中学数学函数思想探析

2017-06-09 22:47赵胜
科教导刊 2017年12期
关键词:函数思想中学数学函数

赵胜

摘 要 函数思想是最基本的数学思想之一,函数是中学数学的核心内容,它贯穿整个中学阶段。了解与掌握函数思想,能让学习者领悟数学的真谛,增强学习者学习数学的积极性,帮助数学学习;同时也是新一轮课程改革的基本要求。文章通过对函数思想的重要性进行了分析,从函数思想在中学数学中的应用、数学教学中如何渗透函数思想进行论述,从而达到对函数思想在中学数学中的全面认识。

关键词 中学数学 函数 函数思想

中图分类号:G424 文献标识码:A DOI:10.16400/j.cnki.kjdkx.2017.04.052

An Analysis of the Thought of Mathematical Function in Middle School

ZHAO Sheng

(Zhanyi Area No.3 Middle School, Qujing, Yunnan 655331)

Abstract Function thought is one of the most basic mathematical ideas, function is the core content of middle school mathematics, it runs through the entire secondary school. Understanding and mastering the function thought can help the learners to understand the true meaning of mathematics, enhance the enthusiasm of the students to learn mathematics, and help mathematics learning. This paper analyzes the importance of the function of thought, from the application and function thought in mathematics teaching in high school mathematics teaching how to penetrate the function of thought were discussed, so as to achieve the function of ideological understanding in middle school mathematics.

Key words middle school mathematics; function; function thought

函數思想是在数学的发展史中形成的,它是人们对函数知识的本质性认识,来源于函数的基础知识,它在中学数学教学中起着重要的作用,是教材体系的灵魂。在中学数学函数教学中,加强函数思想教学可以帮助学生更好地理解函数知识、形成正确的教学观念和优秀的数学精神;它是落实素质教育的有效途径和重要手段;还可以提高教学质量与教学水平;有利于培养学生的辩证唯物主义能力与函数应用能力。随着数学教育的改革与发展,中学数学函数思想日趋凸显,从事数学教育以及一些数学学习者越来越认识到函数思想的重要性。函数是支撑中学数学的骨架,是中学数学最重要的内容之一,贯穿整个中学阶段。从历年中考、高考的情况来看,以函数为核心编制的题目立意新颖,知识覆盖面广,灵活性较强,有比较理想的选拔功能。所以函数思想有极高的研究价值。作为数学教育工作者了解函数思想的产生、发展和特点,掌握函数运动的发展规律,形成正确的教学观,从而提高对数学知识的驾驭能力。本文通过对中学数学函数思想的研究来指导教育工作者更加有效地进行教学,同时也为新课改提供有力依据,给学生的学习指引正确的方向。

1 函数思想在中学数学中的应用

函数是数集之间的特殊映射,反映事物的内部联系,纵观整个中学阶段,函数将大部分数学知识紧扣在一起,形成一个以函数为中心向四周扩散的知识网络,而函数思想则是形成这个知识网络的灵魂。函数思想的应用就是对于一些实际问题、数学问题构建一个函数模型,应用函数的基本性质更快更好地解决问题,而构造函数模型是函数思想的重要体现。接下来笔者将从以下几个方面阐述函数思想在中学数学中的应用。

1.1 函数思想在中学数学中的宏观应用

函数思想的宏观应用也就是函数性质的直接应用,即应用初等函数的基本性质(定义域、值领、单调性、奇偶性、周期性、有界性、连续性、对称性、图像等)求解有关的值、讨论参数的取值等问题,只要掌握函数的基本概念与性质,直接对其加以简单应用就行,直观明了,同样也是函数思想的简单体现。

例1 函数 () = + 3 + 有极值,又在其曲线上极大和极小的点分别为、,若线段(不含端点)与曲线交于点(1,0),求的值。

分析:首先弄清已知条件,已知①一个含参数的三次函数;②函数有极值;③有极大和极小点,;④线段(不含端点)与曲线交于点(1,0)。解题目标是求的值。

由 '() = 3 + 6 = 0得 = 0, = 。

(0,),(, + )

再由点(1,0)在曲线上以及三点共线,解得

这个结果是否正确?还是要注意题目的条件,即条件④中有一点容易被忽略,这就是点应在线段的内部,因此应满足0<1<,<,于是第二组解应舍去。或者说,若 = ,则点的坐标为(1,0)与(1,0)重合,这时候,成为线段的端点,与题意不符。

1.2 函数思想在中学数学中的微观应用

函数与方程、不等式、角、数列等均有不同程度的内在联系,将一些非函数问题转化成函数问题、构建函数模型就是函数思想的微观应用,也就是函数的间接应用,此类题型可以锻炼学习者的发散思维和逻辑推理能力。接下来将以几个实例加以说明。

1.2.1 活跃在方程、不等式中的函数思想

函数与方程、不等式有着千丝万缕的关系,绝大多数方程与不等式的研究需要依靠函数来实现,而函数性质的研究则又需要依赖方程与不等式来完成,所以他们是相辅相成的。比若说求定义域、函数单调性证明都需要借助不等式来完成;而解方程又是求函数的零点。所以在解关于方程与不等式这类题的过程中应该考虑以函数为工具,加强函数、方程、不等式的综合应用能力,系统掌握数学各个模块的知识。

例2 证明不等式<,(>0)。

分析:证明不等式有很多种方法,可以通过作差、作商、反证、放缩、构造等不同方法来实现,根据不同题目选择合理方法可以达到事半功倍的效果。通过观察,本题通过构造函数的方法来证明,再根据函数单调性来实现不等式大小,既方便又快捷。

证明:要证<(>0),即证<0。

令 = ,(>0)

当>0时, = 1 / (1 + )即<0

∴ = 在(0,)上为单调递减函数

那么就有<(0)=0,(>0)

即 = <0,<恒成立。

小结:本题通过构造函数证明该不等式,是应用函数单调性求解问题的典型例题,通过导函数来确定函数的单调性,进而证明不等式,思路清楚,方法简单易懂。

1.2.2 三角函数思想的呈现

例3 已知为锐角,且,求的值。

分析:由的构成特点,本题的化简变形,不宜按常规对的三角函数都采用降次的作法,而需把已知表达式中的含的三角函数升次,含的三角函数降次,即凑出和的表达式出来。

解:由(1),得3 = 2 (3)

由(2),得3 = 2 (4)

(3)€鳎?),得 = () = 0,

因为为锐角,所以0<<,故知 = 。

1.2.3 实际问题中的函数模型

在数学学习中,我们会遇到很多抽象的数学问题,如果直接求解会非常困难或者是直接解不出来,这是我们应该充分应用所学知识,试着应用函数的思想去考虑,试着建立函数关系式,让抽象、复杂的实际问题转化为简单的函数问题,再应用函数的基本性质将它求解出来,这就是应用函数思想求解数学实际问题的基本套路。

例4 (2012浙江省嘉兴市)某汽车租赁公司拥有20辆汽车。据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元。设公司每日租出辆车时,日收益为元。(日收益=日租金收入平均每日各项支出)

(1)公司每日租出辆车时,每辆车的日租金为_______元(用含的代数式表示);

分析:本题为综合性题目,主要考查二次函数实际问题,怎样建立函数关系式与找等量关系,函数关系建立好之后结合实际函数图像做出解答。

解析:单辆车日租金为:50(20)+400 = 140050

2 中学数学教学中渗透函数思想的途径

中學数学函数教学最重要的目的就是打开学生的函数思维,提升学生们的函数素养,新一轮课程改革中,将函数思想作为必须掌握的教学要求,所以函数教学过程中不再一味地让学生吸收理论知识与概念性内容,而是让学生独立思考,老师引导,建立一定的函数思想基础,从根本上提升自己的函数应用能力。教学过程中渗透函数思想的途径很多,接下来介绍三种渗透方式。

2.1 应用函数思想探究数学知识

新的教育背景下,数学教学过程中应该注重对学生培养知识形成的过程,在数学知识的探索过程中(比如说一些公式、定理、性质的推导过程)就是数学思想方法的最佳体现时刻,因此教师在教学中,要重视公式、定理、性质的推导过程,尽量凸显其相关的数学思想,让学生掌握基本知识的同时,领悟数学真谛。下面我们以函数思想为实例,演示探究数学知识的过程中渗透函数思想。

2.2 在数学解题中渗透函数思想

在数学教学过程中,经常出现课堂上学生听懂了,但是课后做同类型的题目是就无从下手,其原因就是在教学过程中,教师就题论题,拿到题目就草率地解答出来,遇到此类题时照葫芦画瓢,机械操作,学生感到厌烦,学生没有真正认识到题目的出处,没有领略到数学思想方法。在数学解题过程中渗透函数思想也就是在数学解题过程中应用函数的思想方法去求解繁琐的数学问题,比如说用函数的单调性、奇偶性、最值等等基本性质将其复杂问题简单化。

例5 设不等式 + 2 + >0的解集为全体实数,求的取值范围。

分析:题设不等式的系数比较复杂,可通过另设变元的方法,使此题解题过程简化。

解:设 = ,则 = , = ,

而原不等式化成() + 2>0

由题意知,

解得<0,即<0,所以0<<1,从而解得的取值范围是0<<1。

2.3 及时小结,逐步内化函数思想

函数思想是无形的,隐藏在教材体系中函数知识的灵魂,在数学的各个领域中都可以见到函数的影子,特别是解题过程中,函数思想相当明显,应用相当广泛,作为教育工作者,重视函数思想,落到实处是相当必要的。教师在讲完某一道或者某一类型用到函数思想的题目之后,要揭示其解题思路,涉及的知识点,用到的思想方法等等,也可以让学生自我反思回顾用到哪些知识点,同时再出同类型的题目让学生训练,及时巩固,强化刺激,让学生学会归纳总结,有意识地内化函数思想,促使学生实现从感性到理性的飞跃。

猜你喜欢
函数思想中学数学函数
中学数学竞赛数列求和的探究
中学数学竞赛数列求和的探究
构造法在中学数学中的应用
用函数单调性研究不等式
浅析函数与方程思想在解题中的应用
函数思想在求参数取值范围问题中的应用
关于函数的一些补充知识
高中数学中二次函数应用举隅オ
函数思想在苏教版小学数学教材中的渗透
无独有偶 曲径通幽