PI3K-Akt-mTOR通路在慢阻肺发病机制中的研究进展

2021-11-30 15:57唐艺玲张培蓓叶贤伟
中国现代医生 2021年18期
关键词:自噬慢阻肺基因治疗

唐艺玲 张培蓓 叶贤伟

[关键词] PI3K-Akt-mTOR;慢性阻塞性肺疾病(慢阻肺);自噬;基因治疗

[中图分类号] R856.3          [文献标识码] A          [文章编号] 1673-9701(2021)18-0178-06

Research progress of PI3K-Akt-mTOR pathway in the pathogenesis of chronic obstructive pulmonary disease

TANG Yiling1   ZHANG Peibei2,3   YE Xianwei1, 3

1.Zunyi Medical University,Zunyi 563000,China;2.Department of Respiratory and Critical Care Medicine,Guizhou Provincial People's Hospital, Guiyang 550000, China; 3.Key Laboratory of Pulmonary Immune Diseases, National Health Commission, Guiyang   550000, China

[Abstract] Chronic obstructive pulmonary disease (abbreviated as COPD), which is an inflammatory disease of the airway in the respiratory mechanism of the human body, has a certain commonness, and its morbidity and fatality rate are both high. It is an important global public health issue. Through related investigations, it is found that the phosphatidylinositol 3-kinase/protein kinase B/target of rapamycin (P13K-Akt-mTOR) signaling pathway is involved in many aspects of the cell, such as proliferation, apoptosis, and autophagy, which is a classic signaling pathway in cell tissue and affects the prognosis and outcome of various diseases in different systems. Experts and scholars at home and abroad have made a certain degree of progress in the study of the PI3K-Akt-mTOR signal transduction pathway in the process of tumor cell proliferation, autophagy, and apoptosis after a large number of studies. However, there is still little involvement in the research field of the relationship between PI3K-Akt-mTOR signaling pathway and chronic obstructive pulmonary disease. This article reviews the research progress of the relationship between PI3K-Akt-mTOR pathway and COPD in recent years.

[Key words] PI3K-Akt-mTOR; Chronic obstructive pulmonary disease (COPD); Autophagy; Gene therapy

慢性阻塞性肺疾病(慢阻肺)是一種具有气流受限特征的常见慢性呼吸系统疾病,当下有关慢阻肺病症的发病机制理论来讲,包含吸烟行为和人体慢性气道及人体肺部炎症的构成、蛋白酶/抗蛋白酶失衡、氧化剂及抗氧化剂的平衡失调等,此类理论大体着重于人体气道的上皮及炎症两大组织细胞在慢阻肺病症发生、发展的相关作用,但慢阻肺的致病机制非常复杂,如今尚未完全阐明,现多认为慢阻肺其特征是不可逆的慢性气流受限所引起的肺弹性组织破坏和(或)炎症黏性分泌物导致小气道管腔狭窄,且炎症免疫细胞的相互作用导致组织的破坏及弹性蛋白、胶原蛋白的改变,最终出现气道重塑[1]。细胞自噬是一个进化保守的分解代谢途径,细胞自噬增加可能会导致上皮细胞死亡,但自噬储备不足亦可导致慢阻肺患者支气管上皮细胞的衰老[2]。然而,过度的自噬会诱导过度的细胞损伤,导致程序性细胞死亡。研究表明磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)/哺乳动物雷帕霉素靶(mTOR)信号通路在自噬中起着关键的调节作用[3]。目前有实验证明,乳腺癌[4]、小细胞肺癌、胶质母细胞瘤[5]等疾病均与PI3K-Akt-mTOR信号通路相关。但在PI3K-Akt-mTOR信号传导通路与慢阻肺相互关系的研究涉足较少。本文就PI3K-AKT-mTOR信号通路对于慢阻肺的发生之间关系予以相应论证叙述。

1 PI3K-Akt-mTOR信号通路组成及功能

1.1  PI3K-Akt-mTOR信号通路的组成

1.1.1 PI3K是存在于细胞质的一种能催化磷脂酰肌醇D3位磷酸化的脂类激酶  PI3K集合中各个要素依照自身的调整性能,一等级构造等划分成Ⅰ至Ⅲ大类型[6],其中探究较为宽泛的即为Ⅰ大类型PI3K,通过调整亚基p85及催化性亚基p110所构成的异源二聚体物质,能够被生长性因子(IGF-1、PDGF、EGF)要素,细胞因子要素以及激素物质等,细胞组织之外信号的刺激予以激发,促使细胞膜磷酸肌醇磷酸化,由此形成了3,4-二磷酸磷脂酰肌醇物质(PIP2)及3,4,5-三磷酸磷脂酰肌醇(PIP3),将其当作是第二大信使和AKT的PH区区域组合予以相应激发。

1.1.2 Akt作为一类高强度保守性的丝氨酸蛋白激酶物质及苏氨酸蛋白激酶物质  其同样是构成PI3K下游的重要性蛋白物质之一,大约通过数量为480个的氨基酸残基物质所形成。在磷脂酰肌醇物质依靠的蛋白激酶(PDK)物质的共同影响之下,PIP2及PIP3和细胞组织浆液中的AKT予以相应组合,AKT转移位置到个体的细胞质外膜,同时推动了Ser473及Thr308位点磷酸化状态[7]。Ser473及Thr308位点的磷酸化,即为AKT予以激发的首要前提,而针对AKT予以激发,则是其针对细胞组织生存性能的予以及时性发挥的关键条件。已经激发的AKT能够推进mTOR及糖原合成酶激酶-3(GSK-3β)等,下游底端磷物质的酸化从而宽泛性挥发的生物学反应,其中有抗凋亡、促细胞生存等功能。

1.1.3 mTOR  此为一类丝氨酸蛋白激酶物质或苏氨酸蛋白激酶物质集合的组成要素,其相应的分子量为298 kDa。其在生物性体内经两大类复合性物质的方式而存在,就是mTORC1及mTORC2[8]。mTOR,换而言之就是细胞组织内的关于ATP物质、氨基酸物质及激素物质的感受器装置,在细胞生成调节过程内起到重要作用[9]。mTOR,其本质就是一类能够在自噬过程内具备着门控性作用的非正向性调节剂,其重心即运用两类调节控制机制来阻碍自体吞噬的现状:其一类机制即针对下游的效应因子要素予以相应的激发,从而来调节自噬相关基因的转录进程及翻译进程,由此针对信号的转导通路起到相应影响。另一类机制即经过直接性及非直接性所引发的高磷酸化反应,由此针对自噬过程的生成予以相应阻止,mTOR是细胞中PI3K信号通路的一个关键调控点[10]。

1.1.4 PI3K-Akt-mTOR信号通路  在细胞的生长、炎症、自噬等过程中起着关键的调节作用雷帕霉素(mTOR)的哺乳动物靶激酶是自噬的主要调节剂,它从不同的信号通路接收输入,特别是从那些感知细胞能量状态以触发或停止蛋白质合成的信号通路[11]。mTOR是PI3K和AKT途径的下游层面的靶点,经过神经营养物质因子要素及生长物质因子要素的受体予以相应激活,促进细胞生长、分化和存活,同时下调凋亡信号[12]。因此,PI3K-AKT-mTOR途径的激活原则上将促进存活、神经元保护和mTOR激活對自噬的抑制。相反,诱导自噬(抑制mTOR)可能会通过持续的自噬危及生存。然而,mTOR途径受多种输入信号的调节,并作为向上游途径(如PI3K-AKT)的转换,因此对于开发针对其调节的疗法至关重要。

1.2 P13K-Akt-mTOR信号通路的功能

PI3K-Akt-mTOR信号通路,其作为细胞组织中较为关键性的信号转换路径,在细胞组织生长进程及存活进程,凋亡进程以及自噬等进程内起到关键性的生物学性能,当细胞自主受到生长因子要素等一定刺激过程之后,激发PI3K会致使PIP2,转变成PIP3物质,募集PDK1及Akt,针对Akt予以相应的活化,针对其对应的下游位置多个靶位点予以相应激发。假使此信号同路的杂乱能够引发一系列病症。包括细胞增殖[13]、血管生成[14]、肿瘤侵袭和转移[15]、细胞运动等,并参与细胞功能的调节。PI3K活性的增加常与多种癌症相关。举例来讲,人体肺腺癌细胞能够遏制PI3K-AKT-mTOR传导信息通路,同时引诱其进行自我吞噬过程,致使肿瘤细胞组织呈死亡现状,这对肺癌病症的医治予以新的发展方向[16]。人乳头瘤病毒-16(HPV-16)感染时,激活宿主细胞PI3K-AKT-mTOR通路,可抑制宿主细胞自噬,协助病毒感染[17]。在体外实验探究过程内,增生性的玻璃体视网膜病症变化的最初,即人体的视网膜色素上皮组织细胞进行一定的迁移,此环节需肿瘤坏死因子-α(TNF-α)针对PI3K-AKT-mTOR予以激活性的传导信息通路,为治疗提供新的靶点[18]。此外,PI3K-AKT-mTOR传导通路与温度也有关,大鼠个体处在41℃温度中时,对比目鱼肌及趾肌的磷酸化AKT蛋白(p-AKT)和细胞核糖体S6蛋白激酶(p-p70S6K)蛋白物质进行检测,可见其蛋白表达水平增高,提升情况和温度的高低呈现正比,由此可见,温度的高低在很大程度上为激发PI3K-AKT-mTOR信息通路的重要性因子要素[19]。

2 P13K-Akt-mTOR与慢阻肺的关系

2.1 PI3K-Akt-mTOR通路调控慢阻肺炎症的发生与发展

慢阻肺病症,其本质即为一类进展性肺部炎症性病症,致使其生成的关键性危险元素即为香烟的烟雾和有害颗粒物质。此类具备着有害性的颗粒物质针对人体肺部部位的炎症细胞组织予以刺激,同时释放多元化趋化因子要素,诱导巨噬组织细胞及中性颗粒组织细胞等,汇集在人体的肺部区域,同时针对大部分的炎症介质物质予以相应释放,开启及推进人体肺部区域的一系列炎症环节[20]。Numata等[21]证实,胰岛素促进PI3K-Akt-mTOR激活,抑制Toll样受体3(Toll-likereceptor3,TLR3)引诱的个体支气管中上皮组织细胞呈现凋亡现状以及减缓慢阻肺病症的气管炎症。然而,Mortaz等[22]证实,香烟的烟雾提取物质经过遏制人浆液细胞组织样树突状化细胞(Plasmacytoid dendritic cells,pDC)PI3K-Akt以磷酸化,降低TLR9配体诱导的TNF-α,IL-6及IFN-α呈现,由此降低慢阻肺病症的炎症损害。PI3K-Akt-mTOR信号传导通路可以参与到炎症物质的释放过程,炎症细胞组织活化过程,其以磷酸化促使炎症递质物质释放过程具备一定的过度性,从而使得人体气道重塑及支气管呈现内缩症状,与此同时其生成的基质金属性蛋白物质(MMPs)及弹性蛋白酶物质等能够针对肺组织予以破坏,导致肺功能迅速降低[23-27]。PI3K-Akt数据化信号通路在激活之后,活性化的Akt经提升核因子激活的B细胞的κ-轻链通路(NF-κB)抑制蛋白IκB激酶物质予以磷酸化及降解等过程,从而促使NF-κB的活化性[28]。近期的探究成果中指出,NF-κB亚基在维持炎症病症内具备关键性影响,NF-κB的活化可以诱导促炎因子(如TNF-α、IL-6和IL-1β)、趋化因子、黏附分子(如ICAM-1、VCAM-1和ELAM-1)及一些与炎症级联放大相关的酶(如iNOS和COX-2)的表达,从而趋向绝大多数中性颗粒组织细胞等炎症组织细胞得以浸润进程,汇集到炎症区域,由此致使炎症症状的反应[29-30],Ho等[31]发现肺部促炎水平的变化与转录因子NF-κB的活化有关。由此可见,PI3K-Akt信号通路在慢阻肺炎症病症的发生发展进程内起到关键性意义。

2.2  PI3K-Akt-mTOR通路与慢阻肺的自噬

慢阻肺是一种经常由吸烟引起的进行性肺部疾病;它的特征是肺气肿,支气管炎和纤维化,并引起组织损伤和气流阻塞[32]。肺气肿是肺中终末细支气管的远端空气腔中异常且持续的扩张。伴有肺泡壁和细支气管的破坏,无明显的肺纤维化。药物治疗主要包括支气管擴张药,抗炎药,抗氧化剂和蛋白酶抑制剂[33]。最新研究已证明自噬在慢性肺部疾病中的作用,调节自噬信号通路可能为预防和治疗人类疾病提供一种新的途径。如Zhang等[34]证明抑制PI3K增加了由PM2.5诱导的慢性阻塞性肺病小鼠模型中肺泡上皮细胞的凋亡的同时,也降低了慢阻肺小鼠的自噬,表明PI3K-AKT-mTOR通路调节自噬诱导肺泡上皮细胞凋亡PM2.5诱导慢阻肺中的细胞。在细胞自噬过程中,细胞质中的游离胞浆型LC3(LC3-I)以膜型(LC3-II)的形式逐渐位于自噬泡囊的表面[35]。因此,向LC3-II的转化水平可以反映细胞自噬的程度,在生理条件下,自噬保持在低水平以降解和回收细胞内物质[36]。因此,它在回收和向细胞提供营养方面起作用。然而,在病理条件下,自噬反应性升高。Zhou等[37]表明自噬对PM2.5诱导的细胞毒性有保护作用。代谢、炎症反应、神经退行性疾病和治疗压力都会在细胞中诱导应激环境[38]。在生长条件下,mTOR可以调节细胞生长和存活。然而,在营养缺乏的情况下,mTOR途径被抑制,并且可以诱导自噬,其机制是磷酸化自噬相关蛋白阻止其与自噬相关蛋白1抗体(ATG1)结合形成自噬体;还可以促进核糖体与内质网的粘附,抑制内质网脱离并形成自噬体膜。特定的生长因子、氨基酸和葡萄糖可以通过mTOR信号通路负面调节自噬。AKT是PI3K-AKT-mTOR途径的中心分子;它可以激活和调节多个下游目标。例如,AKT可以抑制TSC1/2并激活mTOR以促进蛋白质合成和细胞生长以上均表明自噬可能通过PI3K-AKT-mTOR途径成为慢阻肺的潜在治疗靶标。

2.3 PI3K-Akt-mTOR通路与慢阻肺激素治疗

糖皮质激素作为慢阻肺主要的治疗药物之一,广泛地应用于慢阻肺患者治疗中,但仍不能有效地控制炎症反应,甚至对一部分慢阻肺患者是无效的,但是针对其他类慢性炎症性病症,如风湿性关节炎病症及轻度哮喘病症等,包括激素治疗却是有效的[39]。截止至当下引发以上医疗存在差异性的缘由还没完整性阐述,有研究表明,氧化应激通过活化PI3K-Akt-mTOR通路引起组蛋白去乙酰化酶2(Histone deacetylase2,HDAC2)其呈现水准降低以及活性能力变弱,和慢阻肺病患个体生成糖皮质激素物质的抵抗力存在一定关联。细致化的分子机制,绝大多数情况下即为因发生氧化过程应激和因其引发的HDAC2物质活性降低损伤糖皮质激素物质受体GR遏制促进炎因子要素的呈现力,导致促炎因子表达增多[40]。但是发生氧化应激过程而致使的HDAC2活性降低,某种意义上即表示PI3K-Akt-mTOR信号通路的发展趋向上涨呈。另外依照相关探究表明,对照小组对比,慢阻肺病患个体的肺部巨噬细胞组织以及外部周血单核性细胞组织中PI3K的呈现水准以Akt予以磷酸化的显著性提升,而HDAC2则明显减少[41-42]。经人体内外的相关实验探究表明,经过遏制氧化应激过程现状之下所生成的炎症反应,阻断以及敲除PI3K,能够显著性增强HDAC2的活性及糖皮质激素物质的医疗效果[43-44]。由此可见,PI3K-Akt-mTOR信号通路,尤其为PI3K在氧化应激过程内,慢阻肺患者个体的糖皮质激素物质在抵抗环节内起到重要性影响,经针对PI3K予以相应干预操作及针对HDAC2的活性予以相应的向上调整操作,改良完善皮质激素物质抵抗的抗炎药品,已然构成当下预防医治慢阻肺病症的高效性办法。

3 总结与展望

慢阻肺的病情发展快及不确定性无疑导致在开发治疗方案方面进展很有限。近阶段以来PI3K-Akt信号通路在慢阻肺病症发生进展环节内的影响已然引发宽泛性的重视度,突出了P13K-Akt-mTOR信号通路在慢性阻塞性肺病症内的关键性。即使PI3K-Akt-mTOR信号在肺部病症内的认知逐步具备精准性,然而在我国临床医学层面的运用依旧存在较多疑难点,因为PI3K-Akt-mTOR不仅是经典的病理信号通路,还参与着正常的机体生理功能,生理状态与病理状态的区别迄今尚未报道。研究证实PI3K-Akt-mTOR信号通路可通过调控炎症介质释放、免疫炎症细胞活化、气道重构及糖皮质激素抵抗等在COPD中起着重要作用。活化的PI3K-Akt-mTOR信号通路可下调HDAC2表达水平及活性,与COPD患者的糖皮质激素抵抗密切相关。目前作用于PI3K信号通路的药物已成为研究热点,但是截止到目前,影响于PI3K信号通路的药物,已经变成探究的重要点,如药物剂量及药物疗程,药物毒性及联合性药物医治的相关医疗效果等。由此可见,针对PI3K-Akt-mTOR信号通路相有关的药物予以相应研发,深层次探究其相应的临床学运用价值度,针对慢阻肺的预防治疗起到了关键性意义。

[参考文献]

[1] Yoon YS,Jin M,Sin DD. Accelerated lung aging and chronic obstructive pulmonary disease[J]. Expert Rev Respir Med,2019,13(4):369-380.

[2] Kuwano K,Araya J,Hara H,et al.Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF)[J].Respir Investig,2016,54(6):397-406.

[3] Wu N,Zhu Y,Xu X,et al. The anti-tumor effects of dual PI3K/mTOR inhibitor BEZ235 and histone deacetylase inhibitor Trichostatin A on inducing autophagy in esophageal squamous cell carcinoma[J].J Cancer,2018,9(6):987-997.

[4] Sun JQ,Zhang GL,Zhang Y,et al. Spatholobus suberectus column extract inhibits estrogen receptor positive breast cancer via suppressing ER MAPK PI3K/AKT pathway[J]. Evid Based Complement Alternat Med,2016, 2016:2 934 340.

[5] Stepanenko AA,Andreieva SV,Korets KV,et al. mTOR inhibitor temsirolimus and MEK1/2 inhibitor U0126 promote chromosomal instability and cell type-dependent phenotype changes of glioblastoma cells[J].Gene,2016, 579(1):58-68.

[6] Fan Q,Wang Q,Cai R,et al. The ubiquitin system:Orchestrating cellular signals in non-small-cell lung cancer[J].Cell Mol Biol Lett,2020,25:1.

[7] Shi Y,Quan R,Li C,et al. The study of traditional Chinese medical elongated-needle therapy promoting neurological recovery mechanism after spinal cord injury in rats[J]. J Ethnopharmacol,2016,187:28-41.

[8] Berrak O,Arisan ED,Obakan-Yerlikaya P,et al. mTOR is a fine tuning molecule in CDK inhibitors-induced distinct cell death mechanisms via PI3K/AKT/mTOR signaling axis in prostate cancer cells[J]. Apoptosis,2016,21(10):1158-1178.

[9] Hall MN.TOR and paradigm change:Cell growth is controlled[J]. Mol Biol Cell, 2016,27(18):2804-2806.

[10] Shorning BY,Dass MS,Smalley MJ,et al. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR,MAPK,and WNT signaling[J].Int J Mol Sci, 2020,21(12):819-828.

[11] LiCausi F,Hartman NW.Role of mTOR complexes in neurogenesis[J]. Int J Mol Sci, 2018,19(5):273-283.

[12] Zhang W,Ma L,Yang M,et al. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes[J]. Genes Dev,2020, 34(7-8):580-597.

[13] Yeh YH,Hsiao HF,Yeh YC,et al.Inflammatory interferon activates HIF-1alpha-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway[J].J Exp Clin Cancer Res,2018,37(1):70.

[14] Liang B,Liang JM,Ding JN,et al. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway[J]. Stem Cell Res Ther,2019,10(1):335.

[15] Zhou B,Ge T,Zhou L,et al. Dimethyloxalyl glycine regulates the HIF-1 signaling pathway in mesenchymal stem cells[J]. Stem Cell Rev Rep,2020,16(4):702-710.

[16] Nepstad I,Hatfield KJ,Gronningsaeter IS,et al. The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells[J]. Int J Mol Sci,2020, 21(8):335-362.

[17] Zhang Q,Wang X,Cao S,et al. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways[J]. Biomed Pharmacother,2020,128:110 245.

[18] Wu YF,Li ZY,Dong LL,et al. Inactivation of MTOR promotes autophagy-mediated epithelial injury in particulate matter-induced airway inflammation[J]. Autophagy,2020,16(3):435-450.

[19] Yoshihara T,Chang SW,Tsuzuki T,et al. Sex-specific differences in rat soleus muscle signaling pathway responses to a bout of horizontal and downhill running[J]. J Physiol Biochem,2019,75(4):585-595.

[20] Kumanovics A.Systemic evaluation of the immune system in infants to predict the development of pediatric asthma[J].Clin Chem,2020.

[21] Numata T,Araya J,Fujii S,et al.Insulin-dependent phosphatidylinositol 3-kinase/Akt and ERK signaling pathways inhibit TLR3-mediated human bronchial epithelial cell apoptosis[J]. J Immunol,2011,187(1):510-519.

[22] Mortaz E,Lazar Z,Koenderman L,et al. Cigarette smoke attenuates the production of cytokines by human plasmacytoid dendritic cells and enhances the release of IL-8 in response to TLR-9 stimulation[J].Respir Res,2009, 10:47.

[23] Tseng PC,Chen CL,Shan YS,et al. An increase in galectin-3 causes cellular unresponsiveness to IFN-gamma-induced signal transduction and growth inhibition in gastric cancer cells[J]. Oncotarget,2016,7(12):15 150-15 160.

[24] 潘欽石,胡丽娟,林晓梅,等.盐酸埃克替尼对肺癌A549细胞PI3K/AKT、HIF-1α信号通路的影响[J].中华全科医学,2016,14(5):705-708.

[25] 徐立群,张荣华,邹莹,等.参慈胶囊联合顺铂通过PI3K/AKT/mTOR信号通路逆转人肺腺癌顺铂耐药的机制研究[J].中国病理生理杂志,2017,33(3):500-504.

[26] 高洋洋,赵志英. PI3K/Akt信号通路及神经损伤的研究进展[J].医学综述,2017,23(16):3121-3125.

[27] Fritsche-Guenther R,Witzel F,Kempa S,et al. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis[J].Oncotarget,2016,7(7):7960-7969.

[28] Lokwani R,Wark PA,Baines KJ,et al. Blood neutrophils In COPD but not asthma exhibit a primed phenotype with downregulated CD62L expression[J]. Int J Chron Obstruct Pulmon Dis,2019,14:2517-2525.

[29] Fiordelisi A,Iaccarino G,Morisco C,et al. NFkappaB is a key player in the crosstalk between inflammation and cardiovascular diseases[J]. Int J Mol Sci, 2019,20(7):1005.

[30] Wang Y,Zhou X,Zhao D,et al. Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes[J]. PLoS One,2020,15(5):e232 630.

[31] Ho CY,Weng CJ,Jhang JJ,et al. Diallyl sulfide as a potential dietary agent to reduce TNF-alpha-and histamine-induced proinflammatory responses in A7r5 cells[J].Mol Nutr Food Res,2014,58(5):1069-1078.

[32] McNicholas WT,Hansson D,Schiza S,et al. Sleep in chronic respiratory disease:COPD and hypoventilation disorders[J]. Eur Respir Rev,2019,28(153):190 064.

[33] Alison JA,McKeough ZJ,Jenkins SC,et al. A randomised controlled trial of supplemental oxygen versus medical air during exercise training in people with chronic obstructive pulmonary disease:Supplemental oxygen in pulmonary rehabilitation trial (SuppORT) (Protocol)[J]. BMC Pulm Med,2016,16:25.

[34] Zhang F,Ma H,Wang ZL,et al. The PI3K/AKT/mTOR pathway regulates autophagy to induce apoptosis of alveolar epithelial cells in chronic obstructive pulmonary disease caused by PM2.5 particulate matter[J]. Journal of International Medical Research,2020,48(7):1 410 562 935.

[35] Racanelli AC,Kikkers SA,Choi A,et al. Autophagy and inflammation in chronic respiratory disease[J]. Autophagy,2018,14(2):221-232.

[36] Li L,Zhang M,Zhang L,et al.Klotho regulates cigarette smoke-induced autophagy: Implication in pathogenesis of COPD[J]. Lung,2017,195(3):295-301.

[37] Zhou Z,Shao T,Qin M,et al. The effects of autophagy on vascular endothelial cells induced by airborne PM2.5[J]. J Environ Sci (China),2018,66:182-187.

[38] Yang Y,Sadri H,Prehn C,et al. Proteasome activity and expression of mammalian target of rapamycin signaling factors in skeletal muscle of dairy cows supplemented with conjugated linoleic acids during early lactation[J]. J Dairy Sci,2020,103(3):2829-2846.

[39] Marwick JA,Caramori G,Casolari P,et al. A role for phosphoinositol 3-kinase delta in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol,2010,125(5):1146-1153.

[40] Palumbo ML,Prochnik A,Wald MR,et al. Chronic Stress and Glucocorticoid Receptor Resistance in Asthma[J]. Clin Ther,2020,42(6):993-1006.

[41] Singh H,Agarwal V,Chaturvedi S,et al. Reciprocal relationship between HDAC2 and P-Glycoprotein/MRP-1 and their role in steroid resistance in childhood nephrotic syndrome[J]. Front Pharmacol,2019,10:558.

[42] Wang Y,Lyu X,Wu X,et al. Long non-coding RNA PVT1,a novel biomarker for chronic obstructive pulmonary disease progression surveillance and acute exacerbation prediction potentially through interaction with microRNA-146a[J]. J Clin Lab Anal,2020,34(8):e23 346.

[43] Verin AD. Letter to the editor:"Histone deacetylase 7 inhibition in a murine model of gram-negative pneumonia-induced acute lung injury" Shock 53:344-351,2020[J].Shock,2020,53(3):375.

[44] Sun XJ,Li ZH,Zhang Y,et al. Theophylline and dexamethasone in combination reduce inflammation and prevent the decrease in HDAC2 expression seen in monocytes exposed to cigarette smoke extract[J]. Exp Ther Med,2020,19(5):3425-3431.

(收稿日期:2021-03-02)

猜你喜欢
自噬慢阻肺基因治疗
洪专:中国基因治疗领域的引路人
基因治疗在医学中的应用?
宽胸理肺汤治疗AECOPD痰浊壅肺证患者30例疗效观察
自噬在糖尿病肾病发病机制中的作用
封闭端粒酶活性基因治疗对瘢痕疙瘩成纤维细胞的影响
亚精胺诱导自噬在衰老相关疾病中的作用
糖皮质激素联合特布他林治疗慢阻肺急性加重期患者的研究
小剂量阿奇霉素联合噻托溴铵粉吸剂治疗稳定期慢性阻塞性肺疾病的疗效
慢阻肺机械通气撤离的影响因素分析
自噬在不同强度运动影响关节软骨细胞功能中的作用