基于改进CYCBD的滚动轴承复合故障自适应诊断方法

2023-01-13 01:07刘桂敏王晓东李卓睿
农业工程学报 2022年16期
关键词:峭度故障诊断卷积

刘桂敏,马 军,熊 新,王晓东,李卓睿

基于改进CYCBD的滚动轴承复合故障自适应诊断方法

刘桂敏,马 军※,熊 新,王晓东,李卓睿

(1. 昆明理工大学信息工程与自动化学院,昆明 650500;2. 昆明理工大学云南省人工智能重点实验室,昆明 650500)

为实现滚动轴承复合故障自适应诊断,该研究提出了基于循环含量比-归一化谐波比例(Ratio of Cyclic Content-Normalized Proportion of Harmonics,RCC-NPH)融合指标改进的最大二阶循环平稳盲解卷积(Maximum second order cyclostationary blind deconvolution,CYCBD)方法。首先,构建了RCC-NPH融合指标,解决了CYCBD算法循环频率确定依赖先验知识及遍历所有故障频率空间耗时的问题。其次,根据RCC-NPH融合指标图估计CYCBD的循环频率集,实现了CYCBD参数的自适应选择。再次,采用自适应参数CYCBD方法对输入信号进行解卷积运算,提取了不同循环频率对应的故障信号。最后,对提取的故障信号进行Hilbert包络解调分析,完成故障的辨识。利用该方法分别对仿真信号和轴承复合故障信号进行试验,均能有效检测信号中包含的故障成分,实现了复合故障的自适应诊断。与其他指标相比,该方法能够有效避免噪声和谐波的干扰,适用于复合故障诊断。

轴承;故障诊断;最大二阶循环平稳盲解卷积;循环含量比;归一化谐波比例

0 引 言

滚动轴承作为农业工程中大型机械设备的核心部件,其健康状况关系着设备的安全运行。因此,对滚动轴承进行状态监测和故障诊断具有重要意义[1-2]。农业机械设备多工作在野外,运行环境复杂、运行工况多变,产生的故障往往是多故障伴生的复合故障,准确提取滚动轴承的复合故障特征是实现故障诊断的关键[3-4]。然而,复合故障成分复杂,弱故障成分容易被强背景噪声和强故障掩盖,大大增加了故障诊断的难度。因此,研究多个潜在故障分量的快速完备提取方法,实现复合故障特征的有效分离,已成为研究的重点和热点之一[5]。

振动信号能够有效反映部件的健康状态,在故障诊断中得到了广泛应用[6]。近年来,许多学者对此开展了研究,提出了时频分解[7]、随机共振[8]、稀疏理论[9]、形态滤波[10]、盲反卷积[11]等方法。相关研究发现,滚动轴承不同故障源信号在传递过程中通过卷积相互耦合,盲反卷积理论可以通过反卷积过程减小传递路径影响,提取故障脉冲,在故障诊断中具有十分独特的优势[12]。Wiggins[13]提出最小熵反褶积(Minimum Entropy Deconvolution,MED),通过设计合适的有限脉冲响应滤波器,利用迭代算法使滤波所提取信号的峭度值最大,成功应用于地震信号处理。此后,MED被广泛用于增强信号脉冲特征,但MED适合对单脉冲信号进行解卷积,对周期性脉冲效果不佳[14]。McDonald等[15]引入相关峭度,融合故障周期信息和峭度分析优势,提出了最大相关峭度反褶积(Maximum Correlated Kurtosis Deconvolution,MCKD)。MCKD自提出以来,在故障诊断领域得到了广泛的应用[16]。但相关峭度受位移数的限制,极大地影响了MCKD的滤波效果。为了解决上述问题,McDonald等[17]又提出了多点最优最小熵解卷积(Multi-point Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA),以多点峭度最大值作为求解最优滤波器的迭代条件,提取振动信号中的冲击成分。然而,MOMEDA在降低噪声的同时,也大大降低了振动信号中的脉冲幅值,影响了故障特征的有效提取。为此,Buzzoni等[18]通过突出滤波信号的循环平稳性进行反卷积,提出了最大二阶循环平稳盲解卷积(Maximum second order cyclostationary blind deconvolution,CYCBD)方法。CYCBD可以有效提取周期性脉冲信号,并对周期性脉冲成分进行增强,具有良好的降噪性能。同时,相关研究也发现:CYCBD循环频率的设定直接关系到解卷积信号的循环平稳性,对解卷积效果影响很大。且现有循环频率的选择多依靠人工经验或优化算法,不利于生产实际中滚动轴承的复合故障诊断[19-20]。因此,研究有效的复合故障信号循环频率自适应估计方法对提升CYCBD方法的可行性和普适性具有重要意义。

滚动轴承复合故障信号循环频率自适应估计的核心是构建合适的评价指标,以准确评价故障信号成分。立足于新指标的构建及改进,学者相继提出了Gini指数[21]、多点峭度(Multipoint Kurtosis,MK)[22]、包络谐噪比[23]、循环含量比(Ratio of Cyclic Content,RCC)[24]、归一化谐波比例(Normalized Proportion of Harmonics,NPH)[25]等故障成分评价指标。上述指标在单一故障检测方面具有良好的性能,但用于复合故障周期脉冲检测时,受被测信号中强故障、强脉冲噪声及随机噪声的影响,其故障检测能力下降甚至失效。基于文献[24-28]的研究,在原有研究[29]已实现复合故障有效分离的基础上,提出了一种新的故障成分检测指标——RCC-NPH融合指标,进一步改进了CYCBD方法,以期实现滚动轴承复合故障的自适应诊断,提升CYCBD方法的有效性和适用性。

1 理论分析

1.1 RCC-NPH融合指标构建

1.1.1 RCC指标分析

RCC是Borghesani提出的用于提取故障冲击性的轴承特征指标[24],其定义如式(1)所示。

1.1.2 NPH指标分析

NPH指标可以定量评估周期信号中谐波分量所占的比例。同时,考虑了指定频率及其所有的谐波成分,并通过对指定频率及其谐波个数的归一化处理,弱化分子数的主导作用[25]。根据式(4)对解析信号进行Hilbert变换,得到其包络谱如式(5)所示。

1.1.3 RCC-NPH融合指标原理

为全面表征复合故障信号特点,融合RCC和NPH指标的优势,提出了一种兼顾信号信噪比、冲击性及谐波成分的新指标——RCC-NPH融合指标。

首先,计算各频率成分的RCC和NPH值。其次,由于这两个指标的幅度范围不同,故将其归一化为相同的标度[27]。使用最小最大值归一化技术,将[Min, Max]的极限设置为[0, 1]。将相关性最大的频率成分归一化为1,相关性最小的频率成分归一化为0。最大最小归一化公式如式(7)所示[28]。最后,基于文献[27]的逻辑,将归一化的RCC、NPH相乘,计算出各频率成分对应的RCC-NPH融合指标值,如式(8)所示。

式中φ为第个值的大小,表示所有的指标值。RCC-NPH融合指标是在[0, 1]尺度下进行归一化,相关性最大的频率成分归一化为1,相关性最小的则归一化为0,故本文设置0.5为阈值用于频率筛选[30]。筛选两个指标值相关性均大于0.5的频率成分,避免了单一指标值过大,而另一指标过小导致频率选取不当的问题,从而实现对故障特性的全面衡量。即:若NPH为1,RCC小于0.5,则表明该频率成分尽管是周期性成分,但冲击性不强;若RCC为1,但NPH小于0.5,则表明信号无明显的谐波成分,不是周期性冲击性成分;若两者相关性均在0.7以上,则证明该频率成分是所要检测的周期性脉冲成分。

1.2 基于RCC-NPH融合指标改进的CYCBD

CYCBD以二阶循环平稳性指标(ICS2)最大化为目标,通过迭代特征值分解算法求解,提取故障特征。通过对含噪观测信号进行解卷积运算,获取具有循环平稳性的目标源信号0,即

式(9)中表示源信号,为逆滤波器,*表示卷积运算。用矩阵形式表示为=,如式(10)所示。

其中和分别表示信号的长度和逆滤波器的长度。二阶循环平稳性的一般表达式如式(11)所示。

信号中周期成分如式(15)所示。

则由公式(10)、式(14)~(15)可以得到ICS2的表达式为

加权矩阵如式(17)所示。

由上述原理可知,CYCBD算法效果受到滤波器长度的影响,滤波器长度较大会增加计算时间,较小则滤波效果不理想。结合前期试验综合考虑信号特点和计算效率,本文选择700作为CYCBD的滤波器长度[31-33]。同时,循环频率作为计算二阶循环平稳性指标的关键,决定着解卷积信号的循环平稳性。现有CYCBD算法的循环频率依靠先验知识进行人为设定,不利于复合故障的自适应诊断。为实现复合故障的自适应诊断,采用提出的RCC-NPH融合指标确定复合故障信号中包含的全部循环频率,消除先验知识对信号的影响。

RCC-NPH融合指标确定CYCBD循环频率的具体实现步骤如下:

1)根据理论故障频率设置RCC-NPH融合指标的频率范围;

2)初始化循环次数=0,循环频率数1=1;

3)=+1,根据公式(8)计算信号频率对应的RCC-NPH融合指标值;

4)若RCC-NPH融合指标大于阈值0.5,则存入循环频率向量(1),1=1+1,否则返回步骤3)继续循环;

5)以循环频率向量(1)中的频率为循环频率,根据公式(16)计算对应的ICS2;

6)求解最优滤波器,获取单一故障成分;

7)返回步骤3)进行循环计算,直至频率范围中所有频率计算完毕。

2 滚动轴承复合故障自适应诊断方法实现过程

本文RCC-NPH融合指标改进的CYCBD滚动轴承复合故障诊断步骤如下:

1)输入采集的复合故障振动信号;

2)根据公式(8)计算各频率成分对应的RCC- NPH融合指标值,构造RCC-NPH融合指标图,自适应选择循环频率;

3)根据选取的CYCBD循环频率,设置相应的循环频率集,采用改进的CYCBD算法对输入信号进行解卷积运算,提取对应的解卷积信号;

4)对提取的信号进行Hilbert包络解调分析,完成故障识别。

3 试验分析

3.1 仿真信号分析

为验证本文所提方法的有效性,根据式(18)建立复合故障仿真信号进行初步验证[34]。仿真信号采样频率f为12.8 kHz,分析点数为8192,()是信噪比为-3 dB的高斯白噪声。为提高仿真信号的辨识性,相关参数设置如表1所示。

表1 仿真信号参数

式中是信号中包含的故障周期数,分别是外圈和内圈的故障周期,=f/f=f/f。其他参数设置如表 1所示。

图1为复合故障仿真信号的时域波形和Hilbert包络解调谱。由于受背景噪声干扰,无法从图1a中观察到的周期性脉冲,也无法从图1b中筛选出故障的特征频率。

图1 复合故障仿真信号时域波形及其Hilbert包络谱

采用本文提出的方法对复合故障信号进行分析。为避免频率范围设置过大导致算法效率下降,频率范围过小导致漏诊。根据文献[35],将频率的范围在包含最小和最大频率段的基础上,增加±20%的允许误差,即:(0.8min, 1.2max),故将此次试验的频率范围设置为[80 Hz, 155 Hz]。根据式(8)计算频率范围内各频率信号对应的RCC-NPH融合指标值,得到了图2所示的RCC-NPH融合指标图。从图2中可以看出,信号中包含1=100 Hz、2=128 Hz两个明显的频率成分,说明该信号包含两种故障,与构造的信号设置的故障频率一致。由此可见,RCC-NPH融合指标图准确的检测出了原始复合故障信号中包含的全部故障成分。

注:f1和f2为超过阈值线的信号频率。

为验证所提融合指标RCC-NPH的优越性,分别与归一化RCC、归一化NPH、自相关谱、多点峭度谱进行对比,试验结果如图3所示。从图3a和3b中可以看出,RCC图和NPH图中虽然包含所需检测的故障成分,但还存在其他大于阈值或及其接近阈值的干扰频率,极易造成误诊;从图3c中可以看出,自相关谱中包含明显的内圈故障周期(T=f/f=100,f为采样频率,f为内圈故障频率)及其倍周期(2 T~9T),同时也包含外圈故障周期(T=fs/f=128,f为外圈故障频率)及其倍周期(2 f~6f),但外圈周期成分的自相关值与内圈周期成分的自相关值相比十分微弱,极易被忽略,不利于复合故障的全面诊断;从图3d中可以看出,多点峭度谱中包含明显的外圈故障周期及其半周期和倍周期(2T~6T),不含内圈故障周期,导致漏诊。因此,指标性能系统对比结果表明,融合指标RCC-NPH可以更准确的检测复合故障信号中包含的故障成分。

a. RCC b. NPHc. 自相关谱c. Autocorrelation spectrumd. 多点峭度谱d. Multipoint kurtosis spectrum 注:Ti和To分别为内圈故障周期和外圈故障周期。Note: Ti and To are inner and outer fault cycles respectively

为进一步完成复合故障诊断,采用本文所提的自适应诊断方法进行处理。先将RCC-NPH融合指标图中大于阈值的第一个频率1作为CYCBD的循环频率,设置循环频率集为[100, 200, …, 1000],所提取信号的时域波形如图4a所示。再将大于阈值的第二个频率2作为CYCBD的循环频率,设置循环频率集为[128, 256, …, 1280],所取信号时域波形如图4b所示。分别对提取的故障信号进行Hilbert包络解调分析,结果如图5所示。从图5a中可以看出,提取的第一个信号包络谱中存在明显的基频(100 Hz)及其倍频(2f~9f),与外圈故障频率一致,可判断存在外圈故障;从图5b中可以看出,信号包络谱中存在明显的基频(128 Hz)及其倍频(2f~7f),与内圈故障频率一致,故内圈故障被有效识别。

图4 CYCBD筛选信号的时域波形

注:ff分别为内圈和外圈故障频率, Hz。

Note:fand fare the frequency of inner and outer fault, respectively, Hz.

图5 CYCBD筛选信号的Hilbert包络谱

Fig.5 The Hilbert envelope spectrum of the extracted by CYCBD

3.2 试验验证分析

为进一步论证本文方法的有效性,基于自制试验平台数据完成试验验证。自制试验平台由驱动电动机、转轴、液压油缸、测试轴承、传感器等部件组成,结构如图6a所示。试验轴承是深沟球轴承,型号为6205-2RSH,结构参数如表2所示。

在测试轴承的内圈和外圈设计了一个宽0.2 mm的裂缝用于模拟复合故障,如图6b所示。试验转速f为1 797 r/min,采样频率f为25.6 kHz,采样时间为10 s。轴承内圈故障频率理论计算值为162.33 Hz,外圈故障频率理论计算值为107.22 Hz。复合故障信号时域波形及频谱如图7所示。从图7中可以看出,时域波形具有明显的脉冲成分,且呈现周期性波动,但仅根据时域波形不能直接知晓滚动轴承的故障类型,频谱中尽管包含内外圈故障频率,但被其他突出的频率成分掩盖,不利于复合故障的有效识别。

表2 测试轴承参数

采用本文提出的方法对复合故障试验数据进行分析,设置频率范围为[85 Hz, 200 Hz],构造RCC-NPH融合指标图,如图8所示。从图8中可以看出,RCC-NPH融合指标值大于阈值的频率成分有2个,分别是109和163 Hz。同时观察发现,图中频率为136 Hz的成分也相对突出,但小于设定阈值,不影响循环频率的确定。经计算可知,该频率成分为复合故障内外圈信号的耦合频率,即1/2(f+f)。由此可见,RCC-NPH融合指标图准确识别出了复合故障包含的2种故障成分,避免了谐波频率的干扰。

同样,为验证本文指标的有效性,与复合故障信号的归一化RCC、归一化NPH、自相关谱、多点峭度谱进行对比,试验结果如图8b~8e所示。图中可以看出,通过RCC和NPH虽然包含故障频率成分,但还存在较多的干扰频率成分,影响故障的准确检测,极易导致误诊;从图8d中可以看出,自相关谱中包含明显的外圈故障周期(T=f/f=234,f为采样频率,f为外圈故障频率)的倍周期(2T及4T),无法检测到内圈周期成分,导致漏诊;从图8e中可以看出,多点峭度谱中包含内圈故障周期成分(T=f/f=158,f为内圈故障频率)及其倍周期(2T),外圈故障周期及其倍周期(2T)。但在复合故障成分未知的情况下,不能通过多点峭度谱直观的判断出具体故障成分。因此,综合对比发现,本文所提方法可以准确直观的检测出复合故障信号包含的频率成分,有效避免了复合故障的漏诊和误诊。

分别以RCC-NPH融合指标图确定的109 Hz和163 Hz两个频率作为CYCBD的循环频率,进一步完成复合故障诊断。设置循环频率集分别为[109, 218, …, 1 090],[163, 326, …, 1 630],提取故障信号,分别对提取到的故障信号进行Hilbert包络解调分析,结果如图9a、9b所示。从图9a中可以看出,信号包络谱中存在明显的外圈故障基频(108.8 Hz)及其倍频(2 f~9f)。从图9b中可以看出,信号包络谱中存在明显的内圈故障基频(162.1 Hz)及其倍频(2 f~6f)。

图7 复合故障试验信号时域波形及其Hilbert包络谱

a. RCC-NPH融合指标a. RCC-NPH fusion indexb. RCC

c. NPHd. 自相关谱d. Autocorrelation spectrume. 多点峭度谱e. Multipoint kurtosis spectrum

为进一步确认频率成分136 Hz为干扰谐波,设置循环频率集为[136, 272, …, 1 360],提取故障信号。提取得到的信号包络谱如图9c所示。从图9c中可以看出,提取得到的信号包含的频率成分仍是以内外圈故障频率为主,以及其谐波成分(f+f,2(f+f))。故136 Hz不是该信号的独立故障源成分。因此,本文所提方法准确的排除了谐波的干扰,实现了复合故障的自适应诊断。

a. 提取得到的信号1包络谱(外圈)a. Envelope spectrum of extracted signal 1 (outer ring)b. 提取得到的信号2包络谱(内圈)b. Envelope spectrum of extracted signal 2 (inner circle)c. CYCBD筛选136Hz频率成分的包络谱c. Hilbert envelope spectrum of 136Hz frequency components screened by CYCBD

4 结 论

本文针对复合故障难以自适应诊断的问题,提出了基于RCC-NPH融合指标改进的CYCBD滚动轴承复合故障自适应诊断方法。通过对仿真信号及试验数据分析,得出以下结论:

1)针对CYCBD算法循环频率确定依赖先验知识的问题,提出了基于RCC-NPH融合指标的循环频率估计方法,准确地估计了符合信号特点的循环频率,并通过与归一化RCC、归一化NPH、自相关谱、多点峭度谱等4种指标进行系统的对比,验证了RCC-NPH融合指标的有效性,为准确检测未知复合故障奠定了基础,消除了传统指标依赖先验知识对复合故障诊断的影响。

2)针对未知复合故障难以全面诊断的问题,采用RCC-NPH融合指标优化的CYCBD方法消除了信号之间的相互耦合,提取了各单一故障成分。通过仿真试验及实测信号分析可知,所提方法完成了复合故障的全面自适应诊断,对滚动轴承实际工程应用具有重要借鉴价值。

本文所提方法在定工况下的复合故障诊断中取得了较好的效果,但针对时变工况下复合故障诊断的有效性和适用范围需要后续进一步研究。

[1] 马朝永,盛志鹏,胥永刚,等. 基于自适应频率切片小波变换的滚动轴承故障诊断[J]. 农业工程学报,2019,35(10):34-41.

Ma Chaoyong, Sheng Zhipeng, Xu Yonggang, et al. Fault diagnosis of rolling bearing based on adaptive frequency slice wavelet transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 34-41. (in Chinese with English abstract)

[2] 鄢小安,贾民平. 基于层次多尺度散布熵的滚动轴承智能故障诊断[J]. 农业工程学报,2021,37(11):67-75.

Yan Xiaoan, Jia Minping. Intelligent fault diagnosis of rolling element bearing using hierarchical multiscale dispersion entropy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(11): 67-75. (in Chinese with English abstract)

[3] 吕轩,胡占齐,周海丽,等. 自适应最大相关峭度反褶积方法诊断齿轮轴承复合故障[J]. 农业工程学报,2019,35(12):48-57.

Lv Xuan, Hu Zhanqi, Zhou Haili, et al. Compound fault diagnosis method for gear bearing based on adaptive maximum correlated kurtosis deconvolution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 48-57. (in Chinese with English abstract)

[4] 施杰,伍星,刘韬. 采用HHT算法与卷积神经网络诊断轴承复合故障[J]. 农业工程学报,2020,36(4):34-43.

Shi Jie, Wu Xing, Liu Tao. Bearing compound fault diagnosis based on HHT algorithm and convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 34-43. (in Chinese with English abstract)

[5] 齐咏生,刘飞,李永亭,等. 基于MK-MOMEDA和Teager能量算子的风电机组滚动轴承复合故障诊断[J]. 太阳能学报,2021,42(7):297-307.

Qi Yongsheng, Liu Fei, Li Yongting, et al. Hybrid Fault Diagnosis of Rolling Bearings in Wind Turbines Based on MK-momeda and Teager Energy Operator[J]. Chinese Journal of Solar Energy, 2021, 42(7): 297-307. (in Chinese with English abstract)

[6] 杨小青,丁康,何国林. 齿轮故障振动啮合调幅调频信号分离方法[J]. 振动工程学报,2021,34(2):379-388.

Yang Xiaoqing, Ding Kang, He Guolin. Separation method of gear fault vibration meshing AM frequency modulation signal[J]. Journal of Vibration Engineering, 2021, 34(2): 379-388. (in Chinese with English abstract)

[7] Jian C, Yang Y, Shao H D, et al. Enhanced periodic mode decomposition and its application to composite fault diagnosis of rolling bearings[J]. ISA Transactions, 2021, 125: 474-491.

[8] 贺利芳,崔莹莹,张天骐,等. 基于幂函数型双稳随机共振的故障信号检测方法[J]. 仪器仪表学报,2016,37(7):1457-1467.

He Lifang, Cui Yingying, Zhang Tianqi, et al. Fault signal detection method based on power function type bistable stochastic resonance[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1457-1467. (in Chinese with English abstract)

[9] 李可,李欣欣,宿磊,等. 基于DTCWT与GA改进稀疏分解的轴承故障诊断[J]. 华中科技大学学报(自然科学版),2021,49(6):56-61.

Li Ke, Li Xinxin, Su Lei, et al. Fault diagnosis of bearings based on improved sparse decomposition via DTCWT and GA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(6): 56-61. (in Chinese with English abstract)

[10] Tong W G, Chen C Z, Luo Y Q, et al. Research on fault detection of rolling bearings in press line by a new morphological filter based on diagonal slice spectrum lifting[J]. Measurement, 2021, 188: 1-14.

[11] 张守京,慎明俊,杨静雯,等. 采用参数自适应最大相关峭度解卷积的滚动轴承故障特征提取[J]. 西安交通大学学报,2022,56(3):75-83.

Zhang Shoujing, Shen Mingjun, Yang Jingwen, et al. A fault feature extraction method of rolling bearings based on parameter adaptive maximum correlation kurtosis deconvolution[J]. Journal of Xi'an Jiaotong University, 2022, 56(3): 75-83. (in Chinese with English abstract)

[12] Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2616-2633.

[13] Wiggins Ralph A. Minimum entropy deconvolution[J]. Geoexploration, 1978, 16(1-2): 21-35.

[14] Duan R K, Liao Y H, Yang L, et al. Minimum entropy morphological deconvolution and its application in bearing fault diagnosis[J]. Measurement, 2021, 182: 1-12.

[15] McDonald Geoff L, Zhao Q, Zuo M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33(1): 237-255.

[16] Lyu X, Hu Z Q, Zhou H L, et al. Application of improved MCKD method based on QGA in planetary gear compound fault diagnosis[J]. Measurement, 2019, 139: 236-248.

[17] Mcdonald G L, Zhao Q. Multipoint optimal minimum entropy deconvolution and convolution fix:Application to vibration fault detection[J]. Mechanical Systems and Signal processing, 2017, 82: 461-477.

[18] Buzzoni M, Antoni J, D'Elia G. Blind deconvolution based on cyclostationarity maximization and its application to fault identification[J]. Journal of Sound and Vibration, 2018, 432: 569-610.

[19] Zhang Q Q, Pan H C, Fan Q X, et al. Research on fault extraction method of CYCBD based on seagull optimization algorithm[J]. Shock and Vibration, 2021, 2021: 1-11.

[20] 黄包裕,张永祥,赵磊. 基于布谷鸟搜索算法和最大二阶循环平稳盲解卷积的滚动轴承故障诊断方法[J]. 机械工程学报,2021,57(9):99-107.

Huang Baoyu, Zhang Yongxiang, Zhao Lei. Research on fault diagnosis method of rolling bearings based on cuckoo search algorithm and maximum second order cyclostationary blind deconvolution[J]. Journal of Mechanical Engineering, 2021, 57(9): 99-107. (in Chinese with English abstract)

[21] Miao Y H, Wang J J, Zhang B Y, et al. Practical framework of Gini index in the application of machinery fault feature extraction[J]. Mechanical Systems and Signal Processing, 2022, 165: 1-14.

[22] 向玲,李京蓄,胡爱军,等. 基于SK-MOMEDA的风电机组轴承复合故障特征分离提取[J]. 振动、测试与诊断,2021,41(4):644-651, 826.

Xiang Ling, LI Jingxu, Hu Aijun, et al. Separation and Extraction of Composite Fault Features of Wind Turbine Bearings Based on SK-MOMEDA[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(4): 644-651, 826. (in Chinese with English abstract)

[23] Li Z R, Ma J, Wang X D, et al. An Optimal parameter selection method for MOMEDA based on EHNR and its spectral entropy[J]. Sensors, 2021, 21(2): 1-27.

[24] Borghesani P, Pennacchi P, Chatterton S. The relationship between kurtosis and envelope-based indexes for the diagnostic of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2014, 43(1/2): 25-43.

[25] Miao Y H, Zhang B Y, Zhao M, et al. Period-oriented multi-hierarchy deconvolution and its application for bearing fault diagnosis[J]. ISA Transactions, 2021, 114: 455-469.

[26] Mo Z L, Wang J Y, Zhang H, Miao Q. Weighted cyclic harmonic-to-noise ratio for rolling element bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2): 432-442.

[27] Zheng K, Luo J F, Zhang Y, et al. Incipient fault detection of rolling bearing using maximum autocorrelation impulse harmonic to noise deconvolution and parameter optimized fast EEMD[J]. ISA Transactions, 2019, 89: 256-271.

[28] Singh J, Darpe A K, Singh S P. Bearing damage assessment using Jensen–Rényi Divergence based on EEMD[J]. Mechanical Systems and Signal Processing, 2017, 87: 307-39.

[29] 刘桂敏,吴建德,李卓睿,等. Infogram和参数优化CYCBD在滚动轴承复合故障特征分离中的应用[J]. 振动与冲击,2022,41(10):55-65.

Liu Guimin, Wu Jiande, Li Zhuorui, et al. Application of Infogram and Parameter optimization CYCBD in complex fault feature separation of rolling bearings[J]. Journal of Vibration and Shock, 2022, 41(10): 55-65. (in Chinese with English abstract)

[30] 肖勇,赵云,涂治东,等. 基于改进的皮尔逊相关系数的低压配电网拓扑结构校验方法[J]. 电力系统保护与控制,2019,47(11):37-43.

Xiao Yong, Zhao Yun, Tu Zhidong, et al. Topology checking method for low voltage distribution network based on improved Pearson correlation coefficient[J]. Power system protection and control, 2019, 47(11): 37-43. (in Chinese with English abstract)

[31] 罗忠,徐迪,李雷,等. 基于改进二阶循环平稳解卷积的轴承故障检测方法[J]. 东北大学学报(自然科学版),2021,42(5):673-678.

Luo Zhong, Xu Di, Li Lei, et al. Bearing fault detection based on improved CYCBD method[J]. Journal of Northeastern University (Natural Science), 2021, 42(5): 673- 678. (in Chinese with English abstract)

[32] Ke Y, Yao C, Song E Z, et al. An early fault diagnosis method of common-rail injector based on improved CYCBD and hierarchical fluctuation dispersion entropy[J]. Digital Signal Processing, 2021, 114: 1-12.

[33] Zhang B Y, Miao Y H, Lin J, et al. Adaptive maximum second-order cyclostationarity blind deconvolution and its application for locomotive bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2021, 158: 1-18.

[34] 胡爱军,赵军,孙尚飞,等. 基于谱峭度和最大相关峭度解卷积的滚动轴承复合故障特征分离方法[J]. 振动与冲击,2019,38(4):158-165.

Hu Aijun, Zhao Jun, Sun Shangfei, et al. Feature separation method of rolling bearing composite fault based on spectral kurtosis and maximum correlation kurtosis deconvolution[J]. Journal of Vibration and Shock, 2019, 38(4): 158-165. (in Chinese with English abstract)

[35] Wang C G, Li H K, Ou J Y, et al. Identification of planetary gearbox weak compound fault based on parallel dual-parameter optimized resonance sparse decomposition and improved MOMEDA[J]. Measurement, 2020, 165: 1-18.

Adaptive diagnosis method of composite fault for rolling bearings using improved CYCBD

Liu Guimin, Ma Jun※, Xiong Xin, Wang Xiaodong, Li Zhuorui

(1.,,650500,; 2.,,650500,)

Rolling bearing is the core component of large rotating machinery in agricultural engineering. The composite fault is more harmful than the single fault in the process of operation. The source signals of composite faults are coupled with each other through the convolution in the process of propagation, which brings difficulties to fault detection. The maximum second-order cyclostationary blind deconvolution (CYCBD) can be used to reduce the influence of the transmission path using the deconvolution process. The mutual coupling between signals can be eliminated to effectively extract the periodic pulse signals. However, the CYCBD cycle frequency is directly related to the cycle stability of deconvolution signals. There is a great influence on deconvolution. The fault characteristic frequency depends mainly on the manual experience or optimization. It is a high demand to determine the composite fault diagnosis of rolling bearings in production practice. This study aims to extract the composite fault features of rolling bearings for the adaptive diagnosis of composite faults. An improved composite fault diagnosis was proposed for the CYCBD rolling bearings using RCC-NPH fusion index. Firstly, an investigation was made to comprehensively characterize the composite fault signals, then to integrate the ratio of cyclic content (RCC) and normalized proportion of harmonics (NPH) indexes. A new RCC-NPH fusion index was also proposed to consider the signal SNR, impact property, and harmonic components. As such, the CYCBD was independent of the prior knowledge to determine the cycle frequency covering all the fault frequency space. Secondly, the cycle frequency of CYCBD was set adaptively, according to the RCC-NPH fusion index. The cycle frequency dataset was also set to achieve the adaptive selection of CYCBD parameters. Thirdly, the parameter adaptive CYCBD served as the deconvolution on the input composite fault signals. The fault signals corresponding to different fault frequencies were then extracted to realize the effective separation of composite faults. Finally, the extracted single fault signal was demodulated by the Hilbert envelope to realize the fault identification. An experimental platform was developed to verify the improved model using the simulation signals and the experimental data. Experimental results show that the improved model with the RCC-NPH fusion index accurately and efficiently estimated the cycle frequency in the line with the characteristics of the signal. The CYCBD was also independent of the prior knowledge on the composite fault diagnosis. At the same time, the RCC-NPH fusion index effectively suppressed the interference frequency, in order to visually depict the composite fault features. An accurate extraction was realized for the fault components contained in the signals by systematic comparison with four indexes, including the RCC, NPH, autocorrelation spectrum, and multi-point kurtosis spectrum. The mutual coupling between signals was eliminated to successfully extract each single fault component after adaptive fault diagnosis for the rolling bearing composite faults. The comprehensive diagnosis of composite faults was realized to effectively avoid the misdiagnosis and missed diagnosis. Therefore, the composite fault adaptive diagnosis can be expected to effectively identify and separate each single fault feature in the composite fault, particularly for the adaptive diagnosis of rolling bearing composite faults.

bearing; fault diagnosis; maximum second-order cyclic stationary blind deconvolution; cyclic content ratio; normalized proportion of harmonics

10.11975/j.issn.1002-6819.2022.16.011

TN911.7;TH165.3

A

1002-6819(2022)-16-0098-09

刘桂敏,马军,熊新,等. 基于改进CYCBD的滚动轴承复合故障自适应诊断方法[J]. 农业工程学报,2022,38(16):98-106.doi:10.11975/j.issn.1002-6819.2022.16.011 http://www.tcsae.org

Liu Guimin, Ma Jun, Xiong Xin, et al. Adaptive diagnosis method of composite fault for rolling bearings using improved CYCBD[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(16): 98-106. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.16.011 http://www.tcsae.org

2022-05-30

2022-08-03

国家自然科学基金(62163020,62173168);云南省科技计划项目(2019FD042,202101BE070001-055)

刘桂敏,研究方向为旋转机械故障诊断。Email:liuguimin0909@163.com

马军,副教授,研究方向为机械系统动态建模与分析、机械设备混合智能故障诊断与预示和性能退化趋势预测。Email:491941203@qq.com

猜你喜欢
峭度故障诊断卷积
基于重加权谱峭度方法的航空发动机故障诊断
基于包络解调原理的低转速滚动轴承故障诊断
基于3D-Winograd的快速卷积算法设计及FPGA实现
联合快速峭度图与变带宽包络谱峭度图的轮对轴承复合故障检测研究
卷积神经网络的分析与设计
从滤波器理解卷积
数控机床电气系统的故障诊断与维修
基于傅里叶域卷积表示的目标跟踪算法
谱峭度在轴承故障振动信号共振频带优选中的应用
基于鲁棒性小波包峭度图的滚动轴承故障诊断*