肝切除术前肝功能的评估方法

2017-08-18 22:29林凯临孙惠川
上海医药 2017年15期

林凯临+孙惠川

摘 要 肝切除是肝癌患者获得长期生存的最主要治疗手段。多数肝癌患者存在不同程度的肝功能受损现象,准确评估肝癌患者肝切除术前的肝功能有助于降低手术死亡率。本文回顾现有的肝切除术前肝功能评估方法,概要介绍余肝体积评估及干预手段的研究进展,以期进一步指导临床实践。

关键词 肝切除术 肝功能评估 余肝

中图分类号:R735.7; R730.56 文献标识码:A 文章编号:1006-1533(2017)15-0020-08

Preoperative assessment of liver function*

LIN Kailin**, SUN Huichuan***

(Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China)

ABSTRACT Surgical resection remains the major curative treatment option for patients with liver cancer. However, most patients with primary liver cancer have an impaired liver function. Preoperative assessment of liver function is therefore important in reducing postoperative morbidity and mortality. Here we review the current advances in preoperative assessment of liver function and the update in evaluating and augmenting future remnant liver volume in order to further guide clinical practice.

KEY WORDS hepatectomy; liver function assessment; remnant liver

原發性肝癌(90%以上是肝细胞癌,简称肝癌)是我国男性发病率位居第4、死亡率位居第3的恶性肿瘤类型[1]。目前,肝切除是肝癌患者获得长期生存的最主要治疗手段。但是,在接受肝切除术的肝癌患者中,由于80%患者的肝癌与乙型肝炎病毒感染相关,72.1% ~ 82.3%的肝癌患者合并肝硬化[2],致使他们的肝脏再生能力和储备功能受损。根据2011年国际肝脏外科学组制定的术后肝功能衰竭(post-operative liver failure, PLF)标准,肝癌肝切除的PLF发生率为9% ~ 18.6%[3-4]。因此,准确评估肝癌患者肝切除术前的肝脏储备功能不仅有助于降低手术死亡率,而且有助于减少术后中长期出现肝功能不全,避免无肿瘤复发的死亡。

1 常用的肝功能评估方法

常用的肝功能评估方法包括Child-Pugh评分[5]、吲哚菁绿15 min清除率[6]、肝静脉压力梯度(hepatic venous pressure gradient, HVPG)[7-8]和肝硬化血清学标志物[9]等。为评估肝切除范围的安全性,人们还开发出了利用CT测定肝脏体积的技术,以用以评估肝切除范围对PLF的影响[10]。

1.1 Child-Pugh评分

Child-Pugh评分是一种基于5项易于测得的参数评估肝功能的方法[5]。该方法临床应用广泛,但亦存在问题。例如,Child-Pugh分级比较宽泛,且涉及到的“腹水”、“肝性脑病”等因素的界定较为主观,有时结果会偏离临床实际[11-12],故即使Child-Pugh分级为A级,患者在术后出现肝功能失代偿的可能性仍不小[13]。因此,尚需使用其他方法来评估此类患者的肝功能储备。

1.2 终末期肝病模型(model for end-stage liver disease, MELD)评分

MELD评分主要用以评估终末期肝病患者的生存时间[14],亦有研究显示可用以预测肝部分切除患者的手术风险。MELD评分≤10被认为可安全施行肝切除术[13]。该方法目前主要用以筛选准备接受肝移植的患者[14-15]。

1.3 吲哚菁绿15 min清除率

吲哚菁绿清除试验是一种定量分析肝功能的方法,可用以预测肝切除术后患者的死亡率[6]。对患者经静脉一次性注射吲哚菁绿0.5 mg/kg后,测出15 min时的吲哚菁绿滞留率(retention rate of indocyanine green at 15 minutes, ICG-R15)。ICG-R15在药理学上大抵等于吲哚菁绿15 min清除率。需注意的是,吲哚菁绿和胆红素在肝细胞转运过程中结合于相同载体并表现为相互竞争性抑制作用。因此,对高胆红素水平的梗阻性黄疸患者,吲哚菁绿清除试验不再有效,此时可用99mTc-二乙烯三胺五乙酸半乳糖基人血清白蛋白显像技术作为肝功能储备评估的替代方法[16]。

扩大的肝切除术因遗留较小的肝剩余体积而常伴有较高的并发症发病率和死亡率[17]。对不伴有慢性肝炎或肝硬化的患者,不发生PLF的最小安全肝剩余体积为肝总体积的20% ~ 33%[18]。当患者的肝功能异常时,应避免对其施行肝大部切除术(通常定义为切除≥3段Couinaud肝段)。ICG-R15对评估肝切除术的安全性具有重要意义。安全的肝大部切除术所对应的ICG-R15为10% ~ 14%[6,19-20]。Makuuchi等[6]提出,对ICG-R15为10% ~ 20%的患者,最小的安全肝剩余体积为肝总体积的2/3。对ICG-R15<30%的患者,施行单肝段切除术是安全的。对ICG-R15更高的患者,施行肝楔形切除术或肿瘤摘除术亦是可行的。但若患者存在腹水或血清总胆红素水平异常(>34.3 mol/L)时,应避免施行肝切除术[6,21]。近期,Kokudo等[22]还提出了一种新的肝功能分级方法白蛋白-吲哚菁绿评估法,其预测值=0.663×log10 ICG-R15(%)-0.071 8×白蛋白值(g/L)(界限在-2.20 ~ -1.39间),旨在更好地进行术前肝功能评估,并在前期研究中取得了与Child-Pugh评分类似的效果,然要实际临床应用尚有待更深入的研究和实践的检验。

1.4 HVPG

门脉压力的正常值为5 ~ 10 mmHg。由于大多数情况下无法直接测量门脉压力,故临床上多采用通过颈静脉穿刺、置管来测量HVPG,估算门静脉与下腔静脉间的压力梯度,借此反映门脉压力情况。因此,门脉压力可用HVPG指代(正常值为1 ~ 5 mmHg)。现一般认为,胃底食管静脉曲张患者的HVPG>10 mmHg,存在腹水患者的HVPG>8 mmHg[7]。巴塞罗那临床肝癌分期小组将有临床意义的门脉高压定义为HVPG>10 mmHg[23],而其发表的肝癌治疗指南则将门脉高压列为肝切除术的禁忌证之一[24-25]。门脉高压亦可用其他临床表现指代,包括食管静脉曲张、脾大(最大直径>12 cm)和血小板计数<1×105/ml[3,26]。門脉高压患者通常伴有较严重的肝纤维化,肝切除术后的并发症和肝功能不全发生率、死亡率均较高[27]。不过,也有研究认为,这些门脉高压征象不应视为代偿期肝硬化患者肝切除术的绝对禁忌证[28]。尽管术后食管静脉曲张破裂出血可致高达30%的死亡率[29],但经采取诸如术前内镜套扎、使用质子泵抑制剂或H2受体阻滞剂等预防措施以及进行谨慎的术前肝功能评估等措施,仍可保证部分门脉高压患者的术后结局和长期生存不受门脉高压因素的影响[30-31]。

1.5 血清学标志物

肝硬化的血清学标志物包括透明质酸、层粘连蛋白、Ⅳ型胶原和Ⅲ型前胶原氨基端肽水平等,既往主要被用来评估慢性肝病的进展、炎症活动和肝纤维化程度以及治疗效果[32-34]。一项回顾性研究显示,肝切除术前的乙型肝炎病毒DNA、血清前白蛋白、透明质酸和层粘连蛋白水平均与术后肝功能不全相关[9]。Okuda等[35]的研究发现,Mac-2结合蛋白的糖基化异构体(glycosylated isoforms of Mac-2 binding protein, M2BPGi)水平可用来预测肝切除者的PLF,且见在肝纤维化程度相同时,丙型肝炎病毒感染患者的M2BPGi水平显著高于非丙型肝炎病毒感染患者,提示丙型肝炎病毒感染患者的M2BPGi水平的预测性可能更强。

2 肝脏体积的评估

多种影像学技术均可用来评估余肝体积,包括闪烁扫描术[36-37]、超声显像术[38]、CT[39-43]和MRI[44],其中利用CT测定余肝体积已成为肝切除和移植术前的最常用方法[45-47]。1992年Soyer等[48]利用CT信息构建肝脏的三维图像,经外科医师标记肝切除范围后,由放射科医师计算出余肝体积。他们的研究发现,余肝体积≥35%的患者均未出现PLF,因此推测35%的余肝体积是肝切除术的安全界值。需指出的是,上述余肝体积均是相对于包括肿瘤体积在内的全肝体积而言的。显然,肝脏体积在不同患者间存在差异,肿瘤体积也会影响全肝体积的计算。因此,必须建立健康者标准肝脏体积的数学模型,后者还可用于在活体部分供肝移植时计算受体所需的肝组织量和供体需保留的肝组织量的最低值。1995年Urata等[47]提出了通过体表面积或体重预测健康成人和小儿肝脏体积的数学公式。尽管它们均可较为准确地计算出健康者的肝脏体积,但采用体表面积的公式似更易使用。其后Kubota等[10]提出,可以CT测定的需切除的非肿瘤肝组织体积与通过Urata公式计算得到的标准化肝脏体积的比值来预测肝切除术的安全性。后来,大多数外科医师便采用余肝体积来评估肝切除术后出现肝功能不全的风险[43]。

关于健康成人的标准化肝脏体积(cm3),一般通过体表面积计算得到,最常用的就是Urata公式,即706.2×体表面积(m2)+2.4。2008年Yoshizumi等[49]发现,如体表面积<2 m2,使用Urata公式算得的肝脏体积偏低,故提出了自己的修正公式,即772×体表面积(m2)。中国研究者也经研究提出了通过体重计算中国成人标准化肝脏体积的计算公式(华西公式),即11.5×体重(kg)+334,并发现该公式算得的肝脏体积较Urata公式更准确[50]。有研究比较了余肝体积/体重和余肝体积/标准化肝脏体积对PLF的预测能力,结果发现前者的预测结果更准确[42,51]。Vauthey等[52]提出的西方成人肝脏体积计算公式为1 267.28×体表面积(m2)-794.41(Vauthey公式),并已在多项研究中得到验证[53-55]。

对肝脏健康和损伤患者,采用余肝体积预测PLF的界值是不同的。大多数研究者认为,对无肝脏损伤患者,余肝体积>30%的肝切除术是安全的;对肝硬化患者,余肝体积>40%或50%的肝切除术是安全的[10,18,41,56]。不足的余肝体积与不良的术后结局相关,主要并发症发生率也会提高,包括PLF发生率提高和住院时间延长等[39,41,57]。根据Ribero等[58]的研究,安全肝切除的阈值用标准化肝脏体积(用Vauthey公式算得)指示时应为:对肝脏健康患者,20%;对有化疗相关肝脏损伤患者,30%;对慢性肝病患者,40%。

利用CT测算余肝体积的最主要优点是无创性,且CT常用于临床随访,故亦易获得用以计算余肝体积的CT图像。笔者也曾研究过中国肝癌患者余肝体积的安全界值[59],发现对Child-Pugh分级为A级的肝癌患者(未区分是否伴有肝硬化),半肝切除术的安全余肝体积界值是35%或250 cm3。

利用CT测算的余肝体积来评估肝切除术前的肝功能有一定局限性,有时评估结果与实际肝功能及预测的术后结局不符[60],即此时余肝体积并不能对等地反映余肝功能,后者还会受到肝脏基础疾病如肝纤维化、肝硬化和脂肪变性等的影响。因此,尚需确定患者肝脏是否存在基础疾病方能更正确地应用余肝体积的概念[61],这对在诱导或新辅助化疗治疗之后再接受肝切除术的患者尤为重要,因为肝脏实质可能在化疗治疗后发生脂肪变性或静脉闭塞[62]。在缺乏术前活组织检查的情况下,肝脏实质损害或病变通常难以在术前得到确认。目前,基于余肝体积数据而定的肝切除术筛选标准并无定论,文献中提及的最小安全余肝体积在10% ~ 40%间,与不同的肝病分级及不同的测算方法有关[63]。实际上,PLF还受到患者年龄、肝脏受损程度、手术技术和余肝的定义等诸多因素的影响[18]。因此,寻找最小的安全余肝体积很困难,且可能也不符合患者的利益。此外,尽管CT可用于监测门静脉栓塞(portal vein embolization, PVE)后余肝体积的变化,但余肝体积并不总是能对等地反映余肝功能。有研究报告,PVE后肝脏功能的改变与其体积的改变间存在偏差,余肝功能的改变甚于余肝体积的增加[61]。当胆道或血管梗阻时,无功能肝脏的存在会影响余肝功能[43]。PVE后一侧肝萎缩也会影响余肝功能[64]。

为克服上述缺陷,有研究试图将肝功能检测和功能性肝脏成像技术结合起来用以评估肝功能储备[65]。3D分析技术的发展已使精确计算余肝体积成为可能。利用基于增强型CT的3D图像重建技术可在精确评估功能性余肝体积时排除缺血和充血状态的影响。

3 术前改善肝脏功能以提高肝切除术的安全性

约90%的肝癌患者存在不同程度的肝功能损害,其中大多数为慢性肝损害且不伴有症状[66]。因此,在决定施行肝切除术时,对患者的肝功能进行评估与制定合理的手术方案同样重要。避免因余肝体积不足及功能低下所引起的术后肝功能失代偿是提高肝切除术安全性的主要目标,采取的措施以增加余肝体积为重。肝部分切除术的死亡率在20世纪70年代时高达20%[67],但随着人们对肝脏解剖结构的认识加深、手术技术的完善,加之仔细筛选患者,目前肝切除术的安全性很高,手术死亡率已<5%[68]。现有若干种术前促余肝增生的方法来提高肝癌的可切除率。

对肝功能储备异常(ICG-R15在10% ~ 20%间)的准备接受肝大部切除术患者(余肝体积<60%)或肝功能正常的准备接受扩大的肝切除术患者(余肝体积<40%),施行PVE可确保肝切除术的安全性[10]。PVE可通过栓塞肿瘤所在肝叶的同侧门脉而诱导余肝增生,以降低扩大的肝切除术后的肝衰竭和死亡发生率[10,69],同时亦可用来排除余肝增生不良患者于手术治疗外[70]。一些研究比较了在扩大的肝切除术前是否施行PVE的结果,发现PVE组患者的长期结局与非PVE组患者相当、甚至更佳[71-74],且PVE组患者还均是在过去通常被认为因余肝体积过小而难以安全地接受手术治疗的患者。

肝切除术前决定对某一患者是否施行PVE时需考量一些问题。首先,需个体化评估患者的肝脏情况、尤其是有无基础实质病变,以确定每一特定患者的可接受的余肝体积。其他的患者参数如身高和体表面积亦应予以重视。高大者较矮小者有更大的体表面积,在施行相同程度的肝切除术时需有更大的余肝体积。其次,应注意患者的年龄、营养状况、伴发疾病和功能状态均会影响PVE促余肝增生的程度,进而影响手术的施行[70]。

序贯施行经导管肝动脉化疗栓塞(transcatheter arterial chemoembolization, TACE)和PVE也是可选用的方法。由于存在基础肝硬化,接受PVE的肝癌患者获得的肝再生效果有限[75-77]。此外,接受PVE的肝段的动脉血流代偿性地增加还可能促进动脉供血的肿瘤增殖加快[78-80]。因此,序贯施行TACE和PVE的方法应运而生[71]。有关研究显示,与仅接受PVE患者相比,接受序贯方法患者的余肝增生率更高、肿瘤进展率更低[71,73]。尽管施行序贯方法存在着肝脏实质缺血的风险,但综合患者的肿瘤可切除率、术后5年生存率和无瘤生存率考虑,此方法仍是安全可行的[71,73,81]。

对肝切除术,主要的限制在于余肝体积不足。尽管前述方法均能有效诱导余肝增生,但要达到满意的余肝体积需较长时间[82]。在余肝增生至足以耐受肝切除术时,肿瘤进展亦可能伴随而来,尤其是当肿瘤侵犯同侧门脉时,肿瘤增殖可能加快,且在栓塞静脉的对侧沉积并发生转移[79,83]。联合肝脏离断和门静脉结扎的二步肝切除术(associated liver partition and portal vein ligation for staged hepatectomy, ALPPS)是近年来相关手术技术的重要创新[82],它的出现较好地解决了上述问题,并已用于结直肠癌肝转移和脂肪变、肝硬化的肝切除术[83-87]。施行ALPPS可使余肝增生70%[88],在余肝增生的程度上优于PVE[89-90]。ALPPS用于肝癌的适用指征为肿瘤负荷巨大、具备边缘余肝体积的患者[89-90],可伴或不伴有大血管侵犯[87],能在一定程度上使得原难以施行切除术的肿瘤转为具有潜在的可切除性。但短期内施行两次手术常常伴随着并发症和死亡率的升高[88,90-92],因此对ALPPS的长期临床结局还需观察。

4 结语

肝切除术前必须重视肝功能评估。尽管已有许多方法可用于肝功能评估,但每种方法均存在局限性,因此应综合多种方法以从多个角度来评估肝功能。近年还出现了一些新的肝功能评估方法,其中肝脏弹力测定有可替代有创的评估方法的潜力。此外,有研究利用CT、MRI以及核医学灌注评价肝叶或肝段的功能[93-94],这些新技術将有助于更为准确地评估占位性病变对邻近肝功能的影响以及再生的肝组织功能。

参考文献

[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90.

[2] Yu MW, Hsu FC, Sheen IS, et al. Prospective study of hepatocellular carcinoma and liver cirrhosis in asymptomatic chronic hepatitis B virus carriers [J]. Am J Epidemiol, 1997, 145(11): 1039-1047.

[3] Fukushima K, Fukumoto T, Kuramitsu K, et al. Assessment of ISGLS definition of posthepatectomy liver failure and its effect on outcome in patients with hepatocellular carcinoma[J]. J Gastrointest Surg, 2014, 18(4): 729-736.

[4] Skrzypczyk C, Truant S, Duhamel A, et al. Relevance of the ISGLS definition of posthepatectomy liver failure in early prediction of poor outcome after liver resection: study on 680 hepatectomies [J]. Ann Surg, 2014, 260(5): 865-870.

[5] Pugh RN, Murray-Lyon IM, Dawson JL, et al. Transection of the oesophagus for bleeding oesophageal varices [J]. Br J Surg, 1973, 60(8): 646-649.

[6] Makuuchi M, Kosuge T, Takayama T, et al. Surgery for small liver cancers [J]. Semin Surg Oncol, 1993, 9(4): 298-304.

[7] Armonis A, Patch D, Burroughs A. Hepatic venous pressure measurement: an old test as a new prognostic marker in cirrhosis? [J]. Hepatology, 1997, 25(1): 245-248.

[8] Navasa M, Chesta J, Bosch J, et al. Reduction of portal pressure by isosorbide-5-mononitrate in patients with cirrhosis. Effects on splanchnic and systemic hemodynamics and liver function [J]. Gastroenterology, 1989, 96(4): 1110-1118.

[9] Shen Y, Shi G, Huang C, et al. Prediction of post-operative liver dysfunction by serum markers of liver fibrosis in hepatocellular carcinoma [J/OL]. PLoS One, 2015, 10(10): e0140932 [2016-10-17]. http://journals. plos.org/plosone/article/file?id=10.1371/journal. pone.0140932&type=printable.

[10] Kubota K, Makuuchi M, Kusaka K, et al. Measurement of liver volume and hepatic functional reserve as a guide to decision-making in resectional surgery for hepatic tumors [J]. Hepatology, 1997, 26(5): 1176-1181.

[11] Befeler AS, Palmer DE, Hoffman M, et al. The safety of intraabdominal surgery in patients with cirrhosis: model for endstage liver disease score is superior to Child-Turcotte-Pugh classification in predicting outcome [J]. Arch Surg, 2005, 140(7): 650-654.

[12] Farnsworth N, Fagan SP, Berger DH, et al. Child-TurcottePugh versus MELD score as a predictor of outcome after elective and emergent surgery in cirrhotic patients [J]. Am J Surg, 2004, 188(5): 580-583.

[13] Cucchetti A, Ercolani G, Vivarelli M, et al. Impact of model for end-stage liver disease (MELD) score on prognosis after hepatectomy for hepatocellular carcinoma on cirrhosis [J]. Liver Transpl, 2006, 12(6): 966-971.

[14] Malinchoc M, Kamath PS, Gordon FD, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts [J]. Hepatology, 2000, 31(4): 864-871.

[15] Kamath PS, Kim WR, Advanced Liver Disease Study Group. The model for end-stage liver disease (MELD) [J]. Hepatology, 2007, 45(3): 797-805.

[16] Yoshida M, Beppu T, Shiraishi S, et al. 99mTc-GSA SPECT/ CT fused images for assessment of hepatic function and hepatectomy planning [J]. Ann Transl Med, 2015, 3(2): 17.

[17] Schindl MJ, Redhead DN, Fearon KC, et al. The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection [J]. Gut, 2005, 54(2): 289-296.

[18] Guglielmi A, Ruzzenente A, Conci S, et al. How much remnant is enough in liver resection? [J]. Dig Surg, 2012, 29(1): 6-17.

[19] Fan ST, Lai EC, Lo CM, et al. Hospital mortality of major hepatectomy for hepatocellular carcinoma associated with cirrhosis [J]. Arch Surg, 1995, 130(2): 198-203.

[20] Lam CM, Fan ST, Lo CM, et al. Major hepatectomy for hepatocellular carcinoma in patients with an unsatisfactory indocyanine green clearance test [J]. Br J Surg, 1999, 86(8): 1012-1017.

[21] Imamura H, Sano K, Sugawara Y, et al. Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test [J]. J Hepatobiliary Pancreat Surg, 2005, 12(1): 16-22.

[22] Kokudo T, Hasegawa K, Amikura K, et al. Assessment of preoperative liver function in patients with hepatocellular carcinoma — the albumin-indocyanine green evaluation(ALICE) grade [J/OL]. PLoS One, 2016, 11(7): e0159530[2016-10-17]. http://journals.plos.org/plosone/article/ file?id=10.1371/journal.pone.0159530&type=printable.

[23] Bruix J, Sherman M, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update [J]. Hepatology, 2011, 53(3): 1020-1022.

[24] Bruix J, Castells A, Bosch J, et al. Surgical resection of hepatocellular carcinoma in cirrhotic patients: prognostic value of preoperative portal pressure [J]. Gastroenterology, 1996, 111(4): 1018-1022.

[25] Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma [J/OL]. Nat Rev Dis Primers, 2016, 2: 16018[2016-10-17]. doi: 10.1038/nrdp.2016.18.

[26] Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification [J]. Semin Liver Dis, 1999, 19(3): 329-338.

[27] Boleslawski E, Petrovai G, Truant S, et al. Hepatic venous pressure gradient in the assessment of portal hypertension before liver resection in patients with cirrhosis [J]. Br J Surg, 2012, 99(6): 855-863.

[28] Ishizawa T, Hasegawa K, Aoki T, et al. Neither multiple tumors nor portal hypertension are surgical contraindications for hepatocellular carcinoma [J]. Gastroenterology, 2008, 134(7): 1908-1916.

[29] del Olmo JA, Pe?a A, Serra MA, et al. Predictors of morbidity and mortality after the first episode of upper gastrointestinal bleeding in liver cirrhosis [J]. J Hepatol, 2000, 32(1): 19-24.

[30] Kawano Y, Sasaki A, Kai S, et al. Short- and long-term outcomes after hepatic resection for hepatocellular carcinoma with concomitant esophageal varices in patients with cirrhosis[J]. Ann Surg Oncol, 2008, 15(6): 1670-1676.

[31] Zhong JH, Ke Y, Gong WF, et al. Hepatic resection associated with good survival for selected patients with intermediate and advanced-stage hepatocellular carcinoma [J]. Ann Surg, 2014, 260(2): 329-340.

[32] Castera L, Hartmann DJ, Chapel F, et al. Serum laminin and type IV collagen are accurate markers of histologically severe alcoholic hepatitis in patients with cirrhosis [J]. J Hepatol, 2000, 32(3): 412-418.

[33] Guéchot J, Loria A, Serfaty L, et al. Serum hyaluronan as a marker of liver fibrosis in chronic viral hepatitis C: effect of alpha-interferon therapy [J]. J Hepatol, 1995, 22(1): 22-26.

[34] Parise ER, Oliveira AC, Figueiredo-Mendes C, et al. Noninvasive serum markers in the diagnosis of structural liver damage in chronic hepatitis C virus infection [J]. Liver Int, 2006, 26(9): 1095-1099.

[35] Okuda Y, Taura K, Yoshino K, et al. Usefulness of Mac-2 binding protein glycosylation isomer for prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma [J/OL]. Ann Surg, 2016 Jun 28 [2016-10-17]. doi: 10.1097/SLA.0000000000001836.

[36] Bennink RJ, Dinant S, Erdogan D, et al. Preoperative assessment of postoperative remnant liver function using hepatobiliary scintigraphy [J]. J Nucl Med, 2004, 45(6): 965-971.

[37] Erdogan D, Heijnen BH, Bennink RJ, et al. Preoperative assessment of liver function: a comparison of 99mTcMebrofenin scintigraphy with indocyanine green clearance test [J]. Liver Int, 2004, 24(2): 117-123.

[38] Haktanir A, Cihan BS, Celenk C, et al. Value of Doppler sonography in assessing the progression of chronic viral hepatitis and in the diagnosis and grading of cirrhosis [J]. J Ultrasound Med, 2005, 24(3): 311-321.

[39] Abdalla EK, Barnett CC, Doherty D, et al. Extended hepatectomy in patients with hepatobiliary malignancies with and without preoperative portal vein embolization [J]. Arch Surg, 2002, 137(6): 675-680.

[40] Shirabe K, Shimada M, Gion T, et al. Postoperative liver failure after major hepatic resection for hepatocellular carcinoma in the modern era with special reference to remnant liver volume [J]. J Am Coll Surg, 1999, 188(3): 304-309.

[41] Shoup M, Gonen M, DAngelica M, et al. Volumetric analysis predicts hepatic dysfunction in patients undergoing major liver resection [J]. J Gastrointest Surg, 2003, 7(3): 325-330.

[42] Truant S, Oberlin O, Sergent G, et al. Remnant liver volume to body weight ratio ≥ 0.5%: a new cut-off to estimate postoperative risks after extended resection in noncirrhotic liver [J]. J Am Coll Surg, 2007, 204(1): 22-33.

[43] Vauthey JN, Chaoui A, Do KA, et al. Standardized measurement of the future liver remnant prior to extended liver resection: methodology and clinical associations [J]. Surgery, 2000, 127(5): 512-519.

[44] Matsuo M, Kanematsu M, Kim T, et al. Esophageal varices: diagnosis with gadolinium-enhanced MR imaging of the liver for patients with chronic liver damage [J]. AJR Am J Roentgenol, 2003, 180(2): 461-466.

[45] Heymsfield SB, Fulenwider T, Nordlinger B, et al. Accurate measurement of liver, kidney, and spleen volume and mass by computerized axial tomography [J]. Ann Intern Med, 1979, 90(2): 185-187.

[46] Kawasaki S, Makuuchi M, Matsunami H, et al. Living related liver transplantation in adults [J]. Ann Surg, 1998, 227(2): 269-274.

[47] Urata K, Kawasaki S, Matsunami H, et al. Calculation of child and adult standard liver volume for liver transplantation[J]. Hepatology, 1995, 21(5): 1317-1321.

[48] Soyer P, Roche A, Elias D, et al. Hepatic metastases from colorectal cancer: influence of hepatic volumetric analysis on surgical decision making [J]. Radiology, 1992, 184(3): 695-697.

[49] Yoshizumi T, Taketomi A, Kayashima H, et al. Estimation of standard liver volume for Japanese adults [J]. Transplant Proc, 2008, 40(5): 1456-1460.

[50] Shi ZR, Yan LN, Li B, et al. Evaluation of standard liver volume formulae for Chinese adults [J]. World J Gastroenterol, 2009, 15(32): 4062-4066.

[51] Lin XJ, Yang J, Chen XB, et al. The critical value of remnant liver volume-to-body weight ratio to estimate posthepatectomy liver failure in cirrhotic patients [J]. J Surg Res, 2014, 188(2): 489-495.

[52] Vauthey JN, Abdalla EK, Doherty DA, et al. Body surface area and body weight predict total liver volume in Western adults [J]. Liver Transpl, 2002, 8(3): 233-240.

[53] DeLand FH, North WA. Relationship between liver size and body size [J]. Radiology, 1968, 91(6): 1195-1198.

[54] Heinemann A, Wischhusen F, Püschel K, et al. Standard liver volume in the Caucasian population [J]. Liver Transpl Surg, 1999, 5(5): 366-368.

[55] Johnson TN, Tucker GT, Tanner MS, et al. Changes in liver volume from birth to adulthood: a meta-analysis [J]. Liver Transpl, 2005, 11(12): 1481-1493.

[56] Mise Y, Sakamoto Y, Ishizawa T, et al. A worldwide survey of the current daily practice in liver surgery [J]. Liver Cancer, 2013, 2(1): 55-66.

[57] Shirabe K, Matsumata T, Shimada M, et al. A comparison of parenteral hyperalimentation and early enteral feeding regarding systemic immunity after major hepatic resection— the results of a randomized prospective study [J]. Hepatogastroenterology, 1997, 44(13): 205-209.

[58] Ribero D, Chun YS, Vauthey JN. Standardized liver volumetry for portal vein embolization [J]. Semin Intervent Radiol, 2008, 25(2): 104-109.

[59] 孫惠川, 汤敏, 钦伦秀, 等. 用余肝体积预测半肝切除耐受性的安全标准[J].中华肝胆外科杂志, 2006, 12(6): 366-369.

[60] Dinant S, de Graaf W, Verwer BJ, et al. Risk assessment of posthepatectomy liver failure using hepatobiliary scintigraphy and CT volumetry [J]. J Nucl Med, 2007, 48(5): 685-692.

[61] de Graaf W, van Lienden KP, van den Esschert JW, et al. Increase in future remnant liver function after preoperative portal vein embolization [J]. Br J Surg, 2011, 98(6): 825-834.

[62] Marsman HA, van der Pool AE, Verheij J, et al. Hepatic steatosis assessment with CT or MRI in patients with colorectal liver metastases after neoadjuvant chemotherapy[J]. J Surg Oncol, 2011, 104(1): 10-16.

[63] Clavien PA, Emond J, Vauthey JN, et al. Protection of the liver during hepatic surgery [J]. J Gastrointest Surg, 2004, 8(3): 313-327.

[64] Abdalla EK, Hicks ME, Vauthey JN. Portal vein embolization: rationale, technique and future prospects [J]. Br J Surg, 2001, 88(2): 165-175.

[65] Beppu T, Hayashi H, Okabe H, et al. Liver functional volumetry for portal vein embolization using a newly developed 99mTc-galactosyl human serum albumin scintigraphy SPECT-computed tomography fusion system [J]. J Gastroenterol, 2011, 46(7): 938-943.

[66] Sherman M. Hepatocellular carcinoma: epidemiology, surveillance, and diagnosis [J]. Semin Liver Dis, 2010, 30(1): 3-16.

[67] Foster JH, Berman MM. Solid liver tumors [J]. Major Probl Clin Surg, 1977, 22: 1-342.

[68] Imamura H, Seyama Y, Kokudo N, et al. One thousand fiftysix hepatectomies without mortality in 8 years [J]. Arch Surg, 2003, 138(11): 1198-1206.

[69] Makuuchi M, Thai BL, Takayasu K, et al. Preoperative portal embolization to increase safety of major hepatectomy for hilar bile duct carcinoma: a preliminary report [J]. Surgery, 1990, 107(5): 521-527.

[70] Shindoh J, Truty MJ, Aloia TA, et al. Kinetic growth rate after portal vein embolization predicts posthepatectomy outcomes: toward zero liver-related mortality in patients with colorectal liver metastases and small future liver remnant [J]. J Am Coll Surg, 2013, 216(2): 201-209.

[71] Aoki T, Imamura H, Hasegawa K, et al. Sequential preoperative arterial and portal venous embolizations in patients with hepatocellular carcinoma [J]. Arch Surg, 2004, 139(7): 766-774.

[72] Hayashi S, Baba Y, Ueno K, et al. Acceleration of primary liver tumor growth rate in embolized hepatic lobe after portal vein embolization [J]. Acta Radiol, 2007, 48(7): 721-727.

[73] Ogata S, Belghiti J, Farges O, et al. Sequential arterial and portal vein embolizations before right hepatectomy in patients with cirrhosis and hepatocellular carcinoma [J]. Br J Surg, 2006, 93(9): 1091-1098.

[74] Seo DD, Lee HC, Jang MK, et al. Preoperative portal vein embolization and surgical resection in patients with hepatocellular carcinoma and small future liver remnant volume: comparison with transarterial chemoembolization [J]. Ann Surg Oncol, 2007, 14(12): 3501-3509.

[75] Chen MF, Hwang TL, Hung CF. Human liver regeneration after major hepatectomy. A study of liver volume by computed tomography [J]. Ann Surg, 1991, 213(3): 227-229.

[76] Nagasue N, Yukaya H, Ogawa Y, et al. Human liver regeneration after major hepatic resection. A study of normal liver and livers with chronic hepatitis and cirrhosis [J]. Ann Surg, 1987, 206(1): 30-39.

[77] Yamanaka N, Okamoto E, Kawamura E, et al. Dynamics of normal and injured human liver regeneration after hepatectomy as assessed on the basis of computed tomography and liver function [J]. Hepatology, 1993, 18(1): 79-85.

[78] Elias D, De Baere T, Roche A, et al. During liver regeneration following right portal embolization the growth rate of liver metastases is more rapid than that of the liver parenchyma [J]. Br J Surg, 1999, 86(6): 784-788.

[79] Kokudo N, Tada K, Seki M, et al. Proliferative activity of intrahepatic colorectal metastases after preoperative hemihepatic portal vein embolization [J]. Hepatology, 2001, 34(2): 267-272.

[80] Nagino M, Nimura Y, Kamiya J, et al. Immediate increase in arterial blood flow in embolized hepatic segments after portal vein embolization: CT demonstration [J]. AJR Am J Roentgenol, 1998, 171(4): 1037-1039.

[81] Xu C, Lv PH, Huang XE, et al. Safety and efficacy of sequential transcatheter arterial chemoembolization and portal vein embolization prior to major hepatectomy for patients with HCC [J]. Asian Pac J Cancer Prev, 2014, 15(2): 703-706.

[82] Abulkhir A, Limongelli P, Healey AJ, et al. Preoperative portal vein embolization for major liver resection: a metaanalysis [J]. Ann Surg, 2008, 247(1): 49-57.

[83] Heinrich S, Jochum W, Graf R, et al. Portal vein ligation and partial hepatectomy differentially influence growth of intrahepatic metastasis and liver regeneration in mice [J]. J Hepatol, 2006, 45(1): 35-42.

[84] Levi Sandri GB, Lai Q, Rayar M, et al. ALPPS procedure for hepatocellular carcinoma with macrovascular thrombosis: a new opportunity? [J]. J Hepatol, 2015, 62(1): 241-242.

[85] Schadde E, Ardiles V, Robles-Campos R, et al. Early survival and safety of ALPPS: first report of the International ALPPS Registry [J]. Ann Surg, 2014, 260(5): 829-836.

[86] Vennarecci G, Laurenzi A, Levi Sandri GB, et al. The ALPPS procedure for hepatocellular carcinoma [J]. Eur J Surg Oncol, 2014, 40(8): 982-988.

[87] Vennarecci G, Laurenzi A, Santoro R, et al. The ALPPS procedure: a surgical option for hepatocellular carcinoma with major vascular invasion [J]. World J Surg, 2014, 38(6): 1498-1503.

[88] Schnitzbauer AA, Lang SA, Goessmann H, et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings [J]. Ann Surg, 2012, 255(3): 405-414.

[89] Ielpo B, Quijano Y, Vicente E. Pearls and pitfalls on ALPPS procedure: new complications in a new technique [J]. Updates Surg, 2014, 66(2): 159-161.

[90] Schadde E, Ardiles V, Slankamenac K, et al. ALPPS offers a better chance of complete resection in patients with primarily unresectable liver tumors compared with conventional-staged hepatectomies: results of a multicenter analysis [J]. World J Surg, 2014, 38(6): 1510-1519.

[91] Knoefel WT, Gabor I, Rehders A, et al. In situ liver transection with portal vein ligation for rapid growth of the future liver remnant in two-stage liver resection [J]. Br J Surg, 2013, 100(3): 388-394.

[92] Nadalin S, Capobianco I, Li J, et al. Indications and limits for associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). Lessons learned from 15 cases at a single centre [J]. Z Gastroenterol, 2014, 52(1): 35-42.

[93] Cieslak KP, Bennink RJ, de Graaf W, et al. Measurement of liver function using hepatobiliary scintigraphy improves risk assessment in patients undergoing major liver resection [J]. HPB (Oxford), 2016, 18(9): 773-780.

[94] Chapelle T, Op De Beeck B, Huyghe I, et al. Future remnant liver function estimated by combining liver volumetry on magnetic resonance imaging with total liver function on 99mTcmebrofenin hepatobiliary scintigraphy: can this tool predict post-hepatectomy liver failure? [J]. HPB (Oxford), 2016, 18(6): 494-503.