东天山马庄山金矿区赋矿石英斑岩的岩石成因和构造背景:元素地球化学、U-Pb年代学和Sr-Nd-Hf同位素约束*

2019-06-04 02:12王琦崧张静王肃于立栋肖兵
岩石学报 2019年5期
关键词:东天山图解斑岩

王琦崧 张静** 王肃 于立栋 肖兵

1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 1000832. 中国科学院广州地球化学研究所,中国科学院矿物学与成矿学重点实验室,广州 5106401.

中国天山位于中亚造山带西南缘,西伯利亚和华北塔里木板块之间,是世界上最大的显生宙增生造山带(engöretal., 1993; Jahnetal., 2000; Windleyetal., 2007; Kröneretal., 2014; Zhangetal., 2016c)。传统上,以东经88°线为界将其进一步分为西天山、东天山造山带,后者向东延伸至北山造山带(Xiaoetal., 2004),东天山造山带是中亚重要的多金属矿产省(Pirajnoetal., 1997, 2011; Chenetal., 2012; Deng and Wang, 2016; Wangetal., 2019)。马庄山矿床位于新疆哈密市东南约250km,大地构造上属于东天山造山带的东缘,是区内的浅成低温热液矿床的典型矿床之一,虽然自1982年发现以来,不同研究者对该矿床开展了地质特征、地球化学及矿床成因等方面的研究(靖军和徐斌, 1997; 李华芹等, 1999; Chenetal., 2011; 李新俊和刘伟, 2002; 陈永彬等, 2003; Chenetal., 2012),但是对于赋矿围岩——石英斑岩的研究极其薄弱,仅李华芹等(1999)采用Rb-Sr法测得石英斑岩年龄为301±21Ma和303±26Ma,由于测试精度所限,仅将成岩年龄宽泛的限定在晚于早石炭世。这不仅严重制约了研究区岩浆活动与区域构造演化、深部过程的深入探讨,而且制约了对赋存在其中的矿床的形成构造背景、成矿过程的准确厘定。因此,本文选取东天山东段马庄山地区的石英斑岩为研究对象,通过全岩元素地球化学、锆石U-Pb年代学和Sr-Nd-Hf同位素系统研究分析,精确限定岩体的年龄,探讨了岩石成因、源区特征和构造环境,为进一步研究东天山造山带东缘的构造岩浆演化提供了新的证据。

1 区域地质背景

中国天山是中亚造山带的重要组成部分,在古生代欧亚大陆的构建中起到了至关重要的作用(图1a;engöretal., 1993; Gaoetal., 1998; Windleyetal., 2007; Kröneretal., 2014; Klemdetal., 2015)。通常将东天山划分为三个主要的构造-岩石单元,自北向南依次为:博格达-哈尔里克构造带、觉罗塔格构造带和中天山地块,它们分别被卡拉麦里和阿奇克库都克分隔(图1b)。

博格达-哈尔里克构造带由奥陶纪-石炭纪火山岩、花岗岩和镁铁质-超镁铁质杂岩组成(顾连兴等, 2001)。从北到南,觉罗塔格构造带又分为大南湖-头苏泉岛弧、康古尔-黄山韧性剪切带和阿奇山-雅满苏带三个次级构造单元(图1c; Hanetal., 2006; Shenetal., 2014)。大南湖-头苏泉弧盆体系由奥陶系至泥盆系火山沉积岩组成。带内发育斑岩铜矿床(图1c,如土屋和延东;Hanetal., 2006; Xiaoetal., 2017; Wangetal., 2018a)、VMS铜锌矿床(如卡拉塔格和红海-黄土坡矿床;Dengetal., 2016; 李遥等, 2018)。康古尔-黄山韧性剪切带由石炭纪火山沉积岩组成,并发育有多个以剪切带为主体的金矿床(如康古尔;Wangetal., 2004)和斑岩矿床(如白山和东戈壁;Zhangetal., 2016a; Wangetal., 2016, 2018b)。阿奇山-雅满苏带由石炭-二叠纪火山沉积岩组成,带内发育有多个铁矿床(如雅满苏和百灵山;Houetal., 2014; Zhangetal., 2018; Hanetal., 2019)。中天山北侧为阿奇克库都克断裂,南侧为星星峡断裂(图1c)。该地体被认为是一个由中泥盆世-上石炭世钙碱性玄武岩安山岩和火山碎屑岩覆盖的前寒武纪基底组成的复合型火山弧(图1c, Xiaoetal., 2004)。中天山地体内已发现天宇和白石泉Cu-Ni矿床(Tangetal., 2012; Maoetal., 2018)、小白石头W (-Mo)矽卡岩矿床(Dengetal., 2017)和马庄山金矿(李华芹等, 1999)等。

图1 北疆地区构造示意图(a, 据engör et al., 1993修改)、新疆北部大地构造单元及东天山区域构造位置图(b, 据Chen et al., 2012修改)和东天山构造与矿产地质简图(c, 据Deng et al., 2017修改)Fig.1 Schematic tectonic map showing the location of North Xinjiang (a, after engör et al., 1993), sketch showing the distribution of major tectonic units in North Xinjiang (b, after Chen et al., 2012) and geologic map showing the distribution of major ore deposits in the Eastern Tianshan Orogen (c, after Deng et al., 2017)

2 矿区地质及石英斑岩特征

2.1 矿区地质

马庄山金矿床位于中天山地体东侧的明水-双井子-南金山火山岩盆地内(图1c),矿区内主要出露下石炭统白山组中性-长英质火山岩。根据岩性特征,白山组可进一步分为3个层位,下段主要岩性为砂岩、板岩、安山岩、玄武岩夹凝灰岩、火山角砾岩、灰岩和大理岩;中段为安山岩、英安质角砾岩、凝灰岩、流纹岩以及板岩;上段为(生物)灰岩、安山岩和英安质火山碎屑岩(Chenetal., 2012)。白山组地层发生褶皱,在马庄山矿区呈单斜构造产出,倾向40°,倾角35°~50°(图2; 李华芹等, 1999; Chenetal., 2012)。

图2 马庄山金矿床地质图(a, 据李新俊和刘伟, 2002修改)及第19勘探线剖面图(b, 据江思宏, 2004修改)Fig.2 Regional geological map of the Mazhuangshan gold ore belt (a, modified after Li and Liu, 2002) and cross-section of exploration line No.19 of the Mazhuangshan gold deposit (b, modified after Jiang, 2004)

图3 马庄山地区石英斑岩野外及镜下照片(a、b)石英斑岩的野外露头;(c)灰白色石英斑岩;(d)石英斑岩的石英斑晶和钾长石斑晶Fig.3 Field and petrographic photos of Mazhuangshan area(a, b) field photos of the quartz porphyry; (c) whrite quartz porphyry; (d) quartz and K-feldspar phenocrysts in quartz porphyry

矿区内以石英斑岩为代表的次火山岩广布,是马庄山已探明金矿体的主要赋矿围岩。石英斑岩总体上呈北东走向,倾角为30°~70°,沿矿区中部断裂、英安质凝灰岩和安山岩侵入,与下石炭统白山组火山岩近于平行呈带状产出,在矿区及外围不连续出露(图3a)。目前矿区内揭露石英斑岩面积约为1.2km2,总体上北东端膨大,西南端狭窄,最宽约有1000m;石英斑岩深部延深较大,目前钻孔揭露尚未见底(图2b)。前人利用全岩的Rb-Sr定年将其侵入时间宽泛的限定在303±26Ma和301±21Ma(李华芹等, 1999)。此外,在矿区深部或者外围,可见花岗岩、(花岗)闪长岩、辉绿岩等侵入岩。辉绿岩常表现为极强的片理化,侵入于石英斑岩体内;花岗岩、(花岗)闪长岩与石英斑岩体之间的关系尚不明确。

断裂构造主要呈NE、NW、EW和近SN向,其中NW、EW和近SN向断裂为该矿床的主要控矿构造;矿体赋存于次级NW向张性断裂带中,多呈脉状、囊状与透镜体状(图2),绝大多数金矿体均赋存于石英斑岩体内,金品位为0.1~23.3g/t(武警黄金八支队与新疆哈密金矿, 2005[注]武警黄金八支队与新疆哈密金矿. 2005. 新疆哈密市马庄山金矿床资源潜力调查报告)。

2.2 石英斑岩特征及样品概况

石英斑岩呈灰白色,具斑状结构,局部发育片理化(图3b)。斑晶主要为石英,多呈自形-半自形粒状,粒径0.2~0.25mm,含量10%~30%,石英斑晶见有熔蚀、挤压破碎和波状消光现象;也可见正长石斑晶,粒径0.5~1mm,含量~5%,具卡斯巴双晶,部分已发生绢云母化、高岭土化蚀变(图3c, d);偶见斜长石斑晶,呈半自形宽板状,粒径~0.01mm,可见聚片双晶,测得其牌号介于20%~26%之间,属于更长石。

石英斑岩中的基质可占75%~90%,由长英质微晶和少量暗色矿物构成,普遍发生硅化、绢云母化、黄铁矿化;基质中石英无色透明,大多为他形粒状,粒径一般小于0.02mm。暗色矿物为黑云母或角闪石,且大多蚀变为绢云母、绿泥石和绿帘石,沿矿物解理析出有黄铁矿、黄铜矿、闪锌矿等金属矿物。

本次研究样品主要采自马庄山金矿区及外围的石英斑岩,取样过程中,尽可能采集远离矿体未矿化蚀变的岩石。在对所有采集样品进行岩相学观察的基础上,筛选6件进行全岩成分分析,1件进行定年,3件进行同位素测试。

3 测试方法

研究样品碎至200目后送到广州澳实分析检测有限公司进行常微量及稀土元素含量的测定。常量元素的分析方法为ME-XRF06,采用X-荧光光谱仪进行测试,型号为PANalytical AXIOS。实验步骤:样品在煅烧后加入Li2B4O7-LiBO2助熔物,混合均匀后,放置于自动熔炼仪中,使其在高温下熔融;将倒出的熔融物制成玻璃片后使用光谱仪进行分析。常量元素的分析精度和准确度优于0.01%。微量元素分析方法为ME-ICP61,采用电感耦合等离子体质谱仪(ELAN 9000)进行测试。实验步骤:将一定量样品置于试管中,用四分三阶段酸进行消解,首先用硝酸和高氯酸进行预氧化,然后加入氢氟酸,在电热炉上加热、蒸发至近干,用盐酸稀释定容后放置于仪器中分析。微量元素的分析精度和准确度分别为:Th、U为0.05×10-6,Cs、Sr、Ta为0.1×10-6,Ba为0.5×10-6,Rb、Hf、Nb为0.2×10-6,Zn、Zr为2×10-6,V、Co、Ni、Cr、Cu为1×10-6,K、P、Ti为0.01%。稀土元素分析方法为ME-MS81,采用电感耦合等离子体质谱仪进行测试。实验步骤:将样品与LiBO2溶剂充分混合,放入1000%以上的熔炉中使之融化;溶液冷却后加入硝酸定容后放置于仪器中进行分析。稀土元素的分析精度和准确度除La、Ce、Y为0.5×10-6外,其余分析精度和准确度全为0.05×10-6。

锆石单矿物的挑选是在廊坊市峰泽源岩矿检测技术有限公司完成,经破碎、重选和磁选后,在双目镜下挑选出晶形和透明度较好的锆石颗粒。制靶和阴极发光(CL)图像在北京锆石领航科技有限公司完成,用环氧树脂将锆石固化后对其抛光至中心,然后通过反射光和阴极发光图像对锆石进行仔细观察并选择最佳分析点。LA-ICP-MS锆石U-Pb年龄测试在中国地质大学(北京)地质过程和矿产资源重点实验室完成,分析使用的激光剥蚀束斑直径为32μm,实验中He为剥蚀物质的载气,Ar作为补偿气。年龄采用国际标准锆石91500作为外标,MUD作为监测样品,元素含量采用NIST610作为外标,29Si作为内标。在测试过程中,每测定两次91500标样后,测定5~6个锆石待测点,每个样品的信号采集时间为90s,其中前20s为背景信号采集时间。测试完成后,离线数据处理使用软件ICPMSDataCal和Isoplot完成(Ludwig, 2003)。

在已经完成U-Pb定年的锆石颗粒中,挑选代表性的在武汉上谱分析科技有限责任公司进行锆石Hf同位素测试,仪器采用多接收质谱MC-ICP-MS(Neptune Plus)和相干193nm准分子激光剥蚀系统(GeoLasPro HD)。测试时束斑直径44μm,能量强度8mJ/cm2,频率8Hz,载气600ml/min,标样推荐值(91500: 0.282308; GJ-1: 0.282013; TEM: 0.282677)。

Sr、Nd同位素组成测试在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,实验仪器为Finnigan Neptune多接收器电感耦合等离子质谱仪(MC-ICP-MS)。分析采用Teflon溶样器,加入HNO3和HF混合溶样,用专用的阳离子交换柱进行分离,测试的146Nd/144Nd和86Sr/88Sr比值分别用86Sr/88Sr=0.1194和146Nd/144Nd=0.7219进行校正。详细的分析流程及仪器分析情况见(韦刚健等, 2002)。分析过程中,NBS987标准的86Sr/88Sr测定值为0.710280±6(2σ,N=15),EstonJndi-1标准的143Nd/144Nd测定值0.512087±2(2σ,N=18)。

4 测试结果

4.1 主微量元素

研究区内石英斑岩的SiO2含量为73.53%~78.78%,表现出高的Al2O3含量(10.37%~14.28%)、全碱(Na2O+K2O)含量(3.42%~9.46%)和K2O/Na2O比值(2.57~66.5),低的MgO(0.11%~0.51%)、TiO2(0.03%~0.33%)、CaO(0.02%~0.88%)和P2O5含量(0.01%~0.09%)的特点(表1)。样品岩石碱度率(AR)为1.67~5.38,里特曼指数(σ)为0.32~2.91<小于3.3。在TAS图解上,石英斑岩落在花岗岩区域(图4a);在SiO2-K2O图解(图4b)中,主要落入钾玄岩-高钾钙碱性系列范围。综上,马庄山矿区的石英斑岩属于钾玄岩-高钾钙碱性系列。在哈克图解中,样品的SiO2与TiO2、MgO、CaO、MnO、Al2O3和P2O5呈现一定的负相关关系(图5),表明存在着磷灰石、辉石、钛铁矿的明显的分离结晶作用(李献华等, 2000)。

石英斑岩的稀土元素总量中等,∑REE=65×10-6~161×10-6,[La/Yb]N值为6.15~12.5,δEu=0.46~0.80(表1),表明轻重稀土分异中等,相对富集轻稀土元素、亏损重稀土元素,显示弱的负Eu异常(图6a),表明岩浆没有发生明显的斜长石的分离结晶作用(张宏飞和高山, 2012)。原始地幔标准化微量元素蛛网图(图6b)显示:石英斑岩总体富集Rb(177×10-6~338×10-6)、K(109.6×10-6~307.1×10-6)、Th(14.1×10-6~16.7×10-6)、U(1.54×10-6~4.59×10-6)和Pb(2×10-6~66.8×10-6),亏损Sr(12×10-6~163.5×10-6)、Ba(211×10-6~632×10-6)、P(0.46×10-6~4.13×10-6)、 Nb(6.9×10-6~10.9×10-6)和Ti(0.37×10-6~1.52×10-6)等元素。

表1 马庄山石英斑岩主量元素(wt%)和微量元素(×10-6)测试结果

Table 1 Major (wt%) and trace (×10-6) elements data of the quartz porphyry in Mazhuangshan area

样品号ZKII-101-2MZS9-1MZS9-3MZS9-15MZS2-11MZS2-13MZS9-B2MZS7-B2M7S9-B3SiO274.5776.7473.5378.5075.6378.7875.1073.6179.85TiO20.130.080.080.330.260.220.350.290.26Al2O312.6612.4213.9014.1014.2810.3713.7613.0811.68FeO0.620.240.310.430.481.870.550.560.16Fe2O30.540.210.310.230.310.961.292.101.62MnO0.030.010.010.010.010.010.020.070.04MgO0.300.110.170.110.510.350.470.280.36CaO0.880.030.020.110.040.170.090.190.06Na2O2.380.170.210.260.080.060.140.150.09K2O6.118.389.253.305.323.365.607.443.91P2O50.030.020.010.020.010.090.040.100.02LOI1.830.961.172.462.122.782.202.862.33Total100.1899.4399.0499.9299.0899.0599.61100.73100.38K2O+Na2O8.638.689.673.655.573.555.897.764.08K2O/Na2O2.5749.344.112.766.556.040.049.643.4σ2.272.162.910.360.890.321.021.870.43La29.2031.9032.4033.5031.7014.1035.1037.033.1Ce54.7064.2066.9061.1059.2027.6063.963.853.8Pr5.817.077.616.165.952.975.174.534.51Nd18.8024.6027.3020.2019.7010.3018.019.616.6Sm3.555.275.954.053.892.183.123.653.16Eu0.790.731.011.000.780.390.510.720.65Gd2.704.224.983.402.931.942.994.563.29Tb0.360.630.760.510.440.310.420.590.51Dy2.083.864.993.352.732.031.632.542.56Ho0.440.851.120.710.610.450.340.480.48Er1.372.653.342.191.951.391.131.601.48Tm0.220.410.510.360.330.220.130.230.21Yb1.582.693.552.492.191.450.851.581.73Lu0.270.430.580.400.350.240.110.270.27∑REE12114916113913265.0133141122δEu0.750.460.550.800.680.570.500.540.61(La/Yb)N12.58.006.159.079.766.5627.815.812.9Rb235318361210338187-273177Ba595501559632291272616.9482211Th16.7010.9016.2010.7015.0011.6014.1016.0015.00U3.783.164.552.544.591.54-3.23.1Nb10.208.108.909.6010.906.90-1211Ta1.000.901.000.901.200.60<100.901.00Pb27.023.046.09.02.017.066.816.017.0Sr163.5138.0116.546.949.912.0104.850.018.0Zr7610210516515910660.68161118Hf2.53.63.84.64.73.14.03.64.0Y14.125.331.522.219.313.2-4.03.6Ga13.212.814.416.217.314.67.0413.3314.77K202.9278.2307.1109.6176.7111.6185.9247.1129.8P1.380.920.460.920.464.131.844.590.92Ti0.600.370.371.521.201.011.611.341.20Mg#33.935.224.856.119.731.433.117.028.4Nb/Ta10.29.008.9010.79.0811.50.013.311.0Nb/La0.350.250.270.290.340.490.000.320.33Zr/Hf30.428.327.635.933.834.215.244.729.5来源本文江思宏,2004

表2 马庄山矿区石英斑岩LA-ICP-MS锆石测年数据

Table 2 Zircon U-Pb isotope data of the quartz porphyry in Mazhuangshan deposit

测点号(×10-6)PbThUTh/U同位素比值同位素年龄(Ma)207Pb206Pb1σ207Pb235U1σ206Pb238U1σ207Pb235U1σ206Pb238U1σ208Pb232U1σ115932570.360.051970.003880.361460.029030.050310.00100313.321.7316.46.2328.714.82201323430.390.052720.002890.370140.020450.050330.00072319.815.2316.54.4320.510.73292844650.610.051980.002440.361500.016400.050320.00077313.312.2316.54.8313.09.24212163580.600.051490.002480.346190.015920.048610.00078301.812.0306.04.8304.59.25231613870.420.052860.002770.367600.018500.050320.00084317.913.7316.55.2322.912.16302485060.490.051940.002080.363670.014900.050310.00076315.011.1316.44.7324.69.47261694430.380.052670.002820.367050.019350.050320.00076317.514.4316.54.7321.112.6817962890.330.052560.002620.367410.018250.050320.00077317.713.6316.54.7343.413.99231563970.390.052580.002470.364570.017030.050340.00082315.612.7316.65.0329.710.410191123260.340.054440.002840.377000.019800.050380.00092324.814.6316.95.6304.612.111151152400.480.052900.003010.365710.020280.050340.00079316.515.1316.64.9330.014.112211633410.480.052740.003260.370390.024090.050310.00089319.917.8316.45.5314.013.613151302500.520.054030.002950.374860.019800.050270.00079323.214.6316.24.8319.710.514211223680.330.052250.002930.362800.019820.050310.00071314.314.8316.44.4334.412.115231803840.470.054910.002960.379090.019620.050330.00080326.414.4316.54.9342.912.816211153660.320.055140.003170.376400.020910.050350.00088324.415.4316.75.4314.313.817262164340.500.053170.002660.367720.017710.050320.00068318.013.1316.54.2314.19.918322435400.450.052650.002340.365780.016700.050310.00065316.512.4316.54.0316.610.519191123360.330.054190.002810.375990.019300.050270.00079324.114.2316.24.9324.014.720271594570.350.052660.002630.366620.018780.050320.00068317.114.0316.54.2348.238.821191293310.390.053450.002900.370090.019570.050310.00079319.714.5316.44.9320.613.8

图4 矿床石英斑岩的TAS图解(a, 据Middlemost, 1994)和K2O-SiO2图解(b, 底图据Rickwood, 1989)Fig.4 TAS diagram (a, modified after Middlemost, 1994) and K2O vs. SiO2 diagram (b, modified after Rickwood, 1989) of the quartz porphyry in Mazhuangshan deposit

图5 马庄山金矿床石英斑岩的哈克图解Fig.5 Harker diagrams of the quartz porphyry in Mazhuangshan deposit

图6 马庄山石英斑岩球粒陨石标准化稀土元素配分型式(a, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蜘蛛图(b, 标准化值据Sun and McDonough, 1989)Fig.6 Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagrams (b, normalization values after Sun and McDonough, 1989) of the quartz porphyry in Mazhuangshan deposit

图7 马庄山石英斑岩锆石阴极发光图像(a)、LA-ICP-MS U-Pb年龄一致曲线(b)和加权平均年龄谱图(c)Fig.7 Cathodoluminescence images (a), U-Pb concordant age (b) and weighted mean zircon 206Pb/238U age (c) of the Mazhuangshan quartz porphyry

图8 马庄山石英斑岩中锆石的球粒陨石标准化稀土元素配分图Fig.8 Chondrite-normalized REE patterns of the zircon from quartz porphyry in Mazhuangshan area

4.2 锆石U-Pb年龄

马庄山石英斑岩(MZS9-1)中的锆石多呈无色透明长柱或短柱状,自形程度较好,粒径多为80~120μm,大部分具有清楚的振荡环带(图7a)。锆石具有较高的Th(93×10-6~284×10-6)、U(240×10-6~540×10-6)含量和Th/U比值(0.32~0.61)(表2),稀土元素配分曲线具有轻稀土亏损、重稀土富集、明显Ce正异常、Eu负异常的特点(图8);显示岩浆锆石的特征(Belousovaetal., 2002)。选取21个锆石颗粒进行LA-ICP-MS U-Pb年龄测定(表2),所有点的测试结果均落在谐和线上或附近,获得其U-Pb一致年龄为315.4±0.6Ma(MSWD=0.67;图7b),206Pb/238U加权平均年龄值为316.0±2.0Ma(MSWD=0.23;图7c)。

4.3 Sr-Nd-Hf同位素

马庄山石英斑岩Sr-Nd同位素组成测定结果及根据年龄计算的相关参数见表3,样品的87Sr/86Sr比值变化范围为0.740188~0.765981,远高于原始地幔现在值(87Sr/86Sr=0.7045; DePaolo and Wasserburg, 1976);143Nd/144Nd变化范围为0.512423~0.512577,低于原始地幔现在值(143Nd/144Nd=0.512638; Jacobsen and Wasserburg, 1980)。根据U-Pb定年结果,计算获得(87Sr/86Sr)i为0.7077~0.7102,εNd(t)介于-1.62~1.82之间,二阶段Nd模式年龄(tDM2)为0.9~1.2Ga。

在εNd(t)-t图解上(图9a),样品的投影点均位于古-中元古代地壳的上方、球粒陨石均一库(CHUR)的附近,表明成岩过程中有一定的幔源组分的参与;在εNd(t)-(87Sr/86Sr)i图解上(图9b),样品点较分散,主要落在球粒陨石演化线与大陆上地壳之间,东天山-北山侵入岩范围内,并且与柳园晚古生代花岗岩有部分重合(图9b),说明原岩可能来自于上地幔和地壳。

Hf同位素测试结果(表4)显示,石英斑岩中12颗锆石的176Yb/177Hf比值为0.042886~0.065516、176Lu/177Hf比值介于0.001204~0.001886,176Hf/177Hf比值为0.282506~0.282604,计算获得的εHf(t)为-3.2~0.4,tDM2在1.28~1.51Ga之间。在εHf(t)-t图解中,部分样品投点落在亏损地幔(DM)和球粒陨石(CHUR)演化线之间(εHf(t)>0),显示其可能来自新生地壳或亏损地幔(Jahnetal., 2000; Vervoortetal., 2000; 朱弟成等, 2009a);部分样品落在球粒陨石演化线以下(εHf(t)<0),暗示其源岩为古老地壳物质(Kinny and Maas, 2003)。

表3 马庄山矿区石英斑岩Sr-Nd同位素组成

Table 3 Sr and Nd isotope data of the quartz porphyryat Mazhuangshan

样品号MZS-9-1MZS-9-3MZS-9-15Rb (×10-6)318361210Sr (×10-6)1381174787Rb/86Sr3.09.013.087Sr/86Sr0.7401880.7504140.765981±2σ0.0000170.0000180.000018Age (Ma)316316316(87Sr/86Sr)i0.71020.71010.7077Sm (×10-6)5.275.954.05Nd (×10-6)24.627.320.2147Sm/144Nd0.1300000.1300000.120000143Nd/144Nd0.5125510.5124230.512577±2σ0.0000090.0000090.000009(143Nd/144Nd)i0.5122820.5121490.512326εNd(t)0.98-1.621.82tDM (Ga)1.101.370.95tDM2 (Ga)1.01.20.9

注:计算参数为λ87Rb=1.42×10-11a-1,λ147Sm=6.54×10-12a-1,λ238U=1.55125×10-1a-1,λ235U=9.8485×10-10a-1,λ232Th=0.49475×10-10a-1(Steiger and Jäger, 1977).同位素初始值计算所用参数为:87Rb/86Sr=0.0847,87Sr/86Sr=0.7045,147Sm/144Nd=0.1967,143Nd/144Nd=0.512638(Hartetal., 1984)

表4 马庄山地区石英斑岩(MZS9-1)中锆石的Hf同位素组成

Table 4 Zircon Hf isotopic compositions of the quartz porphyry in Mazhuangshan area

测点号176Yb/177Hf176Lu/177Hf176Hf/177HfσεHf(t)tDM2 (Ga)fLu/HfMZS9-1-010.0655160.0018860.2825890.000007-0.31.32-0.94MZS9-1-020.0607830.0017190.2825830.000007-0.51.33-0.95MZS9-1-030.0494410.0013880.2825570.000007-1.31.39-0.96MZS9-1-040.0651910.0018590.2825060.000006-3.21.51-0.94MZS9-1-050.0547140.0014930.2825610.000008-1.21.38-0.96MZS9-1-060.0458810.0013030.2825720.000007-0.81.35-0.96MZS9-1-070.0599870.0016680.2825810.000008-0.51.34-0.95MZS9-1-080.0492480.0013680.2825100.000007-3.01.49-0.96MZS9-1-090.0522070.0014470.2825350.000007-2.11.44-0.96MZS9-1-100.0463260.0012720.2825200.000012-2.61.47-0.96MZS9-1-110.0569280.0015990.2825950.0000070.01.31-0.95MZS9-1-120.0428860.0012040.2826040.0000080.41.28-0.96

注:εHf(t)根据每个测点的锆石U-Pb年龄计算而来,采用的176Lu衰变常数λ=1.867×10-11a-1(Söderlundetal., 2004);锆石Hf同位素地壳模式年龄(tDM2)是利用平均大陆壳的176Lu/177Hf=0.015 (Griffinetal., 2006) 计算获得

图9 马庄山石英斑岩t-εNd(t)(a)和(87Sr/86Sr)i-εNd(t)(b)图解东天山-北山侵入岩区域线据Zhang et al. (2015);柳园地区晚古生代花岗岩演化线据李小菲等(2015)Fig.9 The t vs. εNd(t) diagram (a) and (87Sr/86Sr)i vs. εNd(t) diagram (b) of the quartz porphyryThe region of the Eastern Tianshan-Beishan intrusive rocks is after Zhang et al. (2015) and the region of the Liuyuan Late Paleozoic granites is after Li et al. (2015)

图10 马庄山石英斑岩的成因类型判别图解(a, b, 据Whalen et al., 1987; c, d, 据Li et al., 2007)Fig.10 Granites discrimination diagram of the quartz porphyry at Mazhuangshan (a, b, base map after Whalen et al., 1987; c, d, base map after Li et al., 2007)

5 讨论

5.1 岩石成因与岩浆来源

马庄山石英斑岩以石英和碱性长石等为主要造岩矿物,具有较高的SiO2含量(73.53%~79.85%)、较低的MgO(0.11%~0.51%)、TiO2(0.08%~0.33%)和P2O5(0.01%~0.09%)含量(表1),Na2O+K2O值为3.55~9.67,平均值为6.4,K2O/Na2O为2.57~66.50,属于高钾钙碱性系列岩石。在10000Ga/Al-Y图解中,样品点投影在I型和S型花岗岩区(图10a; Chappell and White, 1992),故需要更多证据来分析马庄山石英斑岩的成因类型。前人研究表明:铝饱和指数(A/CNK)易受蚀变作用的影响,相比而言,花岗岩中P2O5含量也是判别岩石类型的一个有利指标(Lietal., 2007; 王银宏等, 2015)。一般来说,在I型花岗岩中,P2O5随着SiO2含量的增加而呈现递减的趋势;然而,在S型花岗岩中,P2O5随着SiO2含量的递增而呈现递增或基本不变的趋势(Wuetal., 2003; Lietal., 2007; 朱弟成等, 2009b)。马庄山石英斑岩P2O5(0.01%~0.09%)含量较低,且与SiO2含量呈现一定的负相关关系,暗示其可能为I型花岗岩。此外,富集Th和Y的矿物在准铝质岩浆结晶早期不会优先结晶,但在过铝质岩浆演化的早期则会优先结晶,这导致了I型花岗岩比S型花岗岩有较高的Th和Y的含量,并且Y、Th与Rb均表现为正相关的关系(Wuetal., 2003; Lietal., 2007; 王银宏等, 2015)。马庄山石英斑岩的Y、Th含量分别为3.6×10-6~31.5×10-6和0.6×10-6~1.52×10-6(表1),而且与Rb均呈现正相关的关系,也进一步佐证了研究区的次火山岩属于I型花岗岩类。

实验结果表明,Mg#可以作为识别地壳来源和地幔来源的重要判别标志,一般认为,由下地壳部分熔融的岩浆具有较低的Mg#(<50)和MgO含量(Xiongetal., 2003; Zhaoetal., 2009)。俯冲板片部分熔融的岩浆具有较高的Mg#(>50)和较高的MgO含量(Yogodzinski and Kelemen, 1998; Rappetal., 1999; Xuetal., 2002)。马庄山石英斑岩具有较低的Mg#值(17~56)和较低的MgO值(0.29~1.16),指示它们很可能为新生下地壳的部分熔融所致。石英斑岩的Nb/Ta比值为8.90~11.5,接近陆壳岩石(~11),但明显低于幔源岩石(36.27±2; Taylor and McLennan, 1985),显示壳源的特点。同时,Zr/Hf比值为27.3~35.9,平均为33.3,与壳源岩石(~33; Taylor and McLennan, 1985)接近;Nb/La值较低(0.27~0.49),表明石英斑岩岩浆源区有陆壳物质参与。

石英斑岩的Nd二阶段模式年龄tDM2介于0.9~1.2Ga,暗示这种陆壳物质是从幔源物质分异演化时间不长的年轻物质,即年轻地壳。由于其tDM2值与岩体的实际侵位年龄(~316Ma)差别较大,表明原始岩浆在上侵过程中很可能与一些古老地壳物质发生了混染作用。

图11 石英斑岩微量元素构造环境判别图解(底图据Pearce et al., 1984)(a) Yb-Ta图解;(b) Y-Nb图解;(c) Rb/30-Hf-Ta×3图解;(d) Ta/Yb-Th/Yb图解Fig.11 Tectonic discrimination diagrams for quartz porphyry (based map after Pearce et al., 1984)

图12 东天山晚石炭世构造演化示意图(据Xiao et al., 2004; Pirajno et al., 2011修改)Fig.12 Schematic diagram showing the tectonic evolution of the Eastern Tianshan Orogen in Late Carboniferous (modified after Xiao et al., 2004; Pirajno et al., 2011)

5.2 构造环境与演化过程

前人研究表明,东天山造山带大规模的岩浆活动主要发生于晚泥盆世、石炭纪、二叠纪、早-中三叠世四个阶段。其中,石炭纪-二叠纪被认为是区内最重要的成岩-成矿阶段(唐俊华等, 2007; Maoetal., 2005; Chenetal., 2012; Wangetal., 2015),一系列大型、中型铜金矿床集中在该阶段产出,主要矿床类型包括浅成低温热液型金矿床(石英滩金矿, 李华芹等, 1998)、造山型金矿床(康古尔-马头滩金矿床, Chenetal., 2012)和斑岩型铜矿床(土屋, 芮宗瑶等, 2002; 王银宏等, 2014; Xiaoetal., 2017)。然而,对于东天山地区晚石炭世的构造环境仍存在争议,一些学者认为研究区在晚石炭-三叠纪时,北天山洋已经闭合,处于俯冲后阶段,以碰撞/碰撞后事件为特征(Yangetal., 2009; Pirajnoetal., 2011; 王玉往等, 2012; Chenetal., 2012);而另一些研究者认为在晚石炭世仍存在俯冲作用,直到早二叠世北天山洋才闭合,之后进入后碰撞阶段(Xiaoetal., 2004; Aoetal., 2010; Hanetal., 2012; Maoetal., 2014; Wangetal., 2015; Zhangetal., 2016b; Han and Zhao, 2018)。

本次研究中,石英斑岩中锆石的LA-ICP-MS U-Pb一致年龄为315.4±0.6Ma(MSWD=0.67),206Pb/238U加权平均年龄为316.0±2.0Ma(MSWD=0.23),这首次将马庄山石英斑岩的侵位时间精确限定在314~318Ma。因此,这套产出于东天山东段的以石英斑岩为代表的次火山岩的侵位构造环境研究,可以为解答研究区内晚石炭世大地构造背景的归属提供关键证据。

岩石地球化学研究表明,矿区内石英斑岩形成于晚石炭世与俯冲相关的活动大陆边缘弧环境,主要依据有:(1)在Ta-Yb和Rb/30-Hf-Ta×3图解(图11a, c)中,样品全部落在火山弧环境内;在Nb-Y图解中(图11b),石英斑岩样品投点落在火山岛弧与同碰撞区域;在Ta/Yb-Th/Yb图解(图11d)中,样品点落在了陆缘弧及其附近,表明岩石形成于岛弧或活动陆缘弧环境。(2)岩石富集轻稀土,轻重稀土分馏明显,具有Eu负异常,相对富集Rb、K、Th、U和Pb等大离子亲石元素,亏损Sr、Ba、P、Nb和Ti等高场强元素(表1、图6b),显示了陆缘弧火山岩特征(Pearceetal., 1984)。(3)不同类型的火山弧具有不同的岩石组合,岛弧型火山岩以拉斑玄武岩为主,富Mg、贫K和大离子亲石元素富集程度不明显;而大陆边缘弧火山岩以钙碱性为主,富K、贫Mg和富集大离子亲石元素(Wilson, 1989);而马庄山石英斑岩的特征恰与后者一致。综上,马庄山石英斑岩形成于与俯冲相关的活动大陆边缘弧的大地构造背景下。

这一认识为东天山东段晚石炭世时构造格架的重建提供了证据。东天山-北山造山带的演化历史与古天山洋密切相关(Xiaoetal., 2004, 2010; Chenetal., 2012; Xiaoetal., 2017),在早石炭世,区内主要为古亚洲洋俯冲作用形成的岛弧环境,此时,大量的火山-碎屑岩沉积形成;随着俯冲作用的持续,至~315Ma,研究区处于活动陆缘弧环境,下地壳物质的部分熔融形成了石英斑岩的初始岩浆,侵位至地壳浅部以次火山岩的形式产出(图12);晚石炭世末期,古大洋逐渐闭合,东天山研究区开始进入后碰撞造山阶段,这也与东天山存在~310Ma的最年轻的蛇绿岩和~290Ma的双峰火山岩广泛分布相吻合(秦克章等, 2002; Chenetal., 2011; Suetal., 2012)。

6 结论

(1)马庄山次火山岩石英斑岩具有富碱高钾、过铝质特征,富集大离子亲石元素和轻稀土元素、亏损高场强元素,Eu显示弱的负异常。

(2)全岩(87Sr/86Sr)i=0.7077~0.7102、εNd(t)=-1.62~1.82,锆石的εHf(t)=-3.2~0.4,认为石英斑岩的源区可能来源于下地壳物质的部分熔融,原始岩浆在上侵过程中有部分地幔物质的加入。

(3)LA-ICP-MS锆石U-Pb定年限定了研究区内以石英斑岩为主导的次火山岩侵位年龄为314~318Ma,形成于与俯冲相关的陆缘弧环境下;为东天山东段晚石炭世时构造格架的重建提供了证据。

致谢 论文的完成得益于陈衍景教授、陈华勇研究员的指导;野外工作得到了西部矿业哈密金矿、新疆有色地质勘查局704队的帮助;实验工作得到了感谢中国科学院广州地球化学研究所同位素地球化学国家重点实验室、中国地质大学(北京)地质过程与矿产资源国家重点实验室的支持;在此一并感谢。感谢两位审稿人对论文提出的宝贵建议。

作者有幸聆听翟裕生为博士生主讲的《区域成矿学》课程,通讯作者长期得到先生在教学、科研等方面的指导和帮助,他对晚辈的悉心培养和教导令人终身受益。谨以此文表达我们对翟院士九十华诞的美好祝愿。

猜你喜欢
东天山图解斑岩
辽宁调兵山西调斑岩型钼矿床特征及找矿标志
东天山中段晚古生代剪切带叠加特征及构造控矿作用
东天山卡拉塔格矿集区奥陶—志留纪侵入岩地球化学特征及成因
柴北缘阿木尼克山地区斑岩系Cu、Mo-Pb、Zn、Ag-Au成矿模型初步研究
斑岩型矿床含矿斑岩与非含矿斑岩鉴定特征综述
岩型矿床含矿斑岩与非含矿斑岩鉴定特征综述
图解十八届六中全会
东天山三道岭地区泥盆纪岩石地层单位厘定
图解天下
星汉《东天山诗稿》述评