:huayan1216@163.com。

TQ35

A

0253-2417(2017)02- 0121- 08

周凌云,余小红,耿圆圆,等.小远志中口山酮类化学成分及生物活性研究[J].林产化学与工业,2017,37(2):121-128.

猜你喜欢
分子式远志甲氧基
有机物分子式确定方法探秘
毛远志书法篆刻作品欣赏
2-(2-甲氧基苯氧基)-1-氯-乙烷的合成
毛远志
DAD-HPLC法同时测定龙须藤总黄酮中5种多甲氧基黄酮
11个品种来源陈皮中多甲氧基黄酮的测定
有机物分子式、结构式的确定
2015年《中国防痨杂志》第五期重要更正启事
厚朴汁炙远志对小鼠胃Cajal间质细胞Ca2+通道的影响
2-(N-甲氧基)亚氨基-2-苯基乙酸异松蒎酯的合成及表征