还原性气氛制备Zr-B-N纳米复合涂层的结构及性能分析

2022-09-27 12:43张纪福刘艳梅张涛柯培玲张翔宇丁洋KimKwangHo王铁钢
表面技术 2022年9期
关键词:晶粒涂层薄膜

张纪福,刘艳梅,张涛,柯培玲,张翔宇,丁洋,Kim Kwang Ho,王铁钢

摩擦磨损与润滑

还原性气氛制备Zr-B-N纳米复合涂层的结构及性能分析

张纪福1,刘艳梅1,张涛1,柯培玲2,张翔宇1,丁洋1,Kim Kwang Ho3,王铁钢1

(1.天津职业技术师范大学 天津市高速切削与精密加工重点实验室,天津 300222;2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201;3. Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, Busan 609-735, South Korea)

制备高纯度、超硬、高耐磨的Zr-B-N纳米复合涂层。在反应气体中掺入还原性气体H2,利用氢元素强还原性去除真空室以及反应气氛中残留的O杂质,采用脉冲直流磁控溅射技术,通过调节N2+H2混合气体流量制备高纯度Zr-B-N涂层。利用扫描电镜、纳米压痕仪、摩擦磨损试验机等设备对涂层的微观结构、力学性能和摩擦性能进行测试,并分析其变化机理。随着N2+H2流量的增加,Zr-B-N涂层内N含量在N2+H2流量为10 mL/min时达到最高。从截面形貌可以看出,涂层结构由粗大的柱状晶逐步转变为玻璃状细小柱状晶结构,涂层更加致密,呈现典型的纳米复合结构。微量H元素的掺入,减少了涂层制备过程中O相关化学键的生成,制备出的Zr-B-N涂层晶粒的生长环境得到改善。在N2+H2流量为 10 mL/min时,涂层的硬度和弹性模量达到最大值40.26 GPa和532.98 GPa,临界载荷最大约为60.1 N,摩擦系数较小,为0.72,磨损率在此时最低,为1.12×10–5mm3/(N·m)。当N2+H2流量为10 mL/min时,制备出了超硬Zr-B-N纳米复合涂层。适量氢元素的掺入,充分去除真空室内氧杂质,改善了涂层中晶粒的生长环境,有效地提高涂层的硬度及摩擦磨损性能。

还原性反应气氛;Zr-B-N涂层;磁控溅射;纳米复合涂层;微观结构;力学性能

扫码查看文章讲解

材料涉及现代社会各个领域,特别是对机械加工、航空航天、汽车、医疗等行业的快速发展起着至关重要的作用[1-4]。硼化锆是一种有金属与陶瓷双重特性的强共价键耐高温材料。ZrB2呈六角晶体结构,具有高硬度、高熔点(3 246 ℃)、优异的热导率(65~135 W·m–1·K–1)和较强的抗腐蚀性等优点,已成为航空航天、微电子和切削刀具等领域新的发展方向[5-6]。

Stewart等[7]探究了硼化锆基薄膜中晶体的生长机理及微观结构演变规律,促进了高温薄膜电子学的应用。Bunshah等[8]利用电子束蒸发技术在不同温度下制备出一系列ZrB2薄膜,当沉积温度达到900 ℃时,薄膜的硬度提升到最大值3 000 kg/mm2。为提升薄膜性能,Pierson等[9]采用PECVD技术在锆合金表面沉积出ZrB2涂层,研究发现,于580 ℃制备的涂层中含有纳米ZrB2晶体及非晶态Zr-B-O化合物。之后他们在反应气体中混入氧气,利用磁控溅射镀膜技术探究了不同O2含量对Zr-B-O薄膜物相和组织结构的影响。试验表明,即使微量氧气的混入,也会生成明显的非晶组织,致使薄膜内应力和硬度下降,且随O2含量的增加,微观组织由ZrB2–xO固溶体逐渐演变为ZrO2和B2O3非晶相。

尽管大量文献对硼化锆基薄膜进行了理论性研究[10-12],如ZrB2-SiC复合材料具有高温耐腐蚀性能[13-14],N元素的掺入将改善硼化锆基薄膜的韧性[15]等,但试验中缺乏还原性气氛对磁控溅射法制备ZrB2过程影响的研究内容。研究发现,利用溅射法制备硼氮化物薄膜过程中,由于O极易与B反应生成软质B2O3,严重降低薄膜性能,而O常来自于镀膜室内残留的气体或反应气体N2中的杂质,后者因采用物理分离法制取,故不可避免存在O杂质。在反应沉积过程中,利用具有还原性的H2去除镀膜室内的O杂质,有望进一步提高薄膜质量和纯度。故本课题采用磁控溅射技术,在不同还原性气体流量下沉积一系列Zr-B-N薄膜,系统性研究还原性气体流量对薄膜力学性能和微观结构的影响,加速硼氮化物薄膜的实用化进程。

1 试验

1.1 涂层制备

试验采用脉冲磁控溅射技术进行镀膜。所用基体材料为单晶硅片(50 mm×6 mm×0.67 mm)、304不锈钢(30 mm×25 mm×1 mm)和硬质合金(30 mm×30 mm× 5 mm),气体为Ar(纯度为99.999%)、N2+H2(气体体积比为9︰1)。试验前,需将基体材料在MP-2D型双盘金相磨抛机上进行镜面抛光、研磨等前处理,并分别用酒精、丙酮溶液浸泡后,超声清洗20 min,去除表面杂物,再经高纯氮气充分干燥后,将基片悬挂在样品架上。工艺流程如图1所示。

图1 工艺流程

Fig.l Process flow diagram

对真空室抽真空以及加热,使真空室内压强达到3.5×10–3Pa以下,温度达到400 ℃,并保持稳定。通入Ar的同时,设置脉冲偏压为–800 V,占空比为87%。对基片辉光刻蚀15 min,开启ZrB2靶,离子轰击清洗基片8 min。通入Ar与N2+H2,开启Cr靶,设置脉冲偏压为–150 V,沉积CrN过渡层,旨在改善膜/基结合力。具体工艺参数见表1。

1.2 性能测试

采用SU8010型冷场发射扫描电子显微镜观察涂层的微观形貌,EPMA-1610型电子探针分析涂层化学成分,D8-Discovery X射线衍射仪分析涂层的物相组成,选用Cu靶单色Kα射线辐射,最大电流为80 mA,最高电压为60 kV,最高功率为2.2 kW,扫描速度为0.02 (°)/s,步长为0.01°,波长为0.154 nm,衍射角(2)扫描范围为20°~80°。采用Anton Paar TTX- NHT-3型纳米压痕仪测量涂层的硬度和弹性模量,设置施加载荷为10 mN。采用Anton Paar RST-3型划痕测试仪测量膜/基结合力,设置划痕长度为3 mm,划痕速度为6 mm/min,匀速施加法向载荷0~80 N,记录涂层破裂位置(c2)。采用Anton Paar THT型销盘式摩擦磨损试验机测试涂层的摩擦性能,对摩副选取直径为6 mm的Al2O3球,磨痕半径为6 mm,线速度为0.1 m/s,法向载荷为1 N,每个样品旋转2 000转。

表1 还原性气氛下制备Zr-B-N纳米复合涂层工艺参数

Tab.1 Process parameters for the preparation of Zr-B-N nanocomposite coatings in reductive atmosphere

2 结果与讨论

2.1 化学成分分析

不同N2+H2流量下制备的Zr-B-N涂层的化学成分如图2所示。由图2可知,随着真空室内反应气体流量增加,涂层中N元素含量先显著上升,再逐渐趋于稳定;B元素含量先急剧下降,后趋于缓慢;Zr元素含量整体变化不大。在ZrB2涂层中,B含量高于Zr含量,但反应气体的加入使Zr含量高于B含量。这是由于N元素的加入易与B反应生成轻质BN颗粒,其平均自由程远低于Zr+,使得单位时间内达到基体表面的Zr+增多,致使涂层内Zr含量偏高。相关研究[16]表明,BN相在Ti-B-N涂层内以非晶形式存在,Ti-B-N涂层具有典型的纳米复合结构。本试验研制的Zr-B-N涂层也具有纳米复合结构,由于B与N的结合能低,大量B与N反应,生成非晶BN相。Zr原子序数较大,其离子在负偏压电场作用下向基体做加速运动,行程中受其他粒子碰撞的影响较小,故涂层中Zr含量波动不大。随着N2+H2的持续增多,靶表面钝化现象加剧,致密的钝化膜降低了靶材溅射效率,使涂层内N含量渐渐趋于稳定[17]。

图2 不同N2+H2流量下制备的Zr-B-N涂层的化学成分

图3为不同N2+H2流量下制备的Zr-B-N涂层的XRD图谱。随着N2+H2流量的增加,涂层中(001)、(100)与(002)晶面的ZrB2相衍射峰强度均有不同程度的改变,(101)晶面衍射峰强度未发生明显变化,反应气体流量的增加未使其生长取向发生变化,衍射峰无明显偏移。在图2中没有发现氮化物相的衍射峰,这表明N元素主要以非晶态的形式存在于涂层中。在含氮较高的Zr-B-N涂层中,ZrB2相的(001)和(002)晶面衍射峰明显减弱、宽化,可能归因于大量N与B或Zr原子反应生成软质非晶BN或ZrN,非晶层限制了ZrB2晶粒的生长,阻碍了ZrB2相各晶面的结晶,衍射峰宽化[18-19]。刘爽[20]通过建立缺陷超胞模型分析了TiBN薄膜中可能存在的点缺陷,发现在此薄膜中BN的形成能最低,最先形成Ti(B,N)置换固溶体,当薄膜中B与N含量增多后,会形成非晶。Deng等[21]采用直流磁控溅射技术制备TiB(N)涂层时发现,随着N2流量的增加,涂层中(001)与(002)晶面的结晶逐渐转变为无定形的微结构,涂层的硬度、弹性模量和耐磨性等都得到明显的改善,与本次试验结果较为相似。本试验制备ZrBN涂层是根据能量最低原理,优先形成能量较低的非晶,而BN所需结晶温度或动能较高,故本次XRD衍射图中没有出现BN晶相。在反应气体流量为15 mL/min时,衍射峰增强,这可能是沉积离子迁移率受靶材表面钝化的影响造成的。由于反应气体N2增多后,结晶程度升高,使晶粒团簇堆积,此时沉积离子的动能较低,离子吸附能力较弱,沉积后失去了扩散能力,晶体的形核速率慢,致使薄膜晶粒尺寸增大,衍射峰增强。

为定量评估不同N2+H2流量下制备Zr-B-N涂层的微观结构,采用谢乐公式计算平均晶粒尺寸,见式(1)。

式中:λ为波长;B为衍射峰的半高宽;θ为相应的布拉格角。经计算,未通入N2+H2反应气体时,涂层中晶粒尺寸最大为6.8 nm。随着N2+H2气体流量的增多,晶粒细化。当反应气体流量为10 mL/min时,晶粒尺寸最小约3.9 nm。继续增加反应气体流量至15 mL/min,晶粒尺寸又增加至约5.5 nm。

2.2 微观结构

不同N2+H2流量下制备的Zr-B-N涂层的表面形貌如图4所示。可以发现,在反应室未通入N2+H2时,沉积涂层表面具有较多的颗粒物(熔滴造成),且尺寸较大。随着N2+H2的不断加入,涂层的表面颗粒物边界由清晰转变得模糊,颗粒尺寸逐渐减小。当N2+H2流量加至10 mL/min时,涂层表面最平整致密,没有明显的大颗粒物和针孔等缺陷存在,涂层沉积较为均匀。沉积ZrB2涂层时,由于腔体中存在氧杂质,使靶面异常放电,靶材电流增大,导致靶面易产生小熔池,较多液滴没有离化而直接从靶面飞出,部分液滴在电场中与电子相撞,尺寸减小后,沉积到基体表面,部分液滴则直接沉积到基体表面,使涂层表面颗粒物增多,表面粗糙度增大。随着反应室中H2+N2的不断加入,大量非晶BN与晶体聚合,非晶相的高界面聚合能限制了晶粒的生长,如图4b—d所示。另外,大量氮气吸附于基体和靶材表面时,基体与靶面不断产生氮化物,靶面钝化,使离子的散射能量和自由行程减小,造成涂层表面的瘤状物和液滴减少,Bujak等[22]证实了这一现象。沉积离子迁移率受靶材表面钝化的影响,由于反应气体N2大量增加后,结晶程度升高,使晶粒团簇堆积。此时沉积离子的动能较低,离子吸附能力较弱,沉积后失去了扩散能力,晶体的形核速率慢,致使涂层晶粒尺寸增大,涂层表面缺陷增多,如图4e所示。

不同N2+H2流量下制备的Zr-B-N涂层的截面形貌如图5所示,膜/基分界清晰。从图5a观察到,经过磁控溅射技术制备出的ZrB2涂层,结构致密,无明显宏观缺陷,下层呈现较为粗大的柱状晶结构。随着反应气体的增多,表面颗粒物减少的同时,截面表现出柱状晶逐渐细化的现象,涂层慢慢转变为均匀致密的柱状微观结构,又逐渐形成向玻璃状结构转变的细小柱状晶结构,如图5b—d所示。结合图3涂层的XRD图谱可知,此时Zr-B-N涂层在(001)和(002)晶面处呈现出微弱的ZrB2衍射峰,未检测到N元素的存在,N元素以非晶的形式存在涂层中,形成非晶相包裹纳米晶的纳米复合结构充分细化晶粒,涂层结构较为致密[23]。当N2+H2流量达到15 mL/min时,涂层演变成玻璃状与等轴晶相互转变的微观结构,如图5e所示。结合图3涂层的XRD图谱可知,此时衍射峰强度增加,表明此时Zr-B-N涂层中结晶程度升高。这可能是由于靶材表面产物的增多,使其钝化,溅射粒子所含能量减小,在基体表面迁移运动受限,晶粒团簇堆积,与图4c表面形貌的结果相吻合。在所有涂层中,没有发现明显的针孔等缺陷存在,这表明全部涂层结构致密。

图4 不同N2+H2流量下制备Zr-B-N涂层的表面形貌

图5 不同N2+H2流量下制备Zr-B-N涂层的截面形貌

2.3 力学性能

不同N2+H2流量下制备的Zr-B-N涂层的硬度与弹性模量如图6所示。可以看出,涂层的硬度与弹性模量呈现相同的变化趋势,随着N2+H2流量的增加,先增大、后减小。未通入反应气体时,沉积的ZrB2硬度和弹性模量分别为38.6 GPa和515.27 GPa。在N2+H2流量为10 mL/min时,分别取得最大值40.26 GPa和532.98 GPa。试验前期未掺入H2,仅采用N2作为反应气体制备Zr-B-N涂层时,随着N2流量的增多,涂层的硬度均未超过35 GPa,可能是由于界面氧杂质与纳米尺度界面交互作用引发微缺陷,而本试验还原性气体的掺入充分还原了真空室内的氧杂质,使涂层硬度得到提高。通过涂层化学成分测试结果可知,随着N2+H2流量从0 mL/min逐渐增加至10 mL/min的过程中,Zr-B-N涂层中所含N元素含量也逐渐增加,B元素含量逐渐下降,Zr元素含量较为稳定,且由XRD测试结果可知,涂层中仅检测到ZrB2相衍射峰。这是由于随着N2+H2流量的增加,Zr-B-N涂层中的N元素并未与金属Zr结合,而是与靶材溅射出的B元素优先结合,生成大量非晶BN。同时,还原性气体的加入不断还原真空室内氧杂质,减少了涂层制备过程中O相关化学键的生成,制备出的Zr-B-N涂层晶粒的生长环境得到改善,涂层呈现细小的柱状晶结构。由截面形貌也可看出,N2+H2流量为10 mL/min时,晶粒组织更加致密,此时硬度与弹性模量取得最大值。

图6 不同N2+H2流量下制备Zr-B-N涂层的硬度与弹性模量

/和3/*2也是反映涂层力学性能的重要指标,在一定程度上分别代表涂层的抗弹性变形和抗塑性变形能力。Leyland等[24]认为,/值越大,涂层往往表现出更好的韧性。Musil 等[25]发现,涂层具有较高/值的同时,弹性模量越低,涂层具有越优异的摩擦性能。Chang等[26]认为,涂层的3/*2比值与涂层的耐磨性成正比,3/*2的增加有望提高涂层的弹性回复率,改善涂层的韧性。由图7可见,Zr-B-N涂层的/和3/*2呈现相似的变化趋势,随着N2+H2的通入,制备出的Zr-B-N涂层的/和3/*2值均高于ZrB2涂层。当N2+H2流量为10 mL/min时,/和3/*2值达到最大,分别为0.078、0.2 GPa,推测此时Zr-B-N涂层具有较好的耐磨损性能和韧性,需要进一步实验求证。

图7 不同N2+H2流量下制备Zr-B-N涂层的H/E和H3/E*2

不同N2+H2流量下制备的Zr-B-N涂层的划痕形貌如图8所示。可以看出,通入N2+H2后,涂层的膜/基结合力有不同程度的提升。涂层的膜/基结合力受诸多因素的影响,结合微观形貌、硬度和弹性模量分析,经充分去除氧杂质后,制备出的高纯度Zr-B-N涂层具有致密的纳米复合结构。涂层内部缺陷的减少,以及/和3/*2值的提升,使Zr-B-N涂层在N2+H2流量为10 mL/min时,临界载荷达最大值60.1 N,大量的两相界面有效阻挡了裂纹的萌生和扩展,在划痕边界处未发生涂层大面积剥落现象。

图8 不同N2+H2流量下制备Zr-B-N涂层的划痕形貌

2.4 摩擦学性能

不同N2+H2流量下制备的Zr-B-N涂层的磨痕形貌如图9所示。由图9可以看出,涂层形貌均比较光滑,磨痕边缘连续,且存在磨屑堆积,主要表现为磨粒磨损。未通入N2+H2反应气体时和N2+H2流量为7 mL/min时,磨痕宽度较宽。N2+H2流量为10 mL/min时,磨痕宽度最窄,且此时磨屑较少,磨损较轻。不同N2+H2流量下制备涂层的磨损情况与涂层内部结构的致密性有较大联系,良好的结构致密性使涂层具有较少的内部缺陷。外部施加载荷时,涂层抵抗裂纹的形成与扩展的能力越强,使涂层在摩擦磨损试验中不易脱落产生磨屑,有效地缓解了磨屑在对摩副间的粘着磨损,提高了涂层的耐磨损性能。根据图5可知,Zr-B-N涂层在10 mL/min时具有细小的柱状晶结构,且无明显缺陷,同时此时涂层硬度、弹性模量、/值最高,涂层具有较好的韧性,使其更不易剥落,表现出良好的摩擦磨损性能。

图9 不同N2+H2流量下制备Zr-B-N涂层的磨痕形貌

不同N2+H2流量下制备的Zr-B-N涂层的平均摩擦系数和磨损率如图10、11所示。由图10可见,随着N2+H2流量的增加,Zr-B-N涂层的平均摩擦系数呈现先增大、后减小、再增大的趋势。N2+H2流量较小时,涂层中的ZrB2硬质相多,涂层脆性大,摩擦过程中硬质相易发生脆性剥落,并参与对摩副界面摩擦,使摩擦系数增大,磨损率提高。如图9所示,N2+H2流量为4 mL/min时,磨损形貌呈现犁沟状,此时磨损较为严重,可能是由于涂层脆性剥落以及对摩件中脱落的硬质颗粒参与磨损所致。进一步增加N2+H2流量至10 mL/min,涂层中软质相的增多,包裹硬质相,涂层结构由粗大柱状晶转变为细小柱状晶结构,随着涂层结构的致密,磨痕变窄,磨屑减少,同时摩擦系数变小为0.72,磨损率在此时最低为1.12× 10–5mm3/(N·m)。

图10 不同N2+H2流量下制备Zr-B-N涂层的平均摩擦系数

图11 不同N2+H2流量下制备Zr-B-N涂层的磨损率

3 结论

1)反应气体的加入使膜层中的B原子数减少,B与N生成的BN相对分子量小,自由程大,使膜层中B的含量较低,质量较大的Zr原子含量较均匀。随着N2的持续增多,靶面钝化现象逐步加重,涂层逐渐处于氮饱和状态。

2)根据XRD图分析可知,Zr-B-N涂层内主要由沿(001)晶面择优生长的hcp-ZrB2晶粒组成,没有观察到氮化物的衍射峰,这表明N元素主要以非晶的形式存在于Zr-B-N涂层中。氮气含量的增多,使薄膜表面的大颗粒物与液滴明显减少,表面光滑致密,涂层结构由粗大的柱状晶转变为致密的玻璃状细小柱状晶结构。

3)微量H元素的掺入,充分还原了真空室内氧杂质,制备出的Zr-B-N涂层晶粒的生长环境得到改善,当N2+H2流量为10 mL/min时,制备的Zr-B-N涂层的硬度和弹性模量达到最大值40.26 GPa和532.98 GPa。此时涂层的临界载荷也最大,约为60.1 N,摩擦系数为0.72,磨损率也最低,约为1.12×10–5mm3/(N·m)。

[1] 王铁钢, 张姣姣, 阎兵. 刀具涂层的研究进展及最新制备技术[J]. 真空科学与技术学报, 2017, 37(7): 727-738.

WANG Tie-gang, ZHANG Jiao-jiao, YAN Bing. Latest Progress in Surface Modification of Cutting Tools with Coatings[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(7): 727-738.

[2] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory Diborides of Zirconium and Hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364.

[3] JAYASEELAN D D, ZAPATA-SOLVAS E, BROWN P, et al. In Situ Formation of Oxidation Resistant Refractory Coatings on SiC-Reinforced ZrB2Ultra High Temperature Ceramics[J]. Journal of the American Ceramic Society, 2012, 95(4): 1247-1254.

[4] FENG Xiao-qiang, WANG Xin, LIU Yuan, et al. Pursuing Enhanced Oxidation Resistance of ZrB2Ceramics by SiC and WC Co-Doping[J]. Journal of the European Ceramic Society, 2018, 38(16): 5311-5318.

[5] OPEKA M M, TALMY I G, ZAYKOSKI J A. Oxidation- Based Materials Selection for 2000 ℃+Hypersonic Aero Surfaces: Theoretical Considerations and Historical Expe­rience[J]. Journal of Materials Science, 2004, 39(19): 5887-5904.

[6] LIU Chang-qing, LI Ke-zhi, LI He-jun, et al. In Situ Synt­hesis Mechanism of ZrB2-ZrC-C Composites[J]. Ceramics International, 2014, 40(7): 10297-10302.

[7] STEWART D M, MEULENBERG R W, LAD R J. Nanostructure and Bonding of Zirconium Diboride Thin Films Studied by X-Ray Spectroscopy[J]. Thin Solid Films, 2015, 596: 155-159.

[8] BUNSHAH R F, NIMMAGADDA R, DUNFORD W, et al. Structure and Properties of Refractory Compounds Deposited by Electron Beam Evaporation[J]. Thin Solid Films, 1978, 54(1): 85-106.

[9] PIERSON J F, BILLARD A, BELMONTE T, et al. Influence of Oxygen Flow Rate on the Structural and Mechanical Properties of Reactively Magnetron Sputter- Deposited Zr-B-O Coatings[J]. Thin Solid Films, 1999, 347(1/2): 78-84.

[10] GRIGORIEV O N, ZHUNKOVSKI H L, VEDEL D V, et al. Features of Zirconium Boride–Chromium Interaction[J]. Powder Metallurgy and Metal Ceramics, 2019, 58(7/8): 455-462.

[11] GRIGORIEV O N, PANASYUK A D, PODCHERNYA­EVA I A, et al. Mechanism of High-Temperature Oxidation of ZrB2-Based Composite Ceramics in the ZrB2–SiC–AlN System[J]. Powder Metallurgy and Metal Ceramics, 2018, 57(1/2): 71-74.

[12] GAO Yuan, LIU Zong-de, LIU Cong-cong. Room and High-Temperature Mechanical Properties of ZrB2-Based Composite Alloyed with Ti and Refractory Metal Nb[J]. International Journal of Refractory Metals and Hard Materials, 2021, 94: 105387.

[13] CHENG Chun-yu, LI He-jun, FU Qian-gang, et al. A SiCnw/PyC -Toughened ZrB2-SiC Coating for Protecting Si-SiC Coated C/C Composites Against Oxidation[J]. Applied Surface Science, 2018, 457: 360-366.

[14] HU Cheng-long, TANG Su-fang, PANG Sheng-yang, et al. Long-Term Oxidation Behaviors of C/SiC Composites with a SiC/UHTC/SiC Three-Layer Coating in a Wide Temperature Range[J]. Corrosion Science, 2019, 147: 1-8.

[15] 张姣姣, 王铁钢, 阎兵, 等. 复合磁控溅射Zr-B-N涂层微结构的控制及性能研究[J]. 真空科学与技术学报, 2018, 38(6): 479-486.

ZHANG Jiao-jiao, WANG Tie-gang, YAN Bing, et al. Synthesis and Troblogical Properties of Zr-B-N Coatings by High Power Impulse and Pulsed DC Magnetron Sputtering[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(6): 479-486.

[16] FAGER H, GRECZYNSKI G, JENSEN J, et al. Growth and Properties of Amorphous Ti-B-Si-N Thin Films Deposited by Hybrid HIPIMS/DC-Magnetron Co-Sputt­ering from TiB2and Si Targets[J]. Surface and Coatings Technology, 2014, 259: 442-447.

[17] LIN Jian-liang, MOORE J J, MISHRA B, et al. The Structure and Mechanical and Tribological Properties of TiBCN Nanocomposite Coatings[J]. Acta Materialia, 2010, 58(5): 1554-1564.

[18] 董玉. Zr-B-N纳米复合刀具涂层的结构和性能研究及机理分析[D]. 天津: 天津职业技术师范大学, 2018.

DONG Yu. Study on the Structure, Performance and Mechanism of the Nanocomposite Cutter Coatings[D]. Tianjin: Tianjin University of Technology and Education, 2018.

[19] WANG Tie-gang, LIU Yan-mei, ZHANG Teng-fei, et al. Influence of Nitrogen Flow Ratio on the Microstructure, Composition, and Mechanical Properties of DC Magn­etron Sputtered Zr-B-O-N Films[J]. Journal of Materials Science & Technology, 2012, 28(11): 981-991.

[20] 刘爽. TiN基纳米复合膜的微结构、力学及摩擦磨损性能影响研究[D]. 镇江: 江苏科技大学, 2018.

LIU Shuang. Resarch on Microstructure, Mechanical and Tribological Properties of TiN Based Nanocomposite Films[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018.

[21] DENG H, CHEN J, INTURI R B, et al. Structure, Mecha­nical and Tribological Properties of D.C. Magnetron Sputtered TiB2and TiB2(N) Thin Films[J]. Surface and Coatings Technology, 1995, 76-77: 609-614.

[22] BUJAK J, WALKOWICZ J, KUSIŃSKI J. Influence of the Nitrogen Pressure on the Structure and Properties of (Ti, Al)N Coatings Deposited by Cathodic Vacuum Arc PVD Process[J]. Surface and Coatings Technology, 2004, 180-181: 150-157.

[23] 王铁钢, 郭玉垚, 唐宽瑜, 等. N2流量比对复合磁控溅射Zr-B-N薄膜结构和性能的影响[J]. 表面技术, 2018, 47(11): 210-217.

WANG Tie-gang, GUO Yu-yao, TANG Kuan-yu, et al. Influence of Nitrogen Flow on Structure and Performance of the Zr-B-N Films Prepared by Hybrid Magnetron Sputtering Techniques[J]. Surface Technology, 2018, 47(11): 210-217.

[24] LEYLAND A, MATTHEWS A. On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour[J]. Wear, 2000, 246(1/2): 1-11.

[25] ZHANG Xing-hong, XU Lin, DU Shan-yi, et al. Fabric­ation and Mechanical Properties of ZrB2-SiCw Ceramic Matrix Composite[J]. Materials Letters, 2008, 62(6-7): 1058-1060.

[26] CHANG Chun-chi, CHEN H W, LEE J W, et al. Influence of Si Contents on Tribological Characteristics of CrAlSiN Nanocomposite Coatings[J]. Thin Solid Films, 2015, 584: 46-51.

Structure and Properties of Zr-B-N Nanocomposite Coatings Prepared in Reducing Reactive Atmosphere

1,1,1,2,1,1,3,1

(1. Tianjin Key Laboratory of High Speed Cutting and Precision Manufacturing, Tianjin University of Technology and Education, Tianjin 300222, China; 2. Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang Ningbo 315201, China; 3. Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University, Busan 609-735, South Korea)

ZrB2coatings have been widely used in industrial fields due to their interesting intrinsic characteristics, such as high melting point, high hardness, excellent oxidation resistance and corrosion resistance, etc. However, they are still restricted to apply on the cutting tool surface owing to their high brittleness. The addition of nitrogen atoms is expected to cause a further improvement on the film toughness through forming nanocomposite microstructure, namely the nanocrystallines ZrN or ZrB2are surrounded by amorphous BN phase. Usually, high purity nitrogen used as reactive gas is produced by physical liquid phase separation method. It is inevitable that small amount of oxygen impurity is remained in it. Because boron is easy to react with oxygen to form amorphous boron oxide. As a result, a large amount of amorphous boron oxide and boron nitride phases existing in the coatings severely affects their mechanical properties. To resolve the above problem, the oxygen impurities in the Zr-B-N coating must be removed. In this work, a new method to prepare high-purity, super-hard and highly wear-resistant Zr-B-N nanocomposite coatings was proposed. Namely, an appropriate amount of reducing hydrogen was mixed into the reactive gas during the coating deposition. Through reduction reaction, the combination of oxygen with elements other than hydrogen would be prohibited, and the oxygen impurities in the vacuum chamber could be removed. Therefore, the purity of the Zr-B-N coating and its related properties could also be improved. In addition, the use of reducing gas in the process of reactive deposition also lowered the technological requirements of coating equipment. A large amount of vacuum pumping time was saved. The coating efficiency was improved and the production cost is reduced.

The pulsed direct current magnetron sputtering technique was used to fabricate a series of Zr-B-N coatings. The coating composition and microstructure were adjusted by using different N2+H2flow rates. For comparison, the ZrB2coating was also prepared no reactive gas used. The mechanical properties, microstructure and tribological properties of the Zr-B-N coatings were systematically investigated. Their variety laws and relative influence mechanisms were deeply analyzed. The surface morphology, chemical composition, hardness, elastic modulus, friction coefficient and wear rate of the coatings were tested by SEM, XRD, EPMA, nano-indenter and tribometer, respectively. The results showed that with the increase of N2+H2flow rate, the N content in the Zr-B-N coating firstly increased rapidly, and then tended to be stable. As the N2+H2flow rate was 10 mL/min, N content reached the highest. The cross-sectional morphology showed that the coating structure gradually changed from coarse columnar crystals to glassy fine columnar crystals, and the coating became denser showing a typical nanocomposite structure. The doping of trace H elements reduced the generation of O-related chemical bonds during the coating preparation. The growth environment of the Zr-B-N coating was also improved. The hardness and elastic modulus of the coatings reached a maximum value of 40.26 GPa and 532.98 GPa at a N2+H2flow rate of 10 mL/min. In this case, the critical load of the coating was about 60.1 N, the friction coefficient was 0.72 and the wear rate reached 1.12×10–5mm3/(N·m). A conclusion can be drawn that the properly mixing hydrogen into reactive gas removes oxygen impurities in the vacuum chamber, and improves the growth environment of the coating. The resulted coating hardness and tribological performance are significantly improved.

reducing reactive atmosphere; Zr-B-N coating; magnetron sputtering; nanocomposite coating; microstructure; mechanical property

2021-08-30;

2021-11-29

ZHANG Ji-fu (1997-), Male, Postgraduate, Research focus: tool coatings.

刘艳梅(1976—),女,硕士,副教授,主要研究方向为硬质薄膜。

LIU Yan-mei (1976-), Female, Master, Associate professor, Research focus: hard films.

王铁钢(1978—),男,博士,教授,主要研究方向为刀具涂层技术。

WANG Tie-gang (1978-), Male, Doctor, Professor, Research focus: tool coatings.

张纪福, 刘艳梅, 张涛, 等. 还原性气氛制备Zr-B-N纳米复合涂层的结构及性能分析[J]. 表面技术, 2022, 51(9): 83-90.

TG156.88;TB114.2

A

1001-3660(2022)09-0083-08

10.16490/j.cnki.issn.1001-3660.2022.09.000

2021–08–30;

2021–11–29

国家自然科学基金(51301181, 51875555);天津市科技重大专项(18ZXJMTG00050);天津市自然科学基金(19JCYBJC17100);天津市科技特派员项目(20YDTPJC01460)

Fund:The National Nature Science Foundation of China (51301181, 51875555); Tianjin Science and Technology Major Project (18ZXJMTG00050); Tianjin Natural Science Foundation (19JCYBJC17100); Special Commissioner Project of Tianjin Science & Technology (20YDTPJC01460)

张纪福(1997—),男,硕士研究生,主要研究方向为刀具涂层技术。

ZHANG Ji-fu, LIU Yan-mei, ZHANG Tao, et al. Structure and Properties of Zr-B-N Nanocomposite Coatings Prepared in Reducing Reactive Atmosphere[J]. Surface Technology, 2022, 51(9): 83-90.

责任编辑:刘世忠

猜你喜欢
晶粒涂层薄膜
热加工工艺对316LN 奥氏体不锈钢晶粒度的影响研究
超超临界S30432 无缝厚壁管的带状晶粒组织研究
15Cr12CuSiMoMn钢的奥氏体晶粒长大动力学
无取向硅钢涂层的现状及发展趋势
不得随意弃置、掩埋、焚烧农用薄膜
精密铸造304L不锈钢晶粒度检测方法研究
两种先进的等离子喷涂涂层的微观组织结构对比
“不知疲倦”的仿生智能薄膜问世
美军耗资4000万为F-22换外套
挣钱不易