水稻种子主要营养物质合成及调控研究与展望

2018-05-14 14:44彭波彭宇彭娟孔冬艳何璐璐孙艳芳黄雅琴宋世枝
热带作物学报 2018年6期
关键词:合成营养物质调控

彭波 彭宇 彭娟 孔冬艳 何璐璐 孙艳芳 黄雅琴 宋世枝

摘 要 淀粉、储藏蛋白和脂类等物质是水稻种子中最主要的营养物质,它们在水稻种子中的组成及其含量对稻米品质的优劣起决定性的作用。本文综述了近年来水稻种子中淀粉、储藏蛋白、脂类物质和氨基酸等主要营养物质的合成及其相关基因的表达与调控等方面所取得的新进展,并分析了这些营养物质在水稻遗传改良过程中面临的挑战与展望,以期为今后稻米品质的遗传改良与新品种的培育提供参考与借鉴。

关键词 水稻;营养物质;合成;调控

中图分类号 S511 文献标识码 A

Research Advancement and Prospects of Main Nutritious Substances Synthesis and Regulation in Rice Seeds

PENG Bo1*,PENG Yu2,PENG Juan3,KONG Dongyan1,HE Lulu1,SUN Yanfang1,

HUANG Yaqin4,SONG Shizhi5*

1 College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, China

2 School of Science and Technology, Xinyang University, Xinyang, Henan 464000, China

3 Xinyang Station of Plant Protection and Inspection, Xinyang, Henan 464000, China

4 College of Biological and Pharmaceutical Engineering, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, China

5 Xinyang Academy of Agricultural Science, Xinyang, Henan 464000, China

Abstract Starch, storage proteins and lipids are the main nutritious substances in rice seeds, and the composition and content in seeds play a decisive role in the grain quality of rice. This review mainly summarized the new advances in the synthesis, the related genes expression and regulation of main nutritious substances such as starch, storage proteins, lipids and amino acids in rice seeds. In addition, the challenges of the nutritious substances in rice genetic improvement were also discussed. This review would provide an important reference for genetic improvement of grain quality and the cultivation of new varieties in rice.

Key words rice (Oryza sativa L.); nutritious substance; synthesis; regulation

doi 10.3969/j.issn.1000-2561.2018.06.030

水稻(Oryza sativa L.)是最重要的糧食作物之一。水稻为全世界超过30亿的人口提供大约25%的能量需求,特别是在东南亚地区,稻米为其当地居民提供的能量达到76%左右,故稻米是人类能量及其营养物质的一个重要的来源[1-3]。近几十年来,国内针对水稻的改良与新品种培育,先后实施过高产育种、超高产育种、超级稻育种和绿色超级稻育种等不同计划的育种目标,其中以提高水稻产量一直作为一个极其重要的育种目标[4]。在此育种进程中,水稻产量有了明显提高,但稻米品质的遗传改良却未得到同步改善,进而导致目前市场上稻米品质不容乐观。然而稻米品质性状是一个十分复杂的数量性状,主要由营养品质、食味品质、外观品质、蒸煮品质、研磨和加工品质等组成[5-7],且不同稻米品质性状与外界环境因素之间存在一定程度的相互作用[6-9]。预计到2050年全球人口将超过90亿[10-11],随着生活质量的逐步改善,未来相当长时间内,针对优质稻米的需求还会保持强劲增长。

水稻种子中主要的营养物质有淀粉、储藏蛋白、氨基酸和脂类物质等,其中绝大部分营养物质是淀粉和蛋白,它们重量之和占其籽粒干重的90%以上[12-13]。稻米中的淀粉包括直链淀粉和支链淀粉。两者结构组成及相对含量,对稻米诸多品质性状有重要的影响作用[14]。水稻种子中的储藏蛋白和氨基酸的含量及其相对均衡,是决定稻米营养品质最重要的因素[3, 15]。稻米中储藏蛋白含量还会影响其食用品质、加工品质和外观品质等[16]。储藏蛋白按照不同的分离提取方法和溶解度的区别可以分为谷蛋白、醇溶蛋白、球蛋白和清蛋白。它们为人类提供15%左右的蛋白质来源[12]。因此,水稻种子中各个营养物质组成及其相对含量对稻米品质性状(如食味品质、外观品质、营养品质、蒸煮品质和加工品质等)具有一定程度的影响作用[17-18]。因此,稻米中营养物质的组成及其相对含量与人类的健康密切相关。

近十年来,针对水稻种子中主要营养物质遗传方面的研究取得重要进展[6, 19-21]。分离并克隆了一大批基因,参与调控稻米中淀粉、储藏蛋白、脂类物质和维生素等主要营养物质的合成、代谢及其降解等过程[3, 19, 22-23]。水稻种子中主要营养物质与稻米品质性状息息相关。因此,阐明水稻种子内主要营养物质的合成、调控网络与遗传基础,对今后稻米品质的遗传改良具有重要理论意义和应用价值。本文重点综述了近期关于水稻种子内淀粉、储藏蛋白、氨基酸和脂质等主要营养物质合成及调控方面取得的新进展,并提出了针对水稻种子营养物质进行遗传改良的策略,为稻米品质的遗传改良和优质水稻新品种的选育提供参考。

1 水稻种子淀粉合成相关基因及其调控

水稻种子中的淀粉是人类膳食营养物质最主要的来源之一,淀粉占稻谷干重的80%~90%[15]。稻米中淀粉的结构及其各成分的相对含量与稻米的品质性状紧密相关,特别是对稻米的蒸煮与食味品质有重要的影响[9, 24]。水稻种子中淀粉的合成过程十分复杂,一系列与淀粉合成与代谢相关的基因、基因家族以及转录因子,在水稻淀粉的合成过程中发挥重要的作用[25-27],各种非生物胁迫对稻米淀粉的合成及其调控具有一定程度的影响[28]。近期,一批转录因子的深入研究结果表明,转录因子参与调控淀粉合成相关基因表达,进而影响淀粉的成分与结构。

水稻种子中淀粉的合成过程需要多步酶促反应,一系列与淀粉合成及其代谢相关的基因参与这一过程,且与淀粉合成相关的基因存在较多的等位基因,导致大量同工酶参与淀粉的合成及代谢(图1)[29-30]。目前,大量研究结果显示,参与淀粉合成的酶类有腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase, AGPase)、颗粒凝结型淀粉合成酶、可溶性淀粉合成酶、淀粉分支酶、淀粉去分支酶、淀粉磷酸化酶、淀粉异构酶、葡萄糖-6-磷酸转化酶和支链淀粉酶等[29, 31-33]。其中,AGPase是稻米淀粉合成关键性的一类酶,即产生活性葡萄糖供体ADP-葡萄糖途径中的限速酶[17, 34]。AGPase由6个基因编码,OsAGPS-1和OsAGPS-2(a、b)两个基因负责编码AGPase的小亚基,而OsAPL-1、OsAPL-2、OsAPL-3和OsAPL-4这4个基因共同编码AGPase的大亚基[35-36]。这6个基因的表达与否和AGPase的活性高低高度相关。当AGPase的活性较高时,能够促进水稻种子中淀粉的合成,粒重增加[37];反之,水稻种子中的总淀粉含量下降,胚乳变干瘪[32, 38]。因此,通过调节AGPase基因的表达情况,进而能够控制AGPase的活性,最终可以实现水稻种子中淀粉品质的改良。

水稻种子中负责淀粉合成另一类关键性的酶是淀粉合成酶(Starch synthetase, SS),它包括GBSS和SSS。其中GBSS-1和GBSS-II是GBSS的2种异构酶,GBSS-1是由Waxy基因(又称Wx基因)编码,在水稻中主要负责种子中长的直链淀粉的合成[39-40]。Wxa、Wxb、Wxin、Wxg3、Wxmq、Wxmp、Wxop和wx都是Waxy基因的等位基因,它们共同直接或者间接地控制淀粉合成酶的活性,最终决定水稻种子中直链淀粉的含量[17, 25, 41]。可溶性淀粉合成酶在水稻中存在SS-I、SS-II(a,b,c)、SS-III(a,b)和SS-IV (a,b)共8种异构酶,其中SS-I基因目前还没有发现对应的等位基因形式,SS-I酶在淀粉合成的短糖链的合成过程中发挥重要的作用[42-43]。SS-II(a,b,c)、SS-III(a,b)和SS-IV (a,b)基因在水稻淀粉的合成过程中,特别是在支链淀粉的糖链延伸的时候,它们编码的可溶性淀粉合成酶对ADP-葡萄糖的活性要高于GBSS,故有利于支链淀粉的合成与延伸。SS-I、SS- II a和SS-IIIa基因相互协同调控水稻种子中支链淀粉侧链的合成,SS-II(a,b,c)和SS-III(a,b)基因都是特异表达的基因,主要集中在水稻的胚乳或者叶片中特异表达[17,44]。因此,编码颗粒凝结型淀粉合成酶和可溶性淀粉合成酶及其对应的异构酶的基因,在水稻种子内直链淀粉和支链淀粉的合成及其代谢的过程中发挥关键性的作用。

淀粉分支酶(SBE)和淀粉去分支酶(DBE)在水稻种子淀粉合成代谢过程中,主要负责淀粉侧链的引入与不合适侧链的移除[45-46]。SBE-1,SBE-Ⅱ(a,b)和SBE-Ⅲ基因分别编码淀粉分支酶对应的4种异构酶形式,它们在淀粉葡聚糖的主链当中引入α-1.6-糖苷键,导致淀粉侧链的产生与延伸[47-48]。淀粉去分支酶包括异淀粉酶(ISA)和支链淀粉酶(PUL)这两类酶,其中异淀粉酶由ISA1、ISA2和ISA3 3个基因共同编码,ISA1和ISA2基因在水稻胚乳支链淀粉合成的过程中发挥极其重要的功能,这3个基因如果发生突变,将会导致水稻胚乳中不能合成淀粉[33]。ISA3基因对水稻种子中储藏淀粉的影响不大,主要负责种子中瞬时淀粉的代谢过程[49]。PUL基因的突变或者功能的丧失将导致水稻胚乳淀粉中短链分支淀粉的明显增加[50-51]。因此,在针对水稻种子中淀粉及其对应稻米品质遗传改良的过程中,可能需要根据不同的育种目标来筛选特定类型的等位基因,从而加快水稻新品种的选育。

目前,水稻种子中淀粉合成代谢相关单个基因的功能研究的比较透彻。多个淀粉合成相关基因共同控制种子中淀粉的代谢过程[13],并且还有大量淀粉合成相关转录因子参与到淀粉的合成。其中的一个基因发生突变,将会引起其他多个淀粉代谢相关基因及其转录的改变[52]。因此,水稻种子中淀粉合成相关基因及其转录组成一个极其复杂的调控网络,它们之间是如何协调表达调控的仍知之甚少。例如,Du1基因的表达产物能够调控Wx基因的剪接方式及其效率,最终直接影响水稻种子中直链淀粉的含量[53-54]。APETALA2/乙烯应答原件结合蛋白的一個转录因子RSR1(Rice Starch Regulator 1)[55],如果RSR1基因表达量增高,水稻种子中淀粉合成相关基因则受到抑制。另外一个转录因子OsbZIP58 能够直接与多个淀粉合成代谢相关基因(如SSSIIa、Wx、AGPL3、SBEI、SBEIIb 和 ISA2 等)的启动子结合,或者是与OsLOL1相互作用[23, 56],进而调控上述基因的表达,最终影响水稻种子中淀粉的积累、垩白性状的形成及其水稻种子的萌发。此外,还有一些转录因子也参入水稻种子直链淀粉或者支链淀粉的合成过程之中,如OsbZIP33、OsBP-5和FLOURY ENDOSPERM2等[56-58]。它们为稻米中淀粉含量及其成分的遗传改良提供新的策略。因此,今后需要进一步加强与水稻种子中淀粉合成相关基因及其转录因子协同调控方面的研究,逐步解析淀粉合成与降解这一复杂调控网络,进而加速稻米淀粉的改良进程。

色氨酸和苯丙氨酸作为人和动物体不能合成的必需氨基酸,对人和动物的生长发育和新陈代谢起着重要的作用[91]。色氨酸和苯丙氨酸同属于芳香族氨基酸,而芳香族氨基酸是水稻体内各种次生代谢物质的前体,它们与水稻的生长发育乃至稻米的品质都密切相关[92]。与增加稻米中赖氨酸和甲硫氨酸的含量相比,增加稻米中色氨酸和苯丙氨酸含量的研究工作相对较少[93]。在植物、细菌和真菌中,芳香族氨基酸同属于莽草酸代谢途径,并且具有一个共同的前体物质分支酸,多种对于反馈不敏感的邻氨基苯甲酸合成酶的α亚基相关基因已用于农作物游离色氨酸的遗传改良之中[92,94]。研究色氨酸有大量的突变体植株可以利用,但却很难找到苯丙氨酸含量发生显著改变的突变体,而在Mtr 1突变体植株中,其苯丙氨酸和色氨酸都存在[95-96]。在超量表达Mtr 1的植株中,Mtr 1编码的脱水酶ADT/PDT能够催化苯丙氨酸生物合成的最后一步反应[97],并且色氨酸和苯丙氨酸的含量都明显增加,暗示着邻氨基苯甲酸合成酶和ADT/PDT脱水酶在水稻种子合成色氨酸和苯丙氨酸的代谢途径中发挥关键性的调节作用。

半胱氨酸和甲硫氨酸是构成蛋白质重要的氨基酸,半胱氨酸的合成可以增强植物的抗氧化胁迫能力。它是植物将无机硫转化为有机硫的第一个含硫的有机物,其它绝大多数含硫代谢物都直接或间接来源于半胱氨酸,故半胱氨酸在植物硫代谢过程中处于中心位置[98-99]。丝氨酸酰基转移酶和3-磷酸甘油酸脱氢酶是半胱氨酸合成代谢过程中的2个限速酶,硫化氢与O-乙酰丝氨酸最后在半胱氨酸合成酶的催化下反应形成半胱氨酸[100],丝氨酸酰基转移酶和3-磷酸甘油酸脱氢酶严格调控半胱氨酸合成的催化反应,导致半胱氨酸的含量总体偏低。利用半胱氨酸合成酶和丝氨酸乙酰转移酶来合成半胱氨酸合成酶复合物,这将更加有效的调节半胱氨酸的生物合成[101]。蛋氨酸又称甲硫氨酸,是人和动物不能自身合成的一种必需氨基酸。甲硫氨酸不仅在机体内能够合成蛋白质,而且可以为机体提供具有活性甲基基团,还可以在体内转化为半胱氨酸[102-103]。甲硫氨酸的缺乏对人类和牲畜产业会产生多种危害,长期食用甲硫氨酸含量较低的食物将导致多种疾病的发生。例如将导致羊的羊毛减少,奶牛的牛奶产量降低,肉类品质下降,并且还会影响机体对其他相关氨基酸的吸收与利用[104]。故增加甲硫氨酸的含量一直是植物遗传学家和育种学家追求的重要目标之一。用带泛素的启动子驱动丝氨酸乙酰转移酶基因的表达,能够将水稻中的甲硫氨酸和半胱氨酸分别增加1.4倍和2.4倍[105],在转基因水稻植株中的异亮氨酸、亮氨酸和缬氨酸的含量也明显升高,同时表明甲硫氨酸在水稻体内可以转化为异亮氨酸。因此,利用基因工程的策略,能够显著提高水稻种子中必需氨基酸的含量,进而改善稻米的营养品质。

4 水稻种子中脂质合成及其调控

脂质包括脂肪和磷脂,是水稻种子中十分重要的营养物质,主要分布于水稻种子的胚和胚乳外面的糊粉层,在水稻种子中脂质与直链淀粉之间形成复合体[106-107]。目前,在水稻基因组中已定位到许多QTLs位点与脂质密切相关,但已经分离克隆相关的QTL基因还比较少见[108]。脂肪酸氧化酶(LOX)是导致稻米营养品质降低的重要因素,因为该酶能够催化脂质发生氧化反应[82]。水稻基因组中的LOX-1、LOX-2、LOX-3或者r9- LOX-1均编码脂肪酸氧化酶[109-111],深入研究发现LOX-2、LOX-3或者r9- LOX-1能够抑制脂肪酸发生降解反应,而LOX-3或者r9- LOX-1表达量降低后可以有效减少黄金稻米中β-胡萝卜素的降解过程。

极长链多不饱和脂肪酸和长链多不饱和脂肪酸是胆固醇和类花生酸合成以及维持细胞膜的运输必不可少的调节物质[112],它们是构成神经细胞的主要成分(如脑和视网膜组织)[113],进而影响人体的发育与健康。通过不同的途径(如ω-6代谢通路或ω-3代谢通路)都能够合成超长链多不饱和脂肪酸[114],故多种基因编码的蛋白或者酶类均有助于提高超长链多不饱和脂肪酸的水平。如FAD3、D5延长酶基因、ω-3脂肪酸去饱和酶基因、Δ8-去饱和酶基因和Δ5-去饱和酶基因等[115-118]。其中FAD3蛋白能够催化种子中α-亚麻酸的合成,进而可以用来提高水稻种子中α-亚麻酸的含量。而α-亚麻酸是长链ω3-不饱和脂肪酸重要的前体物质,在水稻种子中α-亚麻酸的含量较低。如果超量表达FAD3基因,则能够大幅度提高水稻种子中α-亚麻酸的含量[119]。在水稻中,目前已经克隆了3个FAD3基因。这些基因在水稻种子中是如何发挥功能来增加α-亚麻酸浓度的,尚不清楚其中的调控机制。

油质蛋白在植物种子的油体中含量丰富,可以用来调节种子脂肪的含量。利用水稻胚乳特异表达的启动子驱动大豆油体蛋白基因的超量表达,使转基因水稻种子中的脂肪含量提高36%以上,而总的甘油三酯脂肪酸的含量并没有明显的变化[120]。稻米油中含有大量的抗氧化的物质,如谷维素、卵磷脂、生育酚和生育三烯酚等。它们对于人类健康十分有益[121]。利用水稻胚特异表达的启动子REG驱动GmFAD3-1 和OsFAD3基因的表达,将会导致水稻胚和糊粉层等部位的α-亚麻酸含量显著增加,而增加的α-亚麻酸整好位于甘油三酯的sn-2位置,很容易被人体消化吸收[122]。前期研究发现,OsLTP36在水稻中编码一个脂质转运蛋白的基因。若OsLTP36基因下调表达,会严重影响水稻种子的发育,并且会显著降低水稻种子中的脂质含量[123-124]。目前,尽管针对脂质代谢的研究已经取得重要进展,水稻中与脂质代谢相关的基因也有一些被分离克隆,但是关于水稻种子中脂质代谢途径是如何精细调控的还有待深入研究。

5 水稻种子主要营养物质改良面临的挑战与展望

水稻种子主要营养物质包括淀粉、储藏蛋白、脂类物质和氨基酸等。通过遗传工程或代谢工程来改良这些主要的营养物质,需要将目的基因在合适的启动子驱动下产生最佳的功能蛋白或酶类[125],从而促进水稻种子中大量和微量营养物质的合成,并不影响其他代谢途径和植株正常的生长发育[126]。目前,有些营养物质在水稻体内生物合成途径及其调控的机制尚不清楚,进而限制了遺传工程或者代谢工程在水稻遗传改良中的应用。利用多组学(蛋白质组学、代谢组学、转录组学等)的策略,针对水稻种子中的营养物质已做了大量的研究,并取得重要进展。如在利用基因工程改良的水稻中产生一些不良的过敏性蛋白质可以通过蛋白质组学进行筛选[127]。代谢组学能够将水稻体内的多种代谢物进行精准定量,并鉴定与水稻非生物胁迫抗性和营养饥饿相关的代谢产物标志物[128-129]。因此,有助于促进种子中有益营养物质的积累,对提高人类的健康水平具有重要的意义。

目前,氣相色谱-质谱联用技术、液相色谱-质谱联用技术、毛细管电泳-质谱联用技术、X射线荧光光谱技术、X射线能谱分析技术、扫描电镜和透射电镜技术,以及近年来单细胞活体成像等技术的迅速发展[1],为深入研究水稻种子中主要营养物质的合成与积累提供新的技术方案。但是,针对多基因同时作用于生物合成途径过程中的多个步骤,或者针对多个合成途径的多个性状,在水稻种子中同时进行遗传改良依然具有挑战性。尽管已经揭示了很多与水稻种子营养物质合成相关基因的功能,但是功能基因往往还受其他基因直接或者间接的调控[92],导致基因存在一因多效的现象比较普遍。因此,在水稻种子营养物质遗传育种中能够大范围应用的功能基因还比较少见,且这些功能基因中往往还需要发育特异性、组织特异性或诱导型表达的启动子来驱动其表达,才会对水稻种子中营养物质的合成与积累有利。

长期以来,人们能否接受营养强化型的稻米及其食品一直是全球讨论的热点问题。尽管迄今为止并没有观察到转基因食品对人类健康和生态环境产生不利的影响,但是营养强化型的稻米及其食品商业化生产应用还需时日。近十几年来,基于序列特异性核酸酶的基因组编辑技术发展极为迅速,已成为水稻遗传改良最有效的新工具之一[130-131]。特别是CRISPR/Cas9技术具有操作简单、成本低、诱导效率高以及能够获得可稳定遗传的后代基因组编辑植株。CRISPR/Cas9技术可以实现针对基因组内不同位置的基因同时进行修饰与编辑[131-132],故已经广泛应用于水稻营养物质合成代谢相关的研究之中[133-134]。因此,以CRISPR/Cas9技术为代表的基因组编辑技术将在水稻种子营养物质遗传改良及其新品种培育的进程中发挥着越来越重要的作用,并会大大加快稻米品质的遗传改良。

参考文献

[1] Kusano M,Yang Z,Okazaki Y,et al. Using metabolomic approaches to explore chemical diversity in rice[J]. Molecular Plant,2015,8(1):58-67.

[2] Tian Z,Qian Q,Liu Q,et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(51):21 760-2 1765.

[3] Peng B,Kong H L,Li Y B,et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications,2014,5:4847.

[4] 程式华. 中国超级稻育种技术创新与应用[J]. 中国农业科学,2016,49(2):205-206.

[5] Yun P,Zhu Y,Wu B,et al. Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice[J]. Molecular Breeding,2016,36(12):162.

[6] Bhullar N K,Gruissem W. Nutritional enhancement of rice for human health: the contribution of biotechnology[J]. Biotechnology Advances,2013,31(1):50.

[7] Peng B,Wang L,Fan C,et al. Comparative mapping of chalkiness components in rice using five populations across two environments[J]. BMC Genetics,2014,15:49.

[8] Chen J,Zhang J,Liu H,et al. Retraction notice to: molecular strategies in manipulation of the starch synthesis pathway for improving storage starch content in plants[J]. Plant Physiology & Biochemistry,2012,61(6):1-8.

[9] 彭 波,孙艳芳,李琪瑞,等. 水稻垩白性状的遗传研究进展[J]. 信阳师范学院学报(自然科学版),2016,29(2):304-312.

[10] Daygon V D,Prakash S,Calingacion M,et al. Understanding the jasmine phenotype of rice through metabolite profiling and sensory evaluation[J]. Metabolomics,2016,12(4):1-15.

[11] Fitzgerald M A,Mccouch S R,Hall R D. Not just a grain of rice: the quest for quality[J]. Trends in Plant Science,2009,14(3):133-139.

[12] He Y,Wang S,Ding Y. Identification of novel glutelin subunits and a comparison of glutelin composition between japonica and indica rice (Oryza sativa L.)[J]. Journal of Cereal Science,2013,57(3):362-371.

[13] 彭 波,龐瑞华,孙艳芳,等. 水稻种子淀粉合成及其调控研究[J]. 江西农业学报,2016,28(6):15-21.

[14] Hyun D Y,Lee G A,Kang M J,et al. Development of low-temperature germinability markers for evaluation of rice (Oryza sativa L.) germplasm[J]. Molecular Breeding,2015,35(4):1-16.

[15] Duan M,Sun S S. Profiling the expression of genes controlling rice grain quality[J]. Plant Molecular Biology,2005,59(1):165-178.

[16] Cao Z Z,Zhang Q F,Wei K S,et al. Response of some key enzyme activities involved in nitrogen metabolism to high temperature at filling stage and its relation to storage protein accu-mulation in rice grain[J]. Acta Agronomica Sinica, 2012,38(1): 99-106.

[17] Yang F,Chen Y,Tong C,et al. Association mapping of starch physicochemical properties with starch synthesis-related gene markers in non-waxy rice (Oryza sativa L.)[J]. Molecular Breeding,2014,34(4):1 747-1 763.

[18] Jiang L,Yu X,Qi X,et al. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose[J]. Transgenic Research,2013,22(6):1 133.

[19] Zhou W,Wang X,Zhou D,et al. Overexpression of the 16-kDa α-amylase/trypsin inhibitor RAG2 improves grain yield and quality of rice[J]. Plant Biotechnology Journal,2017,15(5):568.

[20] Wilson S A,Roberts S C. Metabolic engineering approaches for production of biochemicals in food and medicinal plants[J]. Current Opinion in Biotechnology,2014,26(7):174.

[21] Hansson S O,Joelsson K. Crop biotechnology for the environment[J]. Journal of Agricultural & Environmental Ethics,2013,26(4):759-770.

[22] Yu H,Wang T. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms[J]. Frontiers in Plant Science,2016,7:707.

[23] Wang J C,Xu H,Zhu Y,et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany,2013,64(11):3 453-3 466.

[24] Bao J,Jin L,Xiao P,et al. Starch physicochemical properties and their associations with microsatellite alleles of starch-synthesizing genes in a rice RIL population[J]. Journal of Agricultural & Food Chemistry,2008,56(5):1 589-1 594.

[25] Cai H,Chen Y,Zhang M,et al. A novel gRAS transcription factor, zmGRAS20, regulates starch biosynthesis in rice endosperm[J]. Physiology & Molecular Biology of Plants,2017,23(1):143-154.

[26] Pfister B,Zeeman S C. Formation of starch in plant cells[J]. Cellular & Molecular Life Sciences,2016,73(14):2 781-2 807.

[27] Yu H,Wang T. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms[J]. Frontiers in Plant Science,2016,7:707.

[28] Fujita N. Starch biosynthesis in rice endosperm[J]. Agri-bioscience Monographs,2014,4(1):1-18.

[29] Miao H,Sun P,Liu Q,et al. Soluble starch synthase III-1 in amylopectin metabolism of banana fruit: characterization, expression, enzyme activity, and functional analyses[J]. Frontiers in Plant Science,2017,8:454.

[30] Thitisaksakul M,Jiménez R C,Arias M C,et al. Effects of environmental factors on cereal starch biosynthesis and composition[J]. Journal of Cereal Science,2012,56(1):67-80.

[31] Li H,Prakash S,Nicholson T M,et al. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains[J]. Food Chemistry,2016,196:702-711.

[32] Pandey M K,Rani N S,Madhav M S,et al. Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.)[J]. Biotechnology Advances,2012,30(6):1 697-1 706.

[33] 金正勛,同拉嘎,李 丹,等. 灌浆成熟期氮素营养对水稻增产及淀粉品质的影响[J]. 东北农业大学学报,2017,48(4):1-6.

[34] Lee S K,Hwang S K,Han M,et al. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.)[J]. Plant Molecular Biology,2007,65(4):531-546.

[35] Tanamachi K,Miyazaki M,Matsuo K,et al. Differential responses to high temperature during maturation in heat-stress-tolerant cultivars of Japonica rice[J]. Plant Production Science,2016,19(2):1-9.

[36] Ohdan T,Francisco P J T,Hirose T,et al. Expression profiling of genes involved in starch synthesis in sink and source organs of rice[J]. Journal of Experimental Botany,2005,56(422):3 229-3 244.

[37] Volkert K,Debast S,Voll L M,et al. Loss of the two major leaf isoforms of sucrose-phosphate synthase in arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis[J]. Journal of Experimental Botany,2014,65(18):5 217-5 229.

[38] Tuncel A,Kawaguchi J,Ihara Y,et al. The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme[J]. Plant & Cell Physiology,2014,55(6):1 169-1 183.

[39] Luo Y,Zakaria S,Basyah B,et al. Marker-assisted breeding of Indonesia local rice variety siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight[J]. Rice,2014,7(1):1-8.

[40] Wang Z,Zheng F,Shen G,et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene[J]. Plant Journal for Cell & Molecular Biology,1995,7(4):613-622.

[41] Zhang C,Zhu L,Shao K,et al. Toward underlying reasons for rice starches having low viscosity and high amylose: physiochemical and structural characteristics[J]. Journal of the Science of Food & Agriculture,2013,93(7):1 543-1 551.

[42] Fu J,Xu Y,Chen L,et al. Changes in enzyme activities involved in starch synthesis and hormone concentrations in superior and inferior spikelets and their association with grain filling of super rice[J]. Rice Science,2013,20(2):120-128.

[43] Kharabian M A,Waters D L,Reinke R F,et al. Discovery of polymorphisms in starch-related genes in rice germplasm by amplification of pooled DNA and deeply parallel sequencing [J]. Plant Biotechnology Journal,2011,9(9):1 074-1 085

[44] Zhang G,Cheng Z,Zhang X,et al. Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch[J]. Genome,2011,54(6):448-459.

[45] Kamiya K. Theoretical study on the reaction mechanism of adenylate kinase by QM/MM method [J]. Plant Journal,2017,61(6):1 067-1 091.

[46] Stitt M,Zeeman S C. Starch turnover: pathways, regulation and role in growth[J]. Current Opinion in Plant Biology,2012,15(3):282-292.

[47] Li Z,Cheng Y,Cui J,et al. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium[J]. BMC Genomics,2015,16(1):206.

[48] Nakamura Y,Utsumi Y,Sawada T,et al. Characterization of the reactions of starch branching enzymes from rice endosperm[J]. Plant and Cell Physiology,2010,51(50):776-794.

[49] Silver D M,K?tting O,Moorhead G B G. Phosphoglucan phosphatase function sheds light on starch degradation[J]. Trends in Plant Science,2014,19(7):471-478.

[50] Kahar U M,Ng C L,Chan K G,et al. Characterization of a type I pullulanase from anoxybacillus, sp. SK3-4 reveals an unusual substrate hydrolysis[J]. Applied Microbiology & Biotechnology,2016,100(14):6 291-6 307.

[51] Fujita N,Toyosawa Y,Utsumi Y,et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm[J]. Journal of Experimental Botany,2009,60(3):1 009-1 023.

[52] Sun W,Zhou Q,Yao Y,et al. Identification of genomic regions and the isoamylase gene for reduced grain chalkiness in rice[J]. PLoS One,2015,10(3):e0122013.

[53] Takemoto-Kuno Y,Mitsueda H,Suzuki K,et al. qAC2, a novel QTL that interacts with Wx, and controls the low amylose content in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics,2015,128(4):563-573.

[54] Zeng D,Yan M,Wang Y,et al. Du1, encoding a novel Prp1 protein regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.)[J]. Plant Molecular Biology,2007,65:501-509.

[55] Fu F F,Xue H W. Coexpression analysis identifies Rice Starch Regulator 1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiology,2010,154(2):927-938.

[56] Wu J,Zhu C, Pang J, et al. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa[J]. Plant Journal for Cell & Molecular Biology,2015, 80(6):1 118-1 130.

[57] Chen H,Dai X J,Gu Z Y. OsbZIP33 is an ABA-dependent enhancer of drought tolerance in rice[J]. Crop Science,2015, 55(4):1673.

[58] Bojjireddy N,Guzmanhernandez M L,Reinhard N R,et al. EFR3s are palmitoylated plasma membrane proteins that control responsiveness to G protein-coupled receptors[J]. Journal of Cell Science, 2015, 128(1): 118-128.

[59] Juliano B O. Physico-Chemical properties of starch and protein and relation to grain quality and nutritional value of rice[J]. IRRI Rice Breeding,1972: 389-405.

[60] Raubenheimer D, Simpson S J. Nutritional ecology and human health[J]. Annual Review of Nutrition,2016,36(1): 603-626.

[61] She K C, Kusano H , Koizumi K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain sizeand starch quality[J]. Plant Cell, 22:3 280-3 294.

[62] Ren Y, Wang Y, Liu F, et al. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm[J]. Plant Cell, 2014, 26(1):410-425.

[63] Kawakatsu T, Takaiwa F. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains[J]. Plant Biotechnology Journal, 2010, 8(9): 939-953.

[64] 彭 波, 孫艳芳, 庞瑞华, 等. 水稻种子蛋白质含量遗传研究进展[J]. 南方农业学报,2017,48(3):401-407.

[65] Yoon U H, Lee J, Hahn J H, et al. Structural and expression analysis of prolamin genes in Oryza sativa L[J]. Plant Biotechnology Reports, 2012, 6(3):251-262.

[66] Adachi T, Izumi H, Yamada T, et al. Gene structure and expression of rice seed allergenic proteins belonging to the alpha-amylase/trypsin inhibitor family[J]. Plant Molecular Biology,1993,21(2):239-248.

[67] Nakase M, Hotta H, Adachi T, et al. Cloning of the rice seed alpha-globulin-encoding gene: sequence similarity of the 5'-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein[J]. Gene,1996, 170(2):223-226.

[68] Wang Y,Ren Y,Xi L, et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells[J]. Plant Journal,2010,64(5):812-824.

[69] Kawakatsu T, Yamamoto M P, Touno S M, et al. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J]. Plant Journal,2009,59(6):908-920.

[70] Qu L Q, Xing Y P, Liu W X, et al. Expression pattern and activity of six glutelin gene promoters in transgenic rice[J]. Journal of Experimental Botany,2008,59(9):2 417-2 424.

[71] Bundo M,Montesinos L,Izquierdo E, et al. Production of cecropin a antimicrobial peptide in rice seed endosperm[J]. BMC Plant Biology,2014,14(1):102.

[72] Lou J,Liang C,Yue G,et al. QTL mapping of grain quality traits in rice[J]. Journal of Cereal Science,2009,50(2): 145-151.

[73] 彭 波,孙艳芳,王 灿,等. 近红外光谱技术在主要粮食作物品质研究中的应用[J]. 信阳师范学院学报(自然科学版), 2017, 30(3): 509-516.

[74] Ye G, Liang S, Wan J. QTL mapping of protein content in rice using single chromosome segment substitution lines[J]. Theoretical and Applied Genetics,2010,121(4):741-750.

[75] Liu X L,Wan X Y, Ma X D,et al. Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content,and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments[J]. Genome,2011,54(10):64-80.

[76] Tan Y F, Sun M, Xing Y Z, et al. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid[J]. Theoretical and Applied Genetics,2001, 103(7):1 037-1 045.

[92] Birla D S, Malik K, Sainger M, et al. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.)[J]. Critical Reviews in Food Science and Nutrition,2017,57(11):2 455-2 481.

[93] Zhu X, Galili G. Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds[J]. Plant Cell,2003,15(4):845-853.

[94] Wakasa K,Hasegawa H,Nemoto H,et al. High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile[J]. Journal of Experimental Botany,2006,57(12):3 069-3 078.

[95] Tan H,Liang W,Hu J,et al. MTR1, Encodes a secretory fasciclin glycoprotein required for male reproductive development in rice[J]. Developmental Cell,2012,22(6):1 127-1 137.

[96] Wakasa K,Widholm J M. A 5-methyltryptophan resistant rice mutant,MTR1,selected in tissue culture[J]. Theoretical and Applied Genetics,1987,74(1):49-54.

[97] Wakasa K,Ishihara A. Metabolic engineering of the tryptophan and phenylalanine biosynthetic pathways in rice[J]. Plant Biotechnology,2010,26(5):523-533.

[98] Schmidt F,De Bona F D,Monteiro F A. Sulfur limitation increases nitrate and amino acid pools in tropical forages[J]. Crop and Pasture Science,2013,64(1):1-5.

[99] Kopriva S,Mugford S G,Matthewman C,et al. Plant sulfate assimilation genes: redundancy versus specialization[J]. Plant Cell Reports,2009,28(12):1 769-1 780.

[100] Hooghe P,Escamez S,Trouverie J,et al. Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms[J]. BMC Plant Biology,2013,13(1):23.

[101] Sílvia T, Markus W, Beier M P, et al. Characterization of the serine acetyltransferase gene family of vitis viniferauncovers differences in regulation of OAS synthesis in woody plants[J]. Frontiers in Plant Science, 2015, 6:74.

[102] Darabi M,Izadidarbandi A,Masoudinejad A,et al. Erratum to:bioinformatics study of the 3-hydroxy-3-methylglotaryl-coenzyme a reductase (HMGR) gene in gramineae[J]. Molecular Biology Reports,2012, 39(9):8 925-8 935.

[103] Ying G E, Bai X, Cai H, et al. Genetic engineering for enhancement of methionine in legume plants[J]. Journal of Northeast Agricultural University, 2009, 40(2):127-133.

[104] Shen Y,Jia Q L,Liu M Z,et al. Genome-wide characterization and phylogenetic and expression analyses of the caleosin gene family in soybean, common bean and barrel medic[J]. Archives of Biological Sciences,2016,68(3):575-585.

[105] Nguyen H C,Hoefgen R,Hesse H. Improving the nutritive value of rice seeds:Elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase[J]. Journal of Experimental Botany,2012, 63(16):5 991-6 001.

[106] Xu H, Wei Y, Zhu Y, et al. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity[J]. Plant Biotechnology Journal,2015,13(4):526-539.

[107] Goufo P, Kratz S, Rosa E A S, et al. Effect of elevated carbon dioxide concentration on rice quality: nutritive value, color, milling,cooking,and eating qualities[J]. Cereal Chemistry,2014,91:513-521.

[108] Shao Y,Bao J. Polyphenols in whole rice grain: genetic diversity and health benefits[J]. Food Chemistry,2015,180:86-97.

[109] Lado J,Zacarías L,Rodrigo M J,Regulation of carotenoid biosynthesis during fruit development[J]. Subcellular Biochemistry, 2016,79:161-198.

[110] Huang J,Cai M, Long Q,et al. OsLOX2,a rice type I lipoxygenase, confers opposite effects on seed germination and longevity[J]. Transgenic Research,2014,23(4):643-655.

[111] Gayen D,Ali N,Sarkar S N,et al. Down-regulation of lipoxygenase gene reduces degradation of carotenoids of golden rice during storage[J]. Planta,2015,242(1):353-363.

[112] Wysoczański T, Soko?awysoczańska E,P?kala J, et al. Omega-3 fatty acids and their role in central nervous system-a review[J]. Current Medicinal Chemistry,2016,23(8):816-831.

[113] Puaschitz N G,Strand E,Dierkes J,et al. Dietary intake of saturated fat is not associated with risk of coronary events or mortality in patients with established coronary artery disease[J]. Journal of Nutrition, 2015,145(2): 299-305.

[114] Sun Q,Jiang L, Qin Z,et al. Characterization of three novel desaturases involved in the delta-6 desaturation pathways for polyunsaturated fatty acid biosynthesis from phytophthora infestans[J]. Applied Microbiology & Biotechnology,2013, 97(17):7 689-7 697.

[115] Liu H L,Yin Z J,Xiao L,et al. Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed[J]. Journal of Experimental Botany,2012,63(8):3 279-3 287.

[116] Chodok P,Cove D J,Quatrano R S,et al. Metabolic engineering and oil supplementation of physcomitrella patens for activation of C22 polyunsaturated fatty acid production[J]. Journal of the American Oil Chemists Society,2012,89(3): 465-476.

[117] Chen Y,Meesapyodsuk D,Qiu X. Transgenic production of omega-3 very long chain polyunsaturated fatty acids in plants: accomplishment and challenge[J]. Biocatalysis and Agricultural Biotechnology,2014,3(1):38-43.

[118] Cheah T W,Ismail I,Sidek N M,et al. Biosynthesis of very long polyunsaturated omega-3 and omega-6 fatty acids in transgenic Japonica rice (Oryza sativa L)[J]. Australian Journal of Crop Science,2013,7(9):1 227-1 234.

[119] Bhattacharya S, Chattopadhyaya B, Koduru L, et al. Heterologous expression of brassica juncea, microsomal ω-3 desaturase gene (BjFad3) improves the nutritionally desirable ω-6: ω-3 fatty acid ratio in rice bran oil[J]. Plant Cell Tissue and Organ Culture,2014,119(1):117-129.

[120] Liu L,Waters D L,Rose T J, et al. Phospholipids in rice: significance in grain quality and health benefits: a review[J]. Food Chemistry,2013,139(1):1 133-1 145.

[121] Choi N,Lee J S,Kwak J,et al. Production of biodiesel from acid oil via a two-step enzymatic transesterification[J]. Journal of Oleo Science,2016,65(11):913-921.

[122] Yin Z J,Liu H L,Dong X B,et al. Increasing α-linolenic acid content in rice bran by embryo-specific expression of ω3/Δ15-desaturase gene[J]. Molecular Breeding,2014,33(4):987-996.

[123] Bogdanov I V,Shenkarev Z O,Finkina E I,et al. A novel lipid transfer protein from the pea pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties[J]. BMC Plant Biology,2016,16(1):107.

[124] Wang X,Zhou W,Lu Z,et al. A lipid transfer protein,OsLTPL36,is essential for seed development and seed quality in rice[J]. Plant Science,2015,239:200-208.

[125] Biselli C,Bagnaresi P,Cavalluzzo D, et al. Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits[J]. BMC Genomics,2015,16:1 091.

[126] Farré G,Blancquaert D,Capell T,et al. Engineering complex metabolic pathways in plants[J]. Annual Review of Plant Biology,2014,65(1):187-223.

[127] Zhang Z, Zhao H, Tang J,et al. A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) Inferior spikelets[J]. PLoS One,2014,9:e89140.

[128] Degenkolbe T,Do P T, Kopka J,et al. Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling[J]. PLoS One,2013,8:e63637.

[129] Maruyama K,Yamaguchi-Shinozaki K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones,and gene transcripts[J]. Plant Physiology, 2014,164(4):1 759-1 771.

[130] Samanta M K,Dey A,Gayen S. CRISPR/Cas9: an advanced tool for editing plant genomes[J]. Transgenic Research,2016, 25(5):561-573.

[131] Liu H,Ding Y D,Zhou Y Q,et al. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants[J]. Molecular Plant,2017,10(3):530-532.

[132] Xu R F,Wei P C,Yang J B. Use of CRISPR/Cas genome editing technology for targeted mutagenesis in rice[J]. Methods in Molecular Biology,2017,1498:33-40.

[133] Li X,Zhou W,Ren Y,et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9- mediated genome editing[J]. Journal of Genetics and Genomics,2017,44(3):175-178.

[134] Sun Y,Jiao G,Liu Z,et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science,2017,8:298.

猜你喜欢
合成营养物质调控
楼市调控是否放松
茶树吸收营养物质的特性
水是刚断奶仔猪最重要的营养物质
如何调控困意
强化国土资源管理,调控土地交易行为
试分析高中生物三大营养物质的代谢关系
综合化学实验设计:RGO/MnO复合材料的合成及其电化学性能考察
八种氟喹诺酮类药物人工抗原的合成及鉴定
满文单词合成系统的设计
环保新型缓蚀剂发展状况与展望