行为决策的评估理论构建研究

2020-01-02 18:31田向阳
健康教育与健康促进 2020年2期
关键词:个体决策评估

田向阳

·综述·

行为决策的评估理论构建研究

田向阳

中国健康教育中心,北京,100011。

本研究构建了行为决策的评估理论,揭示人类行为发生、发展和改变的规律,为开展健康相关行为干预提供科学依据。本理论认为,所有的人类行为都是个体为了生存和发展,在对内、外部刺激进行评估后所做出的主动反应。个体以基因遗传、自我图式、群体规范和直觉为参照系,对内、外部刺激的重要性、安全性威胁和获益性,以及个体所拥有的行为资源进行感觉性评估和社会性评估,用以做出生理性反应和社会性行为决策,并通过感受器、中枢神经和效应器,形成“刺激-评估-行为决策-行为”循环。开展行为干预时,应通过与个体进行讨论和分析,帮助其发现和确认刺激的重要性、安全性、获益性及其拥有的行为资源。

刺激;感觉性评估;社会性评估;重要性评估;获益性评估;安全性评估;资源评估;评估参照系

行为是健康的重要决定因素。在发达国家,归因于吸烟、不健康的饮食习惯、静坐生活方式等不健康行为的早死超过40%[1]。世界卫生组织全球疾病负担调查结果表明,2017年行为危险因素对DALYs的贡献占36.5%[2]。

多年来,国际上开展了大量有关行为的研究,建立了从不同侧面解释行为发生、发展和变化的理论模型,对理解和干预人类行为产生了重要影响,但也存在着各自的缺陷和不足。研究表明,应用这些理论或其一部分开展健康相关行为干预取得的效果优于不应用理论的干预[3],但这些效果很可能只是控制性研究条件下的“有效性”[4-5],在实际的行为干预项目中,这些理论常常被发现是无效的[6-7],或总体效果不明确[8]、不持久[9]。即使出现了行为改变,也往往容易回复到原来的状态。出现这种现象,很可能是因为这些理论并未准确抓住行为发生和改变的根源[8]。另外,现有的理论模式是通过对人类各种行为现象进行观察、归纳推理得出的结论,存在明显的或然性,有可能遗漏重要信息,甚至得出片面或错误的结论。

为了全面揭示人类行为发生、发展的根源和本质规律,为健康相关行为干预提供理论依据,本文在大量文献研究的基础上,广泛吸收社会学、心理学、神经科学、行为科学、生物学、遗传学、表观遗传学等学科的理论和最新研究成果,提出了行为改变的决策评估理论模型。

1 人体对内、外部刺激的评估机制

1.1 “刺激-评估-行为决策-行为”循环

行为是人体对除生理发育变化外的内、外部刺激的协调反应[10]。人体感受器(眼、耳、鼻、舌、皮肤、黏膜、内脏、血管、神经)和中枢神经(大脑和脊髓)需要随时对内外环境刺激进行评估,并根据评估结果,做出应对决策[11],由效应器产生相应的生理反应或行为(行动)。生理反应和行为结果作为反馈信息又会被传回中枢神经系统,进行再评估和再决策,产生新的生理反应或新的行为(行动),形成持续运行的“刺激-评估-行为决策-行为”循环,以保持人体内部生理生化稳定和与外环境之间的相对平衡[12]。为此,可把人的行为分为生理性行为(如呼吸、心跳、性冲动等)和社会性行为(如学习、工作、人际交往等)两类。人的生理性行为属于非条件反射,较少或不受意识的控制,教育、劝说等外部干预可对生理性行为的幅度、强度、频率和效率产生影响,但不能消除。社会性行为属于条件反射,是在意识控制下,经过主动建构学习,对人体对内、外部刺激做出的反应,是在生理性行为的基础上,通过教育、劝说和环境干预而形成的[13-14]。

1.2 感觉性评估与社会性评估

人体感受器和中枢神经系统对内、外部刺激的性质、频率、强度等进行的不间断的监测评估是行为决策的基础和前提。人体随时随地接受环境刺激信号,并把信号通过传入神经实时传输到中枢神经,由中枢神经对刺激进行感觉性评估和社会性评估。

感觉性评估是指对人体通过感觉器官和中枢神经对体内生理生化平衡变化(如酸碱平衡失调、营养素缺乏、高血糖等)、环境理化改变(如冷热温度、干湿度、坚硬度、尖锐度、柔软度、酸甜苦辣味道、香臭气味、颜色、亮度等的变化)等内、外部刺激进行的感知和分析判断,评估的结果包括饱腹/饥饿感、口渴感、疼痛感、温暖/寒冷、舒适/难受、悦耳/刺耳、漂亮/丑陋、可口/难吃、甜/苦、香/臭等[15]。感觉性评估一般是在无意识的情况下,由人体感受器和中枢神经系统自动进行的。

社会性评估[16-17]是指个体在意识的控制下,通过比较、权衡、分析推理和归纳总结,对感觉性评估结果和外环境刺激(视听觉信息等)进行评估,以做出是否采取行动或采取什么行动的决策。如个人会对饥饿感和进食冲动(感觉性评估结果)进行评估,如果做出应该立即进食的决策,就会继而对食物的可获得性、食品或餐饮广告、餐厅、摆放在某处的食品(外环境刺激)分别进行评估,最终做出吃不吃、吃什么、怎么吃和在哪里吃的决定(社会性评估结果)。

2 人体对内、外部刺激的评估内容

为了做出行为决策,进而采取行动或改变自己的行为,个体主要会对内、外部刺激的重要性、安全性威胁(危险性)、获益性和个体所拥有的资源4个方面进行评估。

2.1 重要性评估

重要性评估是指人们关于内、外部刺激对于自己来说是否重要的估计。既往的研究发现,大脑腹内侧前额叶皮质、眶额叶皮质和腹侧纹状体负责对内、外部刺激的价值性评估[18-20]。最新的研究认为,这种评估机制主要存在于丘脑室旁核(PVT)[21]。人们对环境刺激重要性的估计存在一定的规律。比如,人们在同时面对多种选择时,总是先进行感觉性评估,然后再进行社会性评估,解决强烈的饥饿感、剧烈的疼痛、严重的口渴、紧急的生命威胁等问题,以及漂亮的外观、好闻的味道、亲近的关系等,总是比其他事项更重要;人们倾向于把能引起强烈感官反应的事物评估为更重要;人们习惯于认为远水解不了近渴,更易于把在空间和时间上临近的人和事物评估为重要[22]。

2.2 安全性评估

安全性评估是指对内、外部刺激是否会对自己的生存、发展和生命安全构成威胁的估计。人有自我防御本能,很多行为都是直接或间接地为了使自己更安全[23]。研究发现,人脑的下丘脑基底核(amygdala)、腹内侧前额叶皮质(vmPFC)、背外侧前额叶皮层(DLPFC)和前岛叶(AI)负责个体对安全性/危险性的认知分析[24-28]。人体在受到内、外部刺激,安全感受到严重威胁时,大脑颞叶海马区会对刺激的性质、种类、危险性进行快速评估,交感神经系统快速启动,做出是“战斗还是逃跑”(fight or flight)的决策。同时,蓝斑(LC)-交感-肾上腺髓质轴和下丘脑-垂体-肾上腺皮质轴(HPA)自动启动[29-31],人体会出现心跳加速、呼吸增快、血糖和血脂增高等生理性行为的变化,以调动人体的能量,应对安全威胁,但可导致肌体耗能、组织分解、血管痉挛、组织缺血、致死性心律失常、高血压、糖尿病等多种健康问题[32]。安全感受到持续性的严重威胁时,初期会出现焦虑、攻击性或极端冒险性行为,最后会发展为抑郁、疲劳和衰竭,导致哮喘、胃溃疡、糖尿病、心脏病、恶性肿瘤等[33]。可见,长期持续性的不安全感在慢性非传染性疾病和感染性疾病的发生中扮演者重要的角色。

从社会认知层面,一般来说,人们倾向于认为未知或信息知之甚少的事物更危险;人们往往会把突然出现的外部刺激(如猛扑过来的恶犬)评估为更危险,而常常低估缓慢呈现或延迟出现的外部刺激的危险性,如10年后出现的癌症、不戴安全带有可能导致的车祸死亡、吸烟引起的癌症死亡等;人们之所以倾向于模仿大多数人的行为[34-35],是因为认为大多数人的行为才是最安全的[36];人们总是认为别人开车打电话比自己开车打电话更危险;人之所以有嫉妒心理,是因为其他个体的优秀和强大,有可能威胁到自身生存和发展的安全[37-38]。人们总是拒绝改变,因为改变现状会带来不安全感;但人们并非总是规避风险的,人们常常为了求得更大的安全感而甘愿冒险,正如中国成语所说:“不入虎穴,焉得虎子”。

2.3 获益性评估

获益性评估是指人们对内、外部刺激是否可为自身带来益处所进行的评估。获益包括生理上的满足、物质上的获取或占有、精神心理上的愉悦、同伴或群体的认同或支持、家人和朋友的鼓励、乐观的预期、安全保障等[39]。研究表明,人脑中存在专门的对预期奖励(获益预期)进行评估的脑区——腹内侧前额叶皮质(vmPFC)和腹侧纹状体(VSTR)[40],由其做出是否努力的决策。人们总是“无利不起早”,倾向于实施那些对自身有益或使自己获益最大化的行为[41];人们总是倾向于买涨不买落[42];人倾向于把能使自己感官舒服的(止渴饿的、甜的、香的)、满足生理需要的评估,认为是有益的;人们往往经受不住大奖的诱惑,倾向于高估结局良好的小概率事件发生(如买奖券中大奖)的可能性[43]。值得注意的是,人们天生对损失更敏感,损失的痛苦常常大于获益的快乐[44-45]。大脑的杏仁核专司个体的损失预期[46]。

2.4 资源评估

资源是指个体可获取的用于采取行动或改变行为的体力、精力、知识、技能、经验、环境条件、经济状况、社会支持等,是促使行为产生和发展的保障[47]。一般来说,个人拥有的资源越多,自我评估的模式也会越积极,自我效能感越强,也越有可能采取某项行动或改变某个行为。但自我评估模式不仅受到个体拥有的资源情况的影响,还会受到遗传、个性心理特征、情绪、情境、他人劝说等因素的影响。研究表明,大脑豆状核(LN)负责自我效能评估[48]。

3 评估的参照系

每个人都有自己特有的评估参照系[49-50]和评估框架[51],当接受到内、外部刺激时,大脑相应功能区会把刺激的性质、强度与参照系中的标准或阈值进行比较[52],做出评估。

3.1 基因遗传

个人对客观事物进行评估的参照系基本结构和路径与生俱来,持续终生。俗话说:江山易改,秉性难移。研究表明,人的大多数行为特征都具有高度的遗传性,如人的利他性[53]和同情心[54],基因可解释其遗传差异的30%~50%[55]。表观遗传学认为,个体的祖辈或父辈的行为经历和自身从受精卵开始的经历,会通过染色体甲基化产生基因修饰,被作为遗传印记,在后代身上表达出来[56-59]。

3.2 自我图式(self-schema)

是指个体在自身特有的遗传倾向性的基础上融合自己和他人替代性经验而形成的个人价值体系。人们总是以自我为中心,根据自己的生理、心理和社会需要、亲身经历和价值观,对客观事物做出评估[60]。如:利他主义者认为捐助慈善事业比自己消费更重要;环保主义者认为商品的环境友好性比舒适性更重要[61]。核心价值观分为2个维度:一是自我提升/自我超越维度,即个体认为权力、成就、享乐重要,还是普救、慈善重要;二是开放/保守维度,即认为讲求自主、追求刺激更重要,还是服从、传统、安全更重要[62]。

3.3 群体规范

群体规范是指一个群体或组织成文或不成文的、用以确定价值观、信仰、态度和行为的规矩。文化、法律、宗教教规、风俗习惯等均属于群体规范的表现形式。群体规范常成为群体内个体对内、外部刺激进行评估的重要参照标准[63]。人们常常听从或参考他人的评估模式和评估结果(锚定效应)[64]或根据自认为的大多数人的意见做出评估[65]。

3.4 直觉

直觉是指不需进行逻辑推理而瞬间形成的信念或判断[66]。人类的很多直觉源自情绪、情感(如同情、恐惧、嫉妒、快乐等)[67]和潜意识推断[68]。在需要进行复杂评估、用于评估的信息不足而无法进行准确评估或需要紧急做出评估时,一般会进行直觉性评估[69],或根据自己的成见进行评估[70]。

4 评估的特性

4.1 评估的有序性

一般来说,人们倾向于先进行感觉性评估,然后再根据自己的评估资源进行社会性评估。如人们虽然为了健康会控制进食甜食(社会性评估和决策),但诱人的甜食呈现在面前时,人们的唾液还是会禁不住奔涌而出(感觉性评估)[71]。令人愉快的外部刺激会通过人体感受器影响(“欺骗”)评估机制,从而使个体做出错误的行为决策。如甜食会使大脑产生愉快感,得出“应该多进食”的评估结论,导致甜食摄入过多,引发肥胖。

4.2 评估的情感性

人们并非总是理性的,情绪和情感显著影响评估的过程和评估结果[72-73]。如:在有关情况不确定、不可知的情况下,人们更倾向于根据自己的情感和情绪进行评估[74];人们倾向于以貌取人,把漂亮的、好看的、悦耳的、柔软的、光滑的、温暖的、明亮的事物评价为有益的(很多时候恰恰相反)。人们的情绪和情感会影响对行为结果好坏的预期[75]。人们在心情大好的情况下,往往倾向于把行为结果估计为良好。人在害怕时会高估风险,而在愤怒时会低估风险[76]。

4.3 评估的情境性

情境是指不同个性心理特征的个体对环境的主观感知和解释[77]。

在不同的情境下,人们会对同一事物给出不同的评价结果[78]。如:在节日喜庆的氛围中,人们更易于对事物给予积极正向的评估;而在悲伤低沉的氛围中,则更倾向于对事物做出悲观的估计。

4.4 评估的成熟性

人们可以通过学习提高评估能力(速度和准确度),也可经过多次重复后成为经验,出现成熟,形成动力定型,即固定的评估模式。动态决策理论认为,人们可通过评估行为经验、结果、知识以及环境提示从而做出行为决策[79]。

5 对行为干预的参考意义

根据本研究构建的理论,进行行为干预时,应帮助个体通过与其他行为的比较,认识到推荐行为的重要性优先。通过与个体的讨论,确认刺激的危险性以及推荐行为在增加安全性方面的意义;通过对推荐行为及行为结果的分析,帮助个体发现能获得的益处;通过与个体讨论,帮助其找出实施推荐行为所拥有的资源。但本理论是否可有效应用于行为干预,尚需进行实践验证。

6 结论

人体通过感受器和中枢神经对内、外部刺激持续进行评估,并根据评估结果做出行为决策,进而产生生理反应或行为。行为结果作为反馈信息,供中枢神经做出新的行为决策,形成“刺激-评估-决策循环-行为”循环。个体以基因遗传、自我图式、群体规范和直觉为参照系,对内外刺激的重要性、获益性、安全性和资源进行感觉性评估和社会性评估。评估会受到情感、情境和成熟因素的影响。进行行为干预时,应重点帮助个体发现和确认推荐行为的重要性、实施推荐行为可增加的安全感和益处以及其拥有的资源。本研究构建的理论有效性尚需进行实践验证。

[1] Mokdad A H, Marks J S, Stroup D F, et al. Actual causes of death in the United States, 2000[J]. JAMA, 2004, 291(10):1238-1245.

[2] GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159):1923-1994.

[3] Glanz K, Bishop D B. The role of behavioral science theory in development and implementation of public health interventions[J]. Annu Rev Public Health, 2010, 31(1):399-418.

[4] Kok G, Gottlieb N H, Peters G Y, et al. A taxonomy of behavior change methods: An intervention mapping approach[J]. Health Psychol Rev, 2016, 10(3):297-312.

[5] Steinmetz H, Knappstein M, Ajzen I, et al. How effective are behavior change interventions based on the theory of planned behavior? A three-level meta-analysis[J]. Z Psychol-J Psychol, 2016, 224(3):216-233.

[6] Prestwich A, Sniehotta F F, Whittington C, et al. Does theory influence the effectiveness of health behavior interventions? Meta-analysis[J]. Health Psychol, 2014, 33(5):465-474.

[7] McDermott M S, Oliver M, Iverson D, et al. Effective techniques for changing physical activity and healthy eating intentions and behaviour: a systematic review and meta-analysis[J]. Br J Health Psychol, 2016, 21(4):827- 841.

[8] Hagger M S, Weed M. DEBATE: Do interventions based on behavioral theory work in the real world?[J/OL]. Int J Behav Nutr Phys Act, 2019, 16(1):36. (2019-04-25) [2020-03-01]. https://doi.org/10.1186/s12966-019-0795- 4. DOI:10.1186/s12966-019-0795-4.

[9] Kwasnicka D, Dombrowski S U, White M, et al. Theoretical explanations for maintenance of behaviour change: A systematic review of behaviour theories[J]. Health Psychol Rev, 2016, 10(3): 277-296.

[10] Levitis D A, Lidicker W Z, Freund G. Behavioural biologists don’t agree on what constitutes behaviour[J]. Anim Behav, 2009, 78(1):103-110.

[11] Redish A D. The mind within the brain: how we make decisions and how those decisions go wrong[M]. Oxford University Press; Oxford: 2013.

[12] Chrousos G P. Stress and disorders of the stress system[J]. Nat Rev Endocrinol, 2009, 5(7):374-381.

[13] Vlaev I, Dolan P. Action change theory: a reinforcement learning perspective on behaviour change[J]. Rev Gen Psychol, 2015, 19(1):69-95.

[14] Vlaev I, King D, Dolan P, et al. Theory and practice of 'nudging': changing health behaviors[J]. Public Adm Rev, 2016, 76(4):550-561.

[15] Merfeld D M, Clark T K, Lu Y M, et al. Dynamics of individual perceptual decisions[J]. J Neurophysiol, 2016, 115(1): 39-59.

[16] van der Meer M, Kurth-Nelson Z, Redish A D. Information processing in decision-making systems[J]. Neuroscientist, 2012, 18(4):342-359.

[17] Tremblay S, Sharika K M, Platt M L. Social decision-making and the brain: a comparative perspective[J]. Trends Cogn Sci, 2017, 21(4):265-276.

[18] Bartra O, et al. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value[J]. Neuroimage, 2013, 76(1):412-427.

[19] Rangel, A., Camerer, C., & Montague, P. R. A framework for studying the neurobiology of value-based decision making[J]. Nature Reviews Neuroscience, 2008, 9(7): 545-556.

[20] Zaki J, Schirmer J, Mitchell J P. Social influence modulates the neural computation of value[J]. Psychol Sci, 2011, 22(7):894-900.

[21] Zhu Y, Nachtrab G, Keyes P C, et al. Dynamic salience processing in paraventricular thalamus gates associative learning[J]. Science, 2018, 362(6413):423-429.

[22] Frederick S, Loewenstein G, O’Donoghue T. Time discounting and time preference: a critical review[J]. J Econ Lit. 2002, 40(2):350-401.

[23] Werner-Bierwisch T, Pinkert C, Niessen K, et al. Mothers’ and fathers’ sense of security in the context of pregnancy, childbirth and the postnatal period: an integrative literature review[J/OL]. BMC Pregnancy Childb 2018, 18(1):473. (2018) [2020-03-01]. https://doi. org/10.1186/s12884-018-2096-3. DOI:10.1186/s12884- 018-2096-3.

[24] Sagliano L, D’Olimpio F, Panico F, et al. The role of the dorsolateral prefrontal cortex in early threat processing: A TMS study[J]. Soc Cogn Affect Neurosci, 2016, 11(12):1992-1998.

[25] Eisenberger N, Cole S. Social neuroscience and health: neurophysiological mechanisms linking social ties with physical health[J]. Nat Neurosci, 2012, 15(5):669-674.

[26] O’Donovan A, Tomiyama A J, Lin J, et al. Stress appraisals and cellular aging: a key role for anticipatory threat in the relationship between psychological stress and telomere length[J]. Brain Behav Immun, 2012, 26(4): 573-579.

[27] Cunningham W A, Brosch T. Motivational salience: Amygdala tuning from traits, needs, values, and goals[J]. Curr Dir Psychol Sci, 2012, 21(1): 54-59.

[28] Muscatell K A, Eisenberger N I. A social neuroscience perspective on stress and health[J]. Soc Personal Psychol Compass, 2012, 6(12):890-904.

[29] Felten D L, O’Banion M K, Maida M S. Netter’s atlas of neuroscience[M]. 3rd ed. Amsterdam: Elsevier Science Pub. B. U., 2016:153-231.

[30] Saper C B. Diencephalon, basal ganglia, basal forebrain and amygdala[M]//The human nervous system. MaiJ K, Paxinos G. 3rd ed. Amsterdam: Elsevier Science Pub. B. U., 2012:548-583.

[31] Tsigos C, Kyrou I, Kassi E, et al. Stress, endocrine physiology and pathophysiology[M/OL]//Endotext. Feingold K R, Anawalt B, Boyce A, et al. (2016-03-10]. South Dartmouth (MA): MDText.com, Inc.; 2000. https://www.ncbi.nlm.nih.gov/books/NBK278995/.

[32] Holmes M E, Ekkekakis P, Eisenmann J C. The physical activity, stress and metabolic syndrome triangle: a guide to unfamiliar territory for the obesity researcher[J]. Obes Rev, 2010, 11(7):492-507.

[33] Goldstein DS, McEwen B. Allostasis, homeostats, and the nature of stress[J]. Stress, 2002, 5(1):55-58.

[34] Watanabe K. Brain Nerve. Factors behind action, emotion, and decision making[J]. Brain Nerve, 2009, 61(12):1413-1418.

[35] Cotterill S, Powell R, Rhodes S, et al. The impact of social norms interventions on clinical behaviour change among health workers: protocol for a systematic review and meta-analysis[J/OL]. Syst Rev, 2019, 8(1):176. (2019-07-18) [2020-02-01] https://systematicreviews journal. biomedcentral.com/track/pdf/10.1186/s13643- 019-1077-6. DOI:10.1186/s13643-019-1077-6.

[36] Ghasrodashti E K. Explaining brand switching behavior using pull-push-mooring theory and the theory of reasoned action[J]. J Brand Management, 2018, 25(4): 293-304.

[37] Ortigue S, Bianchi-Demicheli F. Intention, false beliefs, and delusional jealousy: insights into the right hemisphere from neurological patients and neuroimaging studies[J]. Med Sci Monit, 2011, 17(1):RA1-RA11.

[38] Rodriguez L M, DiBello A M, Øverup C S, et al. The price of distrust: Trust, anxious attachment, jealousy, and partner abuse[J]. Partner Abuse, 2015, 6(3): 298-319.

[39] Van Hagen P, Hulshof M C C M, van Lanschot J J B, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer[J]. N Engl J Med, 2012, 43(2):215-219.

[40] Zeithamova X D, Mack X M L, Braunlich Kurt, et al. Brain mechanisms of concept learning[J]. J Neurosci, 2019, 39(42):8259-8266.

[41] Oppenheimer D M, Kelso E. Information processing as a paradigm for decision making[J]. Annu Rev Psychol, 2015, 66:277-294.

[42] Loewenstein G, Prelec D. Preferences for sequences of outcomes[J]. Psychol Rev, 1993, 100(1):91-108.

[43] Kahneman D, Tversky A. Choices, values and frames[M]. New York: Cambridge University Press and the Russell Sage Foundation, 2000.

[44] Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2):263- 291.

[45] Jones C J, Smith H, Llewellyn C. Evaluating the effectiveness of health belief model interventions in improving adherence: a systematic review[J]. Health Psychol Rev, 2014, 8(3):253-269.

[46] Yacubian J, Gläscher J, Schroeder K, et al. Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain[J]. J Neurosci, 2006, 26(37):9530-9537.

[47] Hashemzadeh M, Rahimi A, Zare-Farashbandi F, et al. Transtheoretical model of health behavioral change: A systematic review[J]. Iran J Nurs Midwifery Res, 2019, 24(2):83-90.

[48] Nakagawa S, Takeuchi H, Taki Y, et al. Lenticular nucleus correlates of general self-efficacy in young adults[J]. Brain Struct Funct, 2017, 222(7): 3309-3318.

[49] David S. Moore. Behavioral epigenetics[J/OL]. Wiley Interdiscip Rev Syst Biol Med, 2016, 9(1). (2017-01) [2020-03-01]. https://doi.org/10.1002/wsbm.1333. DOI: 10.1002/wsbm.1333.

[50] Anholt R R H. Evolution of epistatic networks and the genetic basis of innate behaviors[J]. Trends Genet, 2020, 36(1):24-29.

[51] Maren S, Phan K L, Liberzon I. The contextual brain: Implications for fear conditioning, extinction and psychopathology[J]. Nat Rev Neurosci, 2013, 14(6):417- 428.

[52] Busemeyer J R. Cognitive science contributions to decision science[J]. Cognition, 2015, 135:43-46.

[53] Reuter M, Frenzel C, Walter N T, et al. Investigating the genetic basis of altruism: the role of the COMT Val158Met polymorphism[J]. Soc Cogn Affect Neurosci, 2011, 6(5):662-668.

[54] Taschereau-Dumouchel V, Hétu S, Bagramian A, et al. BDNF Val66Met Polymorphism is associated with self-reported empathy[J/OL]. PLoS One, 2016, 11(2): e0149911. (2016-02-22) [2020-03-01]. https://www. researchgate.net/publication/295682636_BDNF_Val66Met_Polymorphism_Is_Associated_with_Self-Reported_Empathy. DOI: 10.1371/journal.pone.0149911.

[55] Schaffner K F. Behavior: Its nature and its nurture[M]// Wrestling with Behavioral Genetics. Parens E, Chapman A R, Press N. Baltimore, MD: John Hopkins University; 2006: 3-39.

[56] Crews D. Epigenetic modifications of brain and behavior: theory and practice[J]. Horm Behav, 2011, 59(3):393- 398.

[57] Champagne F A, Curley J P. Maternal care as a modulating influence on infant development[M]//Oxford handbook of developmental behavioral neuroscience. Blumberg M S, Freeman J H, Robinson S R. Oxford: Oxford Library of Neuroscience, 2010, 323-341.

[58] Korosi A, Baram T Z. The pathways from mother’s love to baby’s future[J/OL]. Front Behav Neurosci, 2009, 3:27. (2009-09-24) [2020-03-01]. https://doi.org/10.3389/ neuro.08.027.2009. DOI:10.3389/neuro.08.027.2009.

[59] Moriceau S, Raineki C, Holman J D, et al. Enduring neurobehavioral effects of early life trauma mediated through learning and corticosterone suppression[J/OL]. Front Behav Neurosci, 2009, 3:22. (2009-09-01) [2020- 03-01].https://doi.org/10.3389/neuro.08.022.2009. DOI: 10.3389/neuro.08.022.2009.

[60] Brosch T, Coppin G, Schwartz S, et al. The importance of actions and the worth of an object: dissociable neural systems representing core value and economic value[J]. Soc Cogn Affect Neurosci, 2012, 7(5):497-505.

[61] Bardi A, Schwartz S H. Values and behavior: strength and structure of relations[J]. Pers Soc Psychol Bull, 2003, 29(10):1207-1220.

[62] Schwartz S H. Universals in the content and structure of values: theoretical advances and empirical tests in 20 countries[J]. Adv Exp Soc Psychol, 1992, 25:1-65.

[63] Cotterill S, Powell R, Rhodes S, et al. The impact of social norms interventions on clinical behaviour change among health workers: protocol for a systematic review and meta-analysis[J/OL]. Syst Rev, 2019, 8(1):176. (2019-07-18) [2020-03-01]. https://systematicreviews journal.biomedcentral.com/articles/10.1186/s13643-019-1077-6. DOI:10.1186/s13643-019-1077-6.

[64] Jasper J D, Christman S D. A neuro-psycological dimension for Anchoring effects[J]. J Behav Decis Making, 2005, 18:343-369.

[65] Beresford B, Sloper T . Understanding the dynamics of decision-making and choice: a scoping study of key psychological theories to inform the design and analysis of the panel study[M]. Social Policy Unit, University of York, 2008.:9-11.

[66] Pust J. Intuition. Stanford Encyclopedia of Philosophy[R/OL]. (2017-05-09) [2020-03-01]. http://plato.stanford.edu/entries/intuition/.

[67] Greene J. Moral tribes: Emotion, reason, and the gap between us and them[M]. New York: Penguin Press, 2013.

[68] Kahneman D. Thinking, fast, and slow[M]. New York: Farrar, Straus, And Giroux, 2011.

[69] Gardner J L. Optimality and heuristics in perceptual neuroscience[J]. Nat Neurosci, 2019, 22:514-523.

[70] Korn C W, Bach D R. Heuristic and optimal policy computations in the human brain during sequential decision-making[J/OL]. Nat Commun, 2018, 9(1):325. (2018-01-23) [2020-03-01]. https://www.nature.com/ articles/s41467-017-02750-3.pdf. DOI:10.1038/s41467- 017-02750-3.

[71] Bushong B, King L M, Camerer C F, et al. Pavlovian processes in consumer choice: the physical presence of a good increases willingness-to-pay[J]. Am Econ Rev, 2010, 100(4):1556-1571.

[72] Ray R D, Zald D H. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex[J]. Neurosci Biobehav Rev, 2012, 36(1):479-501.

[73] De Martino B, Kumaran D, Seymour B, et al. Frames, biases, and rational decision-making in the human brain[J]. Science, 2006, 313(5787):684-687.

[74] Lemerise E A, Arsenio W F. An integrated model of emotion processes and cognition in social information processing[J]. Child Dev, 2000, 71(1):107-118.

[75] Svenson O. Values, affect and process in human decision making: A differentiation and consolidation theory perspective[M]//Emerging perspectives on judgement and decision reaearch. Schneider S L, Shanteau J. New York: Cambridge University Press, 2003:287-326.

[76] Lerner J S, Keltner D. Beyond valence: Toward a model of emotion-specific influences on judgement and choice[J], Cogn Emot, 2000, 14(4):473-493.

[77] Rauthmann J F , Sherman R A , Nave C S , et al. Personality-driven situation experience, contact, and construal: How people’s personality traits predict characteristics of their situations in daily life[J]. J Res Pers, 2015, 55:98-111.

[78] Vlaev I, King D, Darzi A, et al. Changing health behaviors using financial incentives: A review from behavioral economics[J/OL]. BMC Public Health, 2019, 19(1). (2019-12) [2020-03-01] https://doi.org/10.1186/ s12889-019-7407-8. DOI: 10.1186/s12889-019-7407-8.

[79] Gonzalez C, Fakhari P, Busemeyer J. Dynamic decision making: Learning processes and new research directions[J]. Hum Factors, 2017, 59(5):713-721.

A Study on Construction of Assessment Theory on Behavioral Decision-making

An assessment theory on behavioral decision-making is constructed to lay a scientific basis for behavioral intervention by revealing the origin and intrinsic rule of generating, development and change of human behavior. The theory proposes that all human behavior is the individual's active coping response to an assessment of internal and external stimuli in order to survive and develop. An individual makes sensual and rational assessment on importance, security, benefits of internal and external stimuli, and resources that can be utilized to respond, based on the reference framework of genetic endowment, self-schema, group norms, and intuition. The assessment founds the premise for decision-making of/and physiological responses and behavior/action, and through the sensor, central nervous system and effector a “stimulation - assessment - decision-making-behavior” circulation is established. When conducting behavioral intervention, discussion and analysis with individuals should be conducted to help them identify the importance, increased security, gains, and resources possessed to perform the coping behaviors.

Stimulus; Sensual assessment; Rational assessment; Importance assessment; Gains assessment; Security assessment; Resource assessment; Reference framework

10.16117/j.cnki.31-1974/r.202002016

田向阳(1967—),男,主任医师,主要从事健康教育与健康促进理论研究工作,healthtian@163.com。

2020-03-03。

猜你喜欢
个体决策评估
不同评估方法在T2DM心血管病风险评估中的应用
为可持续决策提供依据
第四代评估理论对我国学科评估的启示
关注个体防护装备
明确“因材施教” 促进个体发展
决策大数据
决策大数据
诸葛亮隆中决策
How Cats See the World
立法后评估:且行且尽善