医用磁共振成像系统质量控制图像均匀度检测方法的研究

2020-12-07 03:30林迪逵吴剑威付丽媛熊晖陈自谦
中国医疗设备 2020年11期
关键词:均匀分布信号强度均匀度

林迪逵,吴剑威 ,付丽媛,熊晖,陈自谦

联勤保障部队第900医院(原南京军区福州总医院)a.医学工程科/福建省医学装备管理质量控制中心;b.放射诊断科,福建福州350025

引言

图像均匀度是指当成像对象是均匀物质时,医用磁共振成像(Magnetic Resonance Imagine,MRI)系统在整个扫描体区域产生相同信号响应的能力。MRI图像的不均匀可能是由许多因素引起的,包括:静态磁场的不均匀性(B0不均匀性)、射频场的不均匀性(B1不均匀性)、梯度脉冲校准或涡流校正的不足等[1]。MRI质量控制(Quality Control,QC)程序通过检测图像均匀度,允许对相关成像系统性能状态进行校正,以获得高质量的MRI临床诊断图像[2-3]。

现行业内执行的MRI图像均匀度检测方法主要包括均匀分布法和窗宽窗位法。两种检测方法的实施策略与相应的技术特点都存在显著差异,导致二者对同一目标图像的检测结果将出现偏差,其针对成像系统性能的评价结果无法实现等价。针对磁共振图像均匀度检测技术,国内学者张默等[4]主要讨论两种类型的体模结构在均匀度检测中的适用性。熊晖等[5]则基于ACR体模,研究调值法(等同于本文所述窗宽窗位法)与最值法的检测一致性,认为两者一致性良好但调值法具备较高的检测精度,宋双等[6]的相关研究也证实了这一结论。历史研究普遍受限于体模类型,对均匀分布法和窗宽窗位法两种主流图像均匀度检测方法的对比分析并未在同一检测环境下进行,测量稳定性等相关讨论也未涉及。基于上述研究背景,本文认为有必要对均匀分布法和窗宽窗位法两种主流MRI图像均匀度检测方法开展平行条件下的实验对比研究,探讨检测方法对于评价成像系统性能的客观性以及对设备性能初始问题的敏感性。

1 材料与方法

1.1 成像对象与扫描参数

成像对象选用Magphan SMR170 MRI性能测试体模。扫描采用自旋回波成像脉冲序列(Spin-Echo,SE),TR=500ms,TE=30 ms,FOV=24 cm×24 cm,Matrix=256×256,激励次数为1次,单层扫描层厚为5mm,接收带宽为156Hz/pixel。对6台MRI设备实施图像均匀度检测程序。

1.2 图像均匀度检测方法

1.2.1 均匀分布法

在图像均匀性测试层面测量感兴趣区域(Measurement Region of Interest,MROI)内选取1个中心测量感兴趣子区域 (Measurement Subregion of Interest,SROI) 和 8 个 边 缘SROI为测量感兴趣区域。8个边缘SROI中心与图像中心SROI的连线与图像纵轴分别成大概 0、45°、90°、135°、180°、225°、270°和315°的角度;SROI的面积大小在1~2 cm2(大约包含100个像素点),见图1。选取上述9个SROI信号强度均值中的最大值(Smax)和最小值(Smin),代入式(1)计算图像均匀度U1。

1.2.2 窗宽窗位法

在图像均匀性测试层面MROI内,设置窗宽至最小,调整窗位找出窗口内最高信号强度区域,将SROI(面积约为100 mm2)定位在此高信号强度区域,该区域的信号强度均值记为Smax;设置窗宽至最小,调整窗位找出窗口内最低信号强度区域,将SROI(面积约为100 mm2)定位在此低信号强度区域,该区域的信号强度均值记为Smin,见图2,代入式(1)计算图像的均匀度U2。

图1 均匀分布法检测示例

图2 窗宽窗位法检测示例

1.3 统计学方法

采用配对t检验(正态分布)或Wilcoxon检验(非正态分布)评价两种检测方法测量的一致性;P<0.05认为差异有统计学意义[7]。采用变异系数(Coefficient of Variation,CV)评价同种方法前后两次测量结果的变异程度,变异程度小则认为该检测方法的测量重复性好[8]。

2 结果

对6台MRI设备实施图像均匀度检测程序。由同一质量控制技术人员于同一影像归档和通信系统(Picture Archiving and Communication Systems,PACS),在短时间内分别采用均匀分布法和窗宽窗位法对测试层面前后各行2次均匀度检测[9-10]。

两种检测方法下各行2次均匀度检测MROI内信号强度最小值与最大值的测量结果,见表1。

表1 两种检测方法下MROI内信号强度最小值与最大值的测量结果

两种检测方法下各行2次均匀度检测的结果及相应的变异系数值见表2;对检测结果采用配对t检验行差异显著性检验得P=0.19>0.05,认为两种检测方法的测量一致性良好;相较于窗宽窗位法,均匀分布法高估图像均匀度,见图3;均匀分布法测量结果的变异系数均大于0.16%,窗宽窗位法测量结果的变异系数除设备3之外,均小于0.09%;6次实验,窗宽窗位法测量结果的变异系数除均小于均匀分布法,即窗宽窗位法的测量重复性优于均匀分布法,见图4。

表2 两种检测方法下图像均匀度的测量结果和相应的变异系数值

图3 两种检测方法下图像均匀度测量值比较

图4 两种检测方法测量结果的变异系数(测量重复性)比较

3 讨论

现行业内执行的两种MRI图像均匀度检测方法,均匀分布法常见于国内各省市质量技术监督局发布的医用磁共振成像系统校准规范中,广泛应用于我国医疗机构针对新安装、使用中和影响成像性能的部件修理后磁共振成像系统的现场校准[11-13];窗宽窗位法相关实施程序则是由美国放射学院(American College of Radiology,ACR)的质量和安全委员会负责认证[14],国内部分地方计量技术规范/检定规程也对其进行引用[15]。两种检测方法均利用MROI内像素灰度的偏差程度定量描述图像均匀度,但对于高低信号强度值区域定位方式的不同,导致两者对同一目标质控图像的评价结果将有所差异。

3.1 测量一致性

两种均匀度检测方法测量结果差异无统计学意义,即测量一致性良好,所以在不考虑测量稳定性的条件下,一般认为两者可以相互取代。均匀分布法利用先验知识,认为信号强度最小值在体膜中央区域,而信号强度最大值则会出现在四周结构附近区域,这种极值区域的寻找方式具有猜测性与随机性,特别当感兴趣区域信号强度均匀性发生异常或者出现伪影的时候,均匀分布法所构造的9个SROI往往无法将极值区域包络在内。窗宽窗位法则通过调节目标图像的对比度与亮度进行定位,该策略能够准确发掘MROI内成像信号强度极值的发生区域,这也决定了窗宽窗位法测量到的信号强度最大值普遍大于均匀分布法测量到的信号强度最大值,信号强度最小值将小于均匀分布法测量到的信号强度最小值,见表1。故窗宽窗位法的均匀度测量值普遍低于均匀分布法的测量值,但实际上,将更接近图像真实的均匀度。

3.2 测量重复性

临床上,MRI图像质量的明显改变可以在常规临床工作中被发现,质量控制程序也必然将对其作出反应,但是质量控制的意义远远不在于此,其更重要、更根本的目标在于对图像质量细微改变的检测,这些细微改变可能来源于常规临床工作中无法发现的MRI程序或系统错误,在系统故障产生的初期对其隔离、解决,降低设备运行风险。在设备验收初期,质量控制程序要求建立成像系统基准性能,为后续性能核准提供对照。可以说,实现对成像系统性能状态细微波动的监测,我们在讨论检测结果是否接近真实值的同时,保证检测方法在测量上的稳定性更为重要。本文利用同种检测方法前后两次测量结果的变异系数,即测量重复性,来定量描述检测方法在测量上的稳定性。

实验结果表明,窗宽窗位法具有更高的检测稳定性。由于上述两种图像均匀度检测方法都需要人工操作介入,所以将不可避免引入随机测量误差。其中均匀分布法需要手动绘制9个SROI,每个SROI的面积与位置都会作为随机扰动项影响均匀度的检测结果,测量稳定性严重依赖质量控制技术人员的操作熟练程度。较均匀分布法,窗宽窗位法依靠对比度与亮度信息,直接定位信号强度极值出现的位置与范围,操作人员感觉器官的生理变化对检测过程的干预较弱,检测结果能够最大限度描述因设备故障导致的图像均匀度的实际微小变化,对性能初始问题具备高度敏感性。同时,窗宽窗位法无需绘制多个SROI,省去大量位置微调、数据比较等繁琐程序,检测过程更为快速与便捷。

4 结论

本文对医用磁共振成像系统质量控制图像均匀度检测方法进行实验对比分析,研究结果表明,相较于均匀分布法,窗宽窗位法具备以下优势:①检测结果更接近图像真实均匀度;②对设备性能初始问题具备较高敏感性;③检测程序快速便捷。故本文认为,医疗机构在开展MRI图像均匀度检测工作,可优先选择窗宽窗位法,保证质量控制程序能够客观评价成像系统性能状态,有效控制成像设备临床运行风险。

猜你喜欢
均匀分布信号强度均匀度
光学相干断层成像不同扫描信号强度对视盘RNFL厚度分析的影响
位置指纹定位中WiFi信号特性分析及处理技术研究
电子自旋共振波谱法检测60Co-γ射线辐照中药材
均匀度控制不佳可致肉种鸡晚产
低压滴灌灌水均匀性研究
洛伦兹力磁轴承磁密均匀度设计与分析
电磁感应综合应用检测题
可逆随机数生成器的设计
《棉卷均匀度机校准规范》等10项规范批准发布
尼龙纤维分布情况对砂浆性能的影响研究