致密砂岩储层毛管自吸微观分布特征

2020-09-18 01:02孟英峰苏晓明
油气地质与采收率 2020年5期
关键词:纳米级毛管岩样

袁 媛,孟英峰,李 皋,苏晓明

(油气藏地质及开发工程国家重点实验室西南石油大学,四川成都 610500)

致密砂岩气作为非常规油气的重要组成部分之一,具有很大的开发潜能[1-2]。在气井的钻井、完井及生产过程中,致密砂岩的水锁损害问题十分突出。毛管自吸是造成致密砂岩储层水锁的重要原因之一[3]。毛管自吸现象是某种润湿性液体在毛细管力驱动作用下自发进入多孔介质的物理化学现象[4],毛细管力与界面张力、润湿接触角成正比,与孔隙半径成反比[5]。当外压差极小、毛细管力作为自吸的主要驱动力时,孔隙半径越小,毛细管力越强,因此液相会优先沿较细孔道侵入,占据小孔喉[6]。毛管自吸程度与岩样尺寸、孔隙结构、流体特性、润湿性、初始含水饱和度、边界条件、围压、矿化度以及欠压值等因素有关[7-17]。针对致密砂岩储层的毛管自吸,中外学者开展了大量的理论分析[18]和实验研究[19]。康毅力等开展了压裂液在压差作用下的滤失实验以及在毛细管力作用下的垂直自吸实验,并对比了基块岩样与裂缝岩样在自吸、返排过程中的异同点[16]。游利军等指出毛管自吸包括润湿相饱和度快速增加和在孔隙空间中的重新分布2 个阶段[8]。李宁等利用垂直自吸实验装置研究自吸流体与岩石的接触面积对自吸效果的影响,结果表明接触面积越大,自吸效果越明显[20]。陈猛利用核磁共振技术与离心法研究致密砂岩中束缚流体与可动流体的分布规律[21]。倪冠华等采用核磁共振技术与离心法研究了孔隙负压与表面活性剂2个因素对煤岩水锁损害的影响[22]。SCHEMBRE 等利用CT 扫描技术研究自吸水前缘随自吸时间的变化规律,并指出岩样在宏观上表现为活塞式自吸的特点[23-26]。周玉良等利用电阻率测量法研究高温高压条件下水侵前缘的推进速度与时间的关系[27]。上述对多孔介质自吸的室内实验研究主要集中在自吸影响因素、自吸采出程度以及自吸水前缘推进速率等方面,而关于在不同自吸时间及不同尺寸孔隙空间中自吸水的微观分布特征的研究鲜有报道。为此,利用垂直自吸实验与核磁共振技术,研究了自吸量随自吸时间的变化规律以及自吸水在岩石孔隙空间中的微观分布特征,为进一步定量深入研究致密砂岩储层毛管自吸规律提供了理论参考。

1 实验设计及孔隙半径转换

1.1 实验材料

实验所用砂岩来自川西蓬莱镇组致密储层,对其进行洗油、洗盐、烘干、称重、几何参数测量、润湿性测定以及孔隙结构测定。参考GB/T 29172-2012岩心分析方法[28],采用SCMS-E 型高温高压岩心多参数测量系统——气体孔渗测量仪进行岩样的孔隙度及渗透率测定。由具体的基础物性参数(表1)可知,4 块岩样在标准盐水下的接触角均约为30°,根据润湿性判定标准[29]可知,均为亲水岩石。1#岩样的储集空间主要为粒间孔以及环绕颗粒边缘发育的贴粒缝[30](微裂缝的一种),该类裂缝主要分布在颗粒之间,以弯曲状为主,延伸长度较短,两端多与孔隙相连,连通性较好,因而渗流能力强,渗透率高于其他3 块岩样(图1a)。其余3 块岩样的孔隙结构类似,以粒间孔、粒内溶孔为主,少量粒间溶孔,粒内溶孔多为长石和岩屑溶蚀孔,孔隙的连通性较差(图1b)。

表1 4块岩样基础物性数据Table1 Basic physical property data of four rock samples

图1 川西蓬莱镇组致密砂岩储层主要储集空间类型Fig.1 Main reservoir space types of tight sandstone reservoirs in Penglaizhen Formation in western Sichuan

为了避免其他敏感性伤害对自吸实验的影响,选用标准盐水作为模拟地层水,标准盐水具体配方为:蒸馏水+7%氯化钠+0.6%氯化钙+0.4%氯化镁。常温常压下标准盐水的黏度为1.02 mPa·s,密度为1.031 g/cm3。

1.2 实验装置

实验装置包括MicroMR23-060V-VT 柜式核磁共振分析仪、OCA25 全自动接触角测定仪、Poremas⁃ter60 全自动压汞仪、MX841-3 型恒温干燥箱、CK-1抽真空饱和装置、垂直自吸实验装置ZX-2Y-Ⅱ(图2),高精度电子天平(精度为0.000 1 g)。Mi⁃croMR23-060V-VT 柜式核磁共振分析仪主要由普仪系统、射频单元、梯度单元、磁体柜及供电单元5部分组成,磁场感应强度为(0.5±0.05)T,磁体恒定温度为32 ℃。CPMG 脉冲序列回波间隔为0.15 ms,等待时间为3 000 ms,回波个数为15 000。OCA25全自动接触角测定仪的测量范围为0°~180°,测量精度为±0.1°,最大分辨率为2 048×1 088,用于测定自吸液体与岩样之间的接触角。

图2 垂直自吸实验装置ZX-2Y-Ⅱ示意Fig.2 Schematic diagram of experimental device for vertical self-imbibition

1.3 实验步骤

利用垂直自吸实验装置和核磁共振技术开展致密砂岩储层毛管自吸研究的具体实验步骤如下:①利用CK-1 抽真空饱和装置对烘干后的标准岩样抽真空并饱和盐水48 h,将饱和盐水的岩样置于低磁场核磁共振分析仪的探头中,进行核磁共振测试,将采集的弛豫数据经反演软件进行反演计算,获取样品的T2谱分布。②将岩样置于MX841-3 型恒温干燥箱中,在(70±3)℃的条件下烘干36 h 直至恒重。③利用垂直自吸实验装置ZX-2Y-Ⅱ进行岩样自吸水实验,自吸5 min 后取出岩样称重,然后进行核磁共振测试,反演获取岩样自吸5 min 后的T2谱分布,为了避免岩样自吸底端表面水对核磁共振结果造成影响,将自吸岩样取出后,用吸水纸沾去岩样自吸底端的表面水。④将累积自吸时间逐渐延长,重复步骤③,通过核磁共振测试反演获取同一块岩样在不同自吸时间下的T2谱分布及自吸水的微观分布特征,累积自吸时间分别为10,15,20,25,30,60,120,240,480,960,1 920 min。每个岩样按照其编号顺序依次重复步骤①—④至实验结束。

1.4 核磁共振T2谱转换为孔隙半径

由核磁共振技术原理可知,岩样100%饱和水的核磁共振T2谱可以直接反映其内部微观孔隙结构及对应的孔隙体积分布[31]:

由(1)式可知,横向弛豫时间与单个孔隙的表面积和体积有关,若将岩样孔隙空间简化为球状和柱状,则:

将(2)式代入(1)式,可得到横向弛豫时间与孔隙半径的关系为[32]:

其中:

通过核磁共振测试得到岩样饱和水状态下的核磁共振T2谱,结合常规压汞实验得到的孔隙半径分布,由最小二乘法得到(3)式中的转换系数C,这里C=50,最终可以得到核磁共振T2谱转换的孔隙半径分布。

2 实验结果及分析

2.1 核磁共振T2谱转换的孔隙半径与常规压汞孔隙半径对比

由4块岩样核磁共振T2谱转换的孔隙半径分布与常规压汞实验得到的孔隙半径分布对比(表2)可知,总体来看,经核磁共振T2谱转换的孔隙半径分布与常规压汞孔隙半径分布一致,表明核磁共振T2谱转换的孔隙半径分布具有可靠性。当孔隙半径分布在0~0.1µm 时,核磁共振T2谱转换的孔隙半径分布值略大于常规压汞孔隙半径分布值,这是由于在进汞过程中,最大进汞压力未能突破小喉道处的毛管压力,造成小喉道封闭而未能被汞完全充满,故常规压汞实验结果不能表征孔隙半径分布小于最大进汞压力下的那部分孔隙;而核磁共振T2谱转换的孔隙半径分布则可表征岩样在完全饱和状态下的所有孔隙半径[33]。

表2 核磁共振T2谱转换的孔隙半径分布值与常规压汞孔隙半径分布值对比Table2 Comparison of pore radius by NMR T2 spectrum conversion and conventional mercury intrusion%

由铸体薄片分析结果(图1)可知,1#岩样孔隙微裂缝较为发育,49.4%的孔隙半径分布集中在0~0.1 µm 的纳米级范围内,50.6%的孔隙半径分布集中在0.1~1 µm 的亚微米级、大于1 µm 的微米级范围内;而渗透率接近于0.02 mD 的其余3 块岩样有67%以上的孔隙半径分布集中在0~0.1 µm 的纳米级范围内(表2)。

2.2 自吸量与孔隙半径的关系

在4块岩样不同自吸时间的核磁孔隙半径图谱(图3)中,横坐标表示核磁共振T2谱转换的孔隙半径分布,纵坐标表示核磁共振信号强度,信号强度代表自吸水含量的多少,信号强度越大,表示自吸水含量越多;反之,信号强度越小,表示自吸水含量越少。在自吸初期,孔隙半径分布在0~0.1µm 的核磁信号强度峰值最大,0.1~1µm 的核磁信号强度峰值次之,1~10 和大于10µm 的核磁信号强度峰值最小。随着自吸时间的延长,孔隙半径分布在0~0.1和0.1~1 µm 的核磁信号强度峰值增大,分布在1~10µm 的核磁信号强度峰值开始增大,分布大于10µm 的核磁信号强度峰值始终很小。这表明,自吸量由大到小的孔隙半径分布依次为:0~0.1µm 的纳米级孔隙、0.1~1µm的亚微米级孔隙、1~10µm的微米级孔隙、大于10µm的微米级孔隙。裂缝-孔隙双重介质型岩样的核磁信号强度始终大于孔隙型岩样,表明裂缝-孔隙双重介质型岩样的自吸量始终大于孔隙型岩样。

4 块岩样100%饱和水状态下的核磁共振信号强度-孔隙半径分布曲线表征了孔隙半径分布情况,曲线以0.1µm 为界限,整体呈现出双峰结构,裂缝-孔隙双重介质型岩样(图3a)的左峰与右峰面积占比分别为49.4%和50.6%,该值恰好反映了分布在0~0.1 和大于0.1 µm 范围内的孔隙半径分布比例。孔隙型岩样的核磁共振信号强度曲线形态类似(图3b—3d),左峰明显高于右峰,表明分布在0~0.1µm 的孔隙占比高于大于0.1µm 的孔隙占比,有67%以上的孔隙半径分布集中在0~0.1 µm 的纳米级范围内。

图3 4块岩样在不同自吸时间的核磁共振信号强度比较Fig.3 Comparison of NMR signal intensity of four sandstone samples at different self-imbibition times

2.3 自吸量与自吸时间的关系

4 块岩样的自吸量随自吸时间平方根变化曲线(图4)的走势反映了岩石种类、孔隙质量、岩石与流体的相互作用等因素[34]。裂缝-孔隙双重介质型岩样存在微裂缝,良好的连通性为毛管自吸提供了渗流通道,避免了水相通过狭窄喉道产生的附加阻力,即液阻效应。因此,裂缝-孔隙双重介质型岩样的自吸量(纵坐标值)与自吸速率(曲线斜率)均大于孔隙型岩样。自然坐标下的自吸量-自吸时间平方根曲线为典型的“两段式”,第一段为以毛细管力作用为主的自吸段,自吸水在毛细管力和化学渗透压的作用下进入相互连通的孔隙网络;第二段为以化学渗透压作用为主的扩散段,由于岩石内部液相分布的化学状态未达到平衡,自吸水在化学渗透压的作用下进入黏土矿物内部以及在微毛细管力作用下向基质更深处侵入[35]。自吸段与扩散段的分界点为拐点,拐点之前的自吸量-自吸时间平方根曲线近似为线性,相关系数均高达0.95 以上,拐点之后的曲线为非线性,走势较为平缓[5]。裂缝-孔隙双重介质型岩样的自吸量-自吸时间平方根曲线出现拐点的时间早于孔隙型岩样,分析可知,自吸初期,岩样处于“缺水”状态,自吸水在强大的毛细管力作用下进入岩石孔隙空间,裂缝-孔隙双重介质型岩样的渗透性较好,自吸效率较高,大大地缩短了以毛细管力作用为主的自吸段所需时间。

图4 自吸量随自吸时间平方根的变化Fig.4 Curve of self-imbibition mass with square root of imbibition time

2.4 自吸微观分布特征

根据核磁共振技术以氢元素作为示踪剂的原理,将4块岩样在不同自吸时间、不同孔隙半径的核磁共振信号强度转换为自吸水在孔隙空间中的分布频率(图5)。对于孔隙型岩样,在自吸持续5 min时,自吸水主要集中在0~0.1 µm 的纳米级孔隙中,占比高达84%以上,随着自吸时间的延长,分布在0~0.1 µm 的纳米级孔隙中的自吸水占比下降至75%左右;分布在0.1~1 µm 的亚微米级、1~10 µm的微米级孔隙中的自吸水占比分别上升至18%和5%左右;大于10µm的微米级孔隙中的自吸水没有明显的上升或下降趋势,且最大占比仅为1.95%。对比之下,裂缝-孔隙双重介质型岩样分布在0~0.1µm 的纳米级孔隙中的自吸水最大占比高达87%,随着自吸时间的延长,该类岩样分布在0~0.1µm 的纳米级孔隙中的自吸水占比由87%下降到70%,下降速度最快,分布在0.1~1µm 的亚微米级孔隙中的自吸水占比由11%上升到25%,上升幅度最大,分布在大于10µm的微米级孔隙中的自吸水亦没有呈现出明显的变化规律,最大占比仅为1.0%。

毛细管力作为自吸的主要动力,控制着整个毛管自吸过程,纳米级孔隙中的毛细管力最强,优先发生毛管自吸。因此,自吸初期,自吸水主要集中在纳米级孔隙中;随着自吸时间的延长,纳米级孔隙的毛细管力随着含水饱和度的增加而减小[36],自吸进程逐渐变缓,此时,亚微米级、微米级孔隙开始参与到毛管自吸过程中,该半径区间内的水相占比逐渐上升,相应地,纳米级孔隙中的自吸水占比逐渐减小。对于裂缝-孔隙双重介质型岩样,亚微米级、微米级孔隙中的自吸水占比快速增加主要有2方面原因:①微裂缝的存在沟通了相邻孔隙,为自吸水进入孔隙空间提供了良好的渗流通道,提高了流体在其中的流动能力,在毛细管力的作用下,自吸水进入亚微米级、微米级孔隙。②在毛细管力和化学渗透压的作用下,纳米级孔隙中的水相开始转移到亚微米级、微米级孔隙。半径大于10µm 孔隙的最大毛细管力仅为0.012 5 MPa,微弱的毛细管力不足以产生毛管自吸现象,再加上该区间孔隙数量占比仅约为0.1%,导致该区间内的自吸水没有明显的变化规律。

在不考虑外部正压差作用时,毛管自吸现象会优先发生在纳米级孔隙中,孔隙半径、不同孔隙类型、孔隙半径占比、含水饱和度等是影响毛管自吸微观分布特征的主要因素。

3 结论

取自川西蓬莱镇组的致密砂岩岩样润湿性为水湿,裂缝-孔隙双重介质型岩样的自吸量与自吸速率均大于孔隙型岩样。自吸量-自吸时间平方根曲线为典型的“两段式”,第一段为以毛细管力作用为主的自吸段,第二段为以化学渗透压作用为主的扩散段。

图5 4块岩样自吸水相分布频率Fig.5 Distribution frequency of self-imbibition water phase of 4 rock samples

基于核磁共振技术的致密砂岩储层毛管自吸微观分布特征表明:在自吸初期,高达84%以上的自吸水集中在0~0.1 µm 的纳米级孔隙中。随着自吸时间的延长,纳米级孔隙中的自吸水占比逐渐下降,分布在0.1~1 µm 的亚微米级、1~10 µm 的微米级孔隙中的自吸水占比逐渐上升;半径大于10 µm的微米级孔隙数量较少,再加上毛细管力作用极弱,导致该部分孔隙中的自吸水充满程度较低,最大占比仅为1.95%,且没有明显的变化规律。

在不考虑外部正压差作用时,毛管自吸现象会优先发生在纳米级孔隙中,孔隙半径、不同孔隙类型、孔隙半径占比、含水饱和度等是影响毛管自吸微观分布特征的主要因素。自吸水在岩石孔隙空间中微观分布状态的研究,为进一步定量深入研究致密砂岩储层毛管自吸规律提供了理论参考。

符号解释

C——转换系数,其取值具有经验性和不唯一性,一般同一地区、同一层位该值基本相同;

Fs——孔隙形状因子,对于球状孔隙其值为3,对于柱状孔隙其值为2;

r——孔隙半径,µm。

S——单个孔隙的表面积,µm2;

T2——横向弛豫时间,ms;

V——单个孔隙的体积,µm3;

ρ2——流体所处孔隙的表面弛豫率,µm/ms,取决于孔隙表面性质、饱和流体性质和矿物组成。

猜你喜欢
纳米级毛管岩样
圆柱式滴头内镶及外包对滴灌毛管水力特性影响的模拟研究
高阶煤煤岩毛管压力曲线新数学模型及关键参数
温度效应对隧道围岩影响的试验研究
孔隙度测定误差及其控制方法研究
纳米级针尖制备控制系统设计与实现
毛管入口流量估算方法与验证
频繁动力扰动对围压卸载中高储能岩体的动力学影响*
微纳米级“外衣”让控释肥料“变聪明”
纳米级稳定性三型复合肥
预制节理岩体卸荷损伤破坏机理及声发射特征试验研究