葡萄枝条资源化利用研究现状及进展

2023-01-13 00:44刘文政平凤姣白雪冰房玉林董树萌杨继红袁春龙来疆文
农业工程学报 2022年16期
关键词:资源化枝条燃料

刘文政,平凤姣,白雪冰,房玉林,董树萌,杨继红,袁春龙,来疆文

葡萄枝条资源化利用研究现状及进展

刘文政,平凤姣,白雪冰,房玉林,董树萌,杨继红※,袁春龙,来疆文

(1. 西北农林科技大学葡萄酒学院,杨凌 712100;2. 西北农林科技大学宁夏贺兰山东麓葡萄酒试验示范站,永宁 750104)

中国是葡萄生产大国,随着葡萄产业的发展,每年修剪产生大量葡萄残枝,因葡萄枝条资源化利用率低而引起资源浪费和环境污染等突出问题。因此,葡萄枝条作为可再生生物质资源,其开发利用既可以减轻环境污染,改善生态环境,创造新的经济增长点,推进美丽乡村建设,也符合“双碳”发展目标,是实现资源、环境和经济可持续发展的有效途径。该研究围绕葡萄枝条资源化开发利用总目标,从肥料化、燃料化、原料化3个方面对葡萄枝条资源化综合利用现状和研究进展做了系统分析,总结了现有发展存在的问题,并对未来前景进行了展望,以期为葡萄枝条高值高效资源化综合利用和农业绿色可持续发展提供参考。

环境工程;生物质;资源化;葡萄枝条综合利用;可持续发展

0 引 言

葡萄是世界上产量最大,种植面积最广的水果之一,可鲜食、制干,也可用于酿酒。据联合国粮农组织(Food and Agriculture Organization of the United Nations,FAO)统计数据,2019年全球葡萄种植面积为692.6万hm2,总产量达7 700万t。中国是葡萄生产大国,产量和种植面积分居世界第一、第二位[1]。在葡萄种植生产管理中,对枝条进行整形修剪是每年必需的一项作业流程,枝条修剪将产生大量葡萄残枝[2-3]。然而,长期以来,受农业生产方式、葡萄枝条综合利用技术水平、葡萄种植管理模式等多因素影响,葡萄枝条处理方式、渠道比较单一,资源禀赋得不到体现。中国每年有近千万吨葡萄枝条随意弃置腐烂或露天直接焚烧,造成严重的环境污染和安全隐患问题,且导致资源的极大浪费[4-5]。据Pizzi等[6]研究,露天直接焚烧1 t葡萄枝条将向大气排放51 kg的CO和5.1 kg的总悬浮颗粒物,若采用此方式,中国每年将产生约15万t的CO和1.5万t的总悬浮颗粒物。

葡萄修剪残枝产出量高、处理难度大、环境影响突出。2021年国家发展改革委等10部门联合发布了《关于“十四五”大宗固体废弃物综合利用的指导意见》[7],提出要推进农业副产物资源化综合利用,加快建立绿色低碳循环农业产业体系,为建设美丽中国提供重要支撑,也是实现“碳达峰、碳中和”目标的重要途径之一。葡萄枝条作为农业副产物在生物质资源化利用方面的研究是当前农业资源循环利用的热点和难点问题[8-9]。文献调研发现,葡萄枝条可进行多途径的高值化利用,如开发高性能燃料、生物炭、纤维素纳米晶体、聚乙烯复合材料等,也可作为提取生物活性物质的原料,如多酚、低聚糖、乳酸、挥发性物质等,还可作为堆肥、造纸等原料。因此,合理有效地处理葡萄残枝,积极开展葡萄枝条资源化利用的研究,使其变废为宝,无论从农业可持续发展和美丽乡村构建方面,还是当前“碳达峰、碳中和”国家战略目标的实现方面,均将起到积极的促进作用。本文围绕葡萄枝条资源化综合利用的总目标,结合国内外研究现状,系统论述葡萄枝条在肥料化、燃料化和原料化3个方面的利用现状与研究进展,并对其发展前景进行展望。该项研究可为葡萄枝条高效高值资源化利用提供参考,同时对于其他木质纤维素生物质农业副产物的资源化高效利用也具有一定的科学指导意义。

1 葡萄枝条资源化现状

近二十年来,中国葡萄种植面积和产量呈逐年增长的趋势(图1)。截至2020年,中国葡萄种植面积为76.8万hm2,产量为1.48×103万t。葡萄枝条修剪量的统计分析是其开展资源化合理利用的前提,有研究指出葡萄枝条修剪量与果实负载量之间存在一定的比例关系,Sánchez等[10]研究发现,当年葡萄果实负载量与修剪枝条产量之间的比例约为1∶0.8;也有研究利用每棵葡萄树修剪所产生的残枝质量进行评估,如Sun等[11]选取中国8个主要葡萄产区的28个调查点,每个地点随机选取40~50棵葡萄树,收集修剪残枝、称其质量并取均值,将每棵树的平均质量(kg/棵)作为相应地点的修剪残枝量,得到鲜食葡萄和酿酒葡萄的修剪残枝量分别为2.74和1.53 kg/棵;此外,有研究报道采用单位面积统计方法对葡萄残枝修剪量进行的评估,如Dávila等[12]、Peralbo-Molina等[13]在各自的文献中指出葡萄残枝修剪量分别为2~4和1.4~2 t/hm2。鉴于各国的葡萄种植方式、管理模式等有所差异,对于中国而言,主要以鲜食葡萄种植为主,架形通常采用棚架型或V字型,单位面积残枝修剪量与国外有所不同。综合来看,Sun等[11]所做的系统性研究较为符合中国葡萄实际生产情况,本文参考该研究成果,以鲜食葡萄修剪残枝量2.74 kg/棵进行评估,结合国内葡萄种植密度为2 000~3 330棵/hm2,由此估算,中国每年修剪产生的葡萄残枝约为750万t。

图1 (2001—2020)年中国葡萄种植面积及产量.(数据源自FAO)

表1所示为葡萄枝条的化学成分组成。由表1可知,葡萄枝条富含木质素、纤维素,且两者质量占比均在280~500 mg/g范围以内,半纤维素含量相对较少,最多一般不超过纤维素的10%,由此葡萄枝条表现出柔韧的物理特性。葡萄枝条中还含有较高含量的膳食纤维和果胶,其中总膳食纤维质量占比最高可达981.2 mg/g,且含有一定量的可溶性糖以及蛋白质,凸显出葡萄枝条在食品卫生领域的开发潜力。此外,枝条的C∶N比约为60∶1,每千克葡萄枝条(干基)最高约含975 g的有机物质、8.0 g的N、2.6 g的P和8.6 g的K,且化学成分以酚类化合物、挥发性物质、矿物质和蛋白质等形式存在[11],是极具利用价值的可再生生物质资源,在医疗、化工、食品、生物医药、新材料等领域具有广阔的应用前景。

表1 葡萄枝条化学成分组成[11,14-15]

2 葡萄枝条资源化利用现状

根据国内外葡萄枝条生物质资源化综合利用的文献调研,相关研究内容主要集中在葡萄枝条的肥料化、原料化以及燃料化3个领域,如图2所示。

图2 葡萄枝条资源化综合利用途径

2.1 肥料化利用

葡萄枝条因含有丰富的氮、磷、钾及有机质等植物生长所必须的营养元素,兼具改善土壤结构、提升土壤肥力、促进作物生长等作用,适于作为肥料加以利用,其肥料化利用方式可分为:粉碎后直接还田、堆肥化处理等。

2.1.1 粉碎后直接还田

葡萄枝条粉碎后直接还田是指采用机械粉碎装置将葡萄枝条粉碎后直接抛撒于田间地表或利用耕整机械将枝屑与土壤混匀掩埋等方式,并在微生物作用下对枝条进行腐解,实现葡萄枝条的肥料化利用。该方式在改良土壤的同时,可提升土壤固碳能力,即减少农业生产中二氧化碳、甲烷等的排放,增加土壤碳储量,是实现农业“碳达峰、碳中和”的有效路径之一。目前相关研究集中于机具优化和还田技术探究。

在粉碎机具结构优化方面,研究人员分别开发了集捡拾、输送、粉碎、抛撒等功能为一体的机械粉碎装置[16]和直接就地粉碎还田机[17]等机械处理设备,试制了物理样机,具有良好的捡拾和粉碎性能,捡拾率大于97%,粉碎合格率在85%以上,为提升葡萄枝条粉碎质量提供了技术支撑和装备支持。

在还田技术研究方面,为探究葡萄枝条直接粉碎还田的可行性,首先对葡萄枝条的有机质和养分进行了分析[11],如通过理化分析方法测定分析植物生长所必需的氮磷钾含量等。进一步地,开展还田效应分析,对比葡萄枝条在圆盘耙和旋耕机两种不同耕作方式下与土壤混埋还田对不同粒径土壤团聚体形成、团聚体稳定性及碳含量的影响,第一年枝条还田试验发现表层土壤容重由1.49 mg/m3降低至1.44 mg/m3,表明枝条还田有利于改善土壤结构及理化性状,而两种耕作方式对土壤碳保持产生负面影响[18-19];为寻求葡萄园在减少化肥施用而不影响葡萄产量及品质的有效路径,一项为期两年的试验探究了葡萄枝条与豆科作物覆盖联合施用的潜在效益,分析发现该组合模式可确保土壤硝酸盐对葡萄植株生理基本需求,是替代化肥施用的有效方式之一[20];也有研究利用盆栽试验分析添加葡萄枝对葡萄树体生长及土壤真菌群落结构等的影响[21],可知适量添加葡萄枝(土壤∶枝条=50∶1)利于木质素降解,可优化土壤真菌群落结构,促进树体生长发育,并降低葡萄感染病害的风险。可见,枝条粉碎还田是一项有效、便捷的“就地应用”处理模式,为短期内处理大量葡萄残枝提供方法参考。

2.1.2 堆肥化处理

堆肥化主要依靠自然界的微生物对有机质有控制地进行生物降解,生成可被植物吸收利用的有效态氮、磷、钾化合物,同时可合成提升土壤肥力的重要活性物质腐殖质[22]。目前,葡萄枝条堆肥化的研究主要涉及堆肥化过程分析、堆肥对土壤和植物生长的影响。

葡萄枝条堆肥化过程分析方面,探明堆肥机理是研究的重点。王引权[23]结合常规生物化学分析方法和傅里叶变换红外光谱分析技术,对不同初始C∶N比条件下葡萄枝条的堆肥化过程进行效应分析,结果表明,不同初始C∶N比葡萄枝条的有机物质转化特征基本相似,即OH、CH3和CH2基化合物均随着堆肥化进程的深入而减少,标志着脂肪族化合物减少,芳香族化合物增加以及有机物产生了明显的矿化作用。为进一步高效地降解葡萄枝条以获取高质量堆肥化效果,部分学者引入蚯蚓堆肥技术开展葡萄枝条堆肥化过程分析,在实验室条件下利用蚯蚓对葡萄枝条等废弃物进行降解处理并跟踪观察生物量和酶活性的演变情况[24-25],并采用定量聚合酶链式反应(PCR)和变性梯度凝胶电泳(DGGE)分析方法[26],监测了葡萄枝条等农业废弃物在蚯蚓堆肥和成熟期的微生物群落、酶活性和蠕虫生物量间的动态变化情况,发现蚯蚓堆肥期间细菌、真菌和-蛋白杆菌数量分别下降了77%、94%和71%,而-蛋白杆菌和放线杆菌数量增加了62%~79%,表明蚯蚓对葡萄枝条堆肥化进程具有显著的促进作用。因此,研究微生物群落演变及生物化学变化是探明堆肥化过程机理的关键,为堆肥技术的提升提供支持。

堆肥对土壤以及植物生长的影响研究方面,主要是开展堆肥后效分析。Chan等[27]选取6个葡萄园开展为期3年的葡萄枝堆肥田间覆盖试验,以探究堆肥施用对葡萄生长的影响,发现将153 m3/hm2的葡萄枝堆肥覆盖于葡萄园可增加果实产量1 t/hm2,降低果实含酸量,并提升果实钾元素含量。Nicolás等[28]在半干旱土壤中进行9个月的培养试验,表明土壤有机质含量受改良剂性能和稳定性的影响较大,其中葡萄枝条堆肥更有利于腐殖化;Gaiotti等[29]指出,施用葡萄枝条堆肥使土壤总氮、有机质的质量(干质量)分别增加0.5%~0.7%和3.1~5.9 g/kg,作物根系密度增长51根/m2,果实产量增加15%~24%,且果实品质有所提升。由此可知,葡萄枝条堆肥化处理可作为土壤调节剂,增加土壤有机质,减少化肥施用。

2.1.3 生物炭制备

葡萄枝条热解制备生物炭技术逐渐成为肥料化利用研究的热点,生物炭是有机物质在密闭低氧环境中,经加热分解产生的固态物质[30],可改善酸化土质、提升土壤保水能力及增加作物产量。Manyà等[31]通过慢热解试验研究了热解压力、峰值温度和粒径对葡萄枝条衍生生物炭潜在稳定性的影响,结果表明粒径是决定生物炭潜在稳定性的关键因素,固定碳产量、芳烃百分比和pH值随粒径增加而增大;Azuara等[32]采用CO2代替N2作为热解环境,分析CO2对葡萄枝条热解过程的影响,当峰值温度为600 ℃、压力由0.1增至1.1 MPa时,枝条在CO2热解环境下生物炭的碳化效率和质量产率基本一致,可作为替代昂贵惰性气体N2的有效方法,且增加了CO的产率;Libutti等[33]开展了一项旨在评估葡萄枝条生物炭等不同有机改良剂对瑞士甜菜生长情况的短期定量和定性试验,而甜菜质量和产量均无显著提升,可能原因在于试验时间太短;Nunes等[34]分析了葡萄枝的化学特性以及材料在热解过程中的行为机制,碳化后样品含水量、挥发性成分、灰分含量、固定碳质量分数等的均值分别为1.34%、33.90%、7.28%和58.82%,是制备生物炭的理想原料,并可作为改良剂用于土壤修复和碳封存。

2.2 燃料化利用

葡萄枝条碳、氢、氧等元素含量高,而氮、硫含量低,具有很高的能量储存,是一种良好的燃料化原料资源。燃料化利用的研究主要集中于生物质能源潜力评估与燃料转化方式,其中根据燃料转化方式又可分为直燃技术、气体燃料制备、液体燃料制备和固体燃料制备等。

2.2.1 生物质能源潜力评估

生物质能源化开发是缓解当前化石燃料短缺的有效途径之一。对葡萄枝条生物质能源进行评估,探明生物质能潜力,是发展生物质能产业的基础[35]。已有专家学者对葡萄枝条的生物质能源潜力开展了研究,如测定了葡萄枝的热值[36],对其生物质能进行了定量分析[37],探究了品种、种植模式和灌溉等因素的影响,结果表明,标准架形的枝条修剪产量为2.15 t/hm2,比Y型架修枝量多25%,且灌溉可使葡萄生物量增长42%;同时构建了生物量评估回归模型,经验证模型误差约为0.2 t/hm2,模型较为准确。此外,通过商业案例分析发现[38],将葡萄枝回收发电可降低电力消耗成本,降幅约为5.26%,且年CO2排放将减少约3.78 t,具有显著的经济效益和生态效益。也有研究选取不同地区、品种和年份的葡萄枝进行化学表征,通过试验并结合地里信息系统(GIS)对其能量潜力(燃料、发电)做进一步评估,经燃烧试验发现葡萄枝条具有较高的热值为1.69×104kJ/kg和中等程度的灰分产出量及气溶胶排放率,不存在因S或Cl等元素引起的腐蚀现象,且重金属含量很低[39-41]。可见,葡萄枝整体表现出良好的燃料特性,在生物燃料方面具有较高的发展潜力,可作为规模供热、供电等的理想替代燃料。

2.2.2 直燃技术

直燃技术是生物质能源转化中较为传统的技术,从能量转换观点来看,生物质直燃是通过燃烧将化学能转化为热能加以利用。目前,直燃技术在葡萄枝条利用方面的研究主要集中于热开采及发电,该技术的核心在于燃烧设备。Vamvuka等[42]基于流化床试验对葡萄枝条燃烧所产生的飞灰和底灰进行了表征,探究了结垢机制,结果表明灰分中CaO、K2O、P2O5和Ni含量较高,且氧化物含量随燃烧温度升高而增加,水浸可显著降低易导致结垢的问题元素K、Na、P、Cl等的含量,因此低温燃烧或水浸有利于减轻结垢问题;José等[43-44]在锥形喷流床燃烧器内开展燃烧试验,通过流体动力学和热学理论,分析了燃烧气体的演变过程,并引入Pd催化燃烧技术,有效削弱了挥发性有机化合物的生成,CO和碳氢化合物浓度分别减少了25%和63%,CO2浓度增加了40%,总CO2/CO比例超过10%,对燃烧效率及性能的提升起到了积极影响;Fernández-Puratich等[45]对葡萄枝屑进行了能量值(热值、灰分含量等)分析,并与常用的固体生物燃料(松木)在CO2总排放量(TCO2)上进行了对比,发现葡萄枝条具有较低的TCO2排放,并利用葡萄枝条代替商用燃料,每年可为葡萄园节省401美元/hm2的燃料开支,其燃烧灰烬代替化肥可节省约8美元/hm2的肥料开支,生态效益和经济效益显著。总之,直燃技术是一项便捷、操作简单的燃料化利用方式,燃烧设备与催化剂的引入是提升该技术的关键,同时应考虑燃烧后残渣的回收再利用,以加强资源化利用率。

2.2.3 气体燃料制备

气体燃料的制备通常采用生物质气化技术,根据气化工艺不同,可进一步分为直接气化和沼气发酵两类,其中直接气化是将粉碎的固态生物质在缺氧条件下经干燥、热解、燃烧和还原等工艺,生成由CO、H2、CH4和CnHm的混合可燃气体。国内外学者在能量潜力[46]、生物质气化发电及环境可持续性[47-48]、产氢和沼气制备[49-50]等方面对葡萄枝气化燃料的开发进行了探索,研究发现,葡萄枝条制备气体燃料替代传统燃料发电可节约29%~60%的能源,环境效益高达98%,且甲烷产量一般能达到30.2~342 L/kg,表明葡萄枝条适于气体燃料的开发。为了提升沼气制备效率,Pérez-Rodríguez等[51-52]对葡萄枝条进行酶水解、超声波和分级挤压等预处理,过程中木质素的降解加快,促进了厌氧微生物进入木质纤维素基质,甲烷产出量提升约40%,因此,采用合理地预处理方式对于葡萄枝条沼气制备具有一定的促进作用。此外,有研究通过气化试验进行葡萄枝气化过程热化学和生化反应机理研究[53-54],评估并构建了气化过程动力学模型[50],利于气化技术在葡萄枝燃料化利用中的发展。

2.2.4 液体燃料制备

液体燃料的制备主要采用液化技术,即依靠微生物或酶的作用,对生物质能进行生物转化,生产乙醇等液体燃料。该技术的生产过程、反应机理和反应动力学等与白酒酿造基本一致,在生产工艺、装备和技术方面可借鉴现有经验,是近些年发展较快的生物质能转换技术,也是较为理想的资源化利用途径之一。在葡萄枝条液化制备醇类燃料研究方面,主要集中于纤维素降解及乙醇转化率提升等。首先,通过蒸汽爆破预处理并结合水解、发酵等试验,对葡萄枝进行表征和化学成分分析,测定了灰分、提取物、木质素、葡聚糖、寡聚糖、乙酰基的质量占比分别为3.0%、12.2%、31.6%、28.4%、2.6%和3.9%,可见葡萄枝是生物乙醇生产的合适原材料,并初步明确了乙醇制备的条件[55-56];之后,基于生物炼制的技术理念,分析葡萄枝制备生物乙醇的过程,重点在于木质素结构的变化,提出了提升纤维素降解率和乙醇转化率的处理方式和手段,如两步自水解、微波辅助处理等[57]。此外,利用碱性预处理、酶水解等分析了丙酮-丁醇-乙醇发酵生产生物丁醇的可行性,将碳酸钙替换为蛋壳粉作为缓冲剂,使生物丁醇产量保持在7 g/L以上,有效降低了生产成本[58]。然而,以葡萄枝条等纤维素生物质为原料制取醇类燃料在技术方面尚不成熟,仍处于实验室阶段,存在转化率低、能耗大等问题,需开展深入研究。

2.2.5 固体燃料制备

固体燃料的制备通常采用固化技术,根据转化方式不同可分为碳化和固化成型。其中,碳化是在缺氧或绝氧环境中经高温热裂解后生成的固态产物;固化成型是经生物质压块制备成体积小、密度高的颗粒燃料。

葡萄枝条碳化方面,颗粒燃料的碳化制备过程、燃烧特性等是研究重点,研究人员利用热催化重整技术[59]、标准化等容爆炸试验[60]分别对葡萄枝生物质燃料潜力、碳化燃料的爆炸特性进行了研究;为明确适宜葡萄枝碳化生产条件,分析了碳化温度和时间对颗粒燃料特性的影响,得出300 ℃、2 h碳化条件下可获取优质生物炭[61];也有研究利用经验方法[62]和新的热解方法[63]分别探究了葡萄枝条在发电方面替代煤炭的潜力,从葡萄枝中获取具有与标准化亚烟煤理化特性相当的单一碳化产品,评估和比较了反应温度、时间和气氛等对生物质热解的影响,表明葡萄枝具备代替煤作为生物燃料的潜力。

葡萄枝条固化成型方面,主要研究了生物质颗粒燃料物料及燃烧特性。将葡萄枝颗粒化制成颗粒燃料,开展锅炉燃烧试验,探究葡萄枝颗粒燃料的燃烧特性,结果表明颗粒燃料具有较高的能量储存,同时与露天直接燃烧进行了对比,结果显示锅炉燃烧可显著提升燃烧效率,减少TSP、CO、NOX的等污染物的排放[6,64-66];同时,有研究针对葡萄枝颗粒燃料的物料特性进行离散元关键参数标定,构建了DEM模型[67],为模拟分析颗粒燃料的运输、储存等处理过程提供模型参考;此外,对葡萄枝颗粒燃料的经济效益和生态效益进行了系列研究,发现采用生物质转化技术制备燃料颗粒效益显著,是实现资源化利用的有效途径[68-69]。近年来,为进一步提升颗粒燃料的燃烧性能,开发了热化学处理技术,引入自然干燥和强制干燥进行颗粒还原技术,并进行生物量分级和致密化处理,经微热电联产的废热发电效率可达97%,为获取清洁能源提供了替代方案[70]。

此外,为了促进葡萄枝条等农林业废弃物的燃料化利用,研究人员研制开发了配套的粉碎收集等机械设备,如可就地生产颗粒燃料的移动式生物质粉碎成型联合机[71]、移动式枝条粉碎机[72]、葡萄修剪残枝收集与加工机械化系统[73]等,提升了葡萄枝等生物质获取及利用效率。

2.3 原料化利用

葡萄枝条原料化利用可获取高性能、高附加值产品,是极具潜力和发展前景的生物资源[74],已成为学界的研究热点。目前,葡萄枝原料化利用方式主要包括高值化合物提取、造纸、板材加工、吸附剂制备等,其中高值化合物有多酚物质、低聚糖、还原糖、蛋白质等。

2.3.1 高值化合物提取

1)多酚类化合物

葡萄枝中含有较为丰富的多酚类物质[13,75],在多酚化合物利用方面的研究主要集中于酚类物质提取、作为酿酒添加剂等。

① 酚类物质提取

酚类物质是植物生长代谢过程的次生产物,是一类具有生物活性的天然化合物,从化学结构上来说,其囊括了从低分子质量的简单酚类到具有高聚合结构的大分子聚合物[14],种类形式较多。现有关于葡萄枝提取酚类物质的研究在食品、医药、化妆品等领域展现出了广阔的应用和发展潜力。提取是分离、纯化和利用酚类物质的主要环节,根据提取手段和方式的不同,葡萄枝酚类物质提取形式有溶液提取、超声波辅助提取、微波辅助提取、固液萃取、过热液体提取、亚临界水提取、高压放电提取等。如表2所示为近年来国内外研究学者在葡萄枝酚类物质提取方面的相关研究成果,由表2可知,研究主要集中于葡萄枝酚类提取物功能特性、提取工艺参数优化以及不同提取方式对比分析等方面。

表2 葡萄枝酚类物质提取研究现状

在葡萄枝酚类提取物功能特性研究方面,涉及抗氧化活性、保鲜防腐、抑菌能力、抗炎作用等,均表现出较好的效果。如有研究选取不同品种葡萄枝,利用脱脂甲醇[76]、亚临界水提取[86]、稀释法[95-96]、欧姆加热[97]等方式获取酚类物质,探究并发现提取的酚类物质具有较强的抗氧化活性和一定的抗菌、抗癌及保鲜防腐作用;为进一步验证葡萄枝提取物在医学领域中的应用潜力,研究人员采用动物、饮食和试验设计方法评估了葡萄枝提取物对饲喂高脂血症饲料的仓鼠早期动脉粥样硬化的影响,通过饲喂葡萄枝多酚提取物,与对照组相比,仓鼠的主动脉脂肪含量和超氧阴离子(O2•−)的产生分别降低了67%和40%,而在血浆中对氧磷酶浓度升高了29%,表明葡萄枝多酚提取物对心血管、代谢等疾病具有预防作用[98];也有研究利用液萃取技术获取葡萄枝水提液,将其施用于葡萄叶片,发现提取液叶面施用可提高葡萄产量和品质,降低葡萄酒酒精度,进而改善葡萄酒品质[99-100]。

在最佳提取工艺参数确定方面,研究人员基于特定提取手段,利用试验设计或响应面分析法进行葡萄枝酚类物质提取工艺参数优化,优化的工艺参数对于具体类别酚类物质提取率的提升效果显著。高园等[14]利用单因素试验和正交试验涉及方法,基于超声波辅助技术确定了葡萄枝提取酚类物质的最佳工艺条件,提取率最高可达97.38%;Jesus等[92]通过试验设计对常规处理加热和微波辅助加热提取下的总酚类化合物及其抗氧化活性进行了优化,并获取了两种处理方式优化条件下多酚质量占比分别为2.17和2.37 g/100 g,且微波辅助处理能减少提取时间和能耗;Rajha等[88, 93]采用响应面方法明确了-环糊精提取葡萄枝多酚的最佳参数为:37.7 mg/mL-环糊精水溶液,66.6 ℃下提取48 h,结合酶水解前高压放电预处理的方法,多酚、还原糖和可溶性木质素的提取率分别提升了72%、43%和104%,废渣中木质素质量占比减少了10%。

在不同提取方式对比分析方面,通过选取不同的提取方式开展葡萄枝酚类物质提取试验对比研究,以明确较优的提取手段或方法,为实际生产提供技术指导。如Rajha等[94]选用高压脉冲电场提取、高压放电提取、超声波辅助提取等3种方法提取葡萄枝多酚和蛋白并进行对比分析,发现高压放电辅助方式提取率最高,但增加了组织和细胞损伤;Delgado-Torre等[90]开展多元试验设计,比较过热液体提取、微波辅助提取、超声波辅助提取等3种方法,明确了每种方法的最佳提取条件,其中过热液体提取方式最佳条件为体积浓度80%的水乙醇溶液、pH值3、180 ℃,微波辅助提取方式的最佳条件为140 W、5 min,超声波辅助提取方式则在280 W、50%占空比、7.5 min的超声条件下萃取效率较高;Moreira等[91]基于两种不同葡萄枝品种,探究了微波辅助提取、亚临界水提取、常规(溶液)提取3种方法提取效果,结果表明微波辅助提取和亚临界水提取2种方法提取物浓度最高。

由此可知,葡萄枝条多酚类化合物的提取极具实际生产价值,可开发高附加值产品,进一步加强该类物质功能性研究显得尤为必要;同时,葡萄枝条酚类物质提取受多种因素的影响,如葡萄枝条品种、类型,提取工艺或方式等,针对不同类型葡萄枝条,优化相应的提取工艺参数或技术方案并配套相应的生产设备,是葡萄枝条酚类物质高效提取的关键。

② 酿酒添加剂

葡萄枝经处理可作为与橡木片类似功能的酿酒添加剂,有助于提升葡萄酒的感官质量、稳定性和抗氧化特性等。鉴于此,近年来部分专家学者对葡萄枝作为酿酒添加剂开展了研究。

Torre等[101]是较早开展此类研究的科研团队,主要进行葡萄枝和橡木片提取物特征的比较分析,通过过热液体提取方式对提取物进行提取分离,结合气相色谱-质谱法对提取物成分进行定性和定量分析,比较其异同,证明了葡萄枝和橡木提取物之间具有相似性,可见葡萄枝在酿酒学意义上可用作酿酒添加剂。为深入探究葡萄枝作为酿酒添加剂的开发潜力,Sánchez-Gómez等[102-103]开展了不同烘烤处理下酚类化合物及其挥发性成分变化特征研究,发现酚类物质受烘烤时间和烘烤程度的影响较大,且烘烤程度越高,挥发性物质增量越大,表明烘烤葡萄枝可产生具有高附加值的挥发性物质;Cebrián-Tarancón等[104-105]研究了葡萄枝不同烘烤处理下的化学成分,结合热重分析、HPLC-DAD-ESI-MS/MS联用技术,发现葡萄枝挥发性成分与橡木片相似。

以上研究均未将葡萄枝作为添加剂应用于葡萄酒酿造,无法明确其作为添加剂对酿造过程以及酒的品质产生何种影响。为此,Cebrián-Tarancón等[4,106]开展了葡萄枝的酿酒分析,研究不同品种、粒径、形态、烘烤、剂量、添加时机、浸泡时间等对模型酒的挥发性和酚类物质的影响,发现上述因素综合表征促使酿酒过程中重要化合物的变化(生成或转移),进而对葡萄酒品质产生积极影响;此外,该研究团队对葡萄枝作为酿酒添加剂在杀菌剂残留和潜在毒性方面进行了风险评估[107],首先利用HPLC-MS/MS方法测定修剪枝经储藏、烘烤处理后杀菌剂含量,之后运用代谢还原法进行酿酒试验以探究细胞毒性,结果表明葡萄枝作为酿酒添加剂不会对消费者构成风险。

2)其他高值化合物

葡萄枝条除用于酚类物质提取和应用外,还可通过一定的处理方式和手段从中获取其他类化合物,如低聚糖、低聚木糖、还原糖、乳酸、生物表面活性剂、纤维素纳米晶体等,在医药、化工、食品等领域具有广阔的应用前景,相关研究如表3所示。对于低聚糖提取而言,首先探究了葡萄枝提取低聚糖的可行性,利用自水解处理方式[12],评估了自水解适于葡萄枝预处理,可作为生物质精炼第一阶段,且构建了相关力学模型,阐释水解机理,以获取高浓度低聚糖[108-109],并在水解过程中提取到具有抗氧化、抗菌活性的酚类化合物[110]及还原糖[111],表明葡萄枝经自水解具有生产糖类及其他高附加值化合物的潜力;为深入探究处理方式对低聚糖提取效果的影响,分别开展了水热处理[74]、微波加热[112]和微波辅助[113]提取方法的研究,发现利用水热处理获取的提取液经浓缩-渗析实现精制,微波加热可实现不同相中葡萄枝主要成分的单级分馏,这里除低聚糖外,还可获取葡萄糖、木糖等成分[114],而微波辅助自水解处理相较于其他方式更省时环保且具备环境可持续性,可作为低聚糖等提取手段的未来发展方向。此外,葡萄枝经水解、微生物发酵可获取乳酸,以作为食品添加剂用于食品工业生产,其中微生物发酵主要利用戊糖乳杆菌,处理过程中还可获取木糖醇、生物表面活性剂、苯乳酸和糠醛等[115],相关研究则集中于评估葡萄枝作为有效碳源的可行性[115-116]、优化生产工艺[117]等方面;其中,糠醛也可经水、有机溶剂、H2SO4结合微波反应器分馏获取[118],并有研究从环境角度评估了生产糠醛和乳酸的环境效益,将其与传统工艺进行比较,以得到较优的开发利用方案[119]。木质素、纤维素及半纤维素等一般通过水热预处理与有机溶剂处理来获取,且在该处理方式下还可得到葡萄糖和酚类物质[120-121];同时,索氏提取结合碱处理方法可获取高纯度纤维素[122-123]。葡萄枝经酸水解可制备纤维素纳米晶体,并将其应用于纳米复合材料中,可显著提升复合材料的力学性能[2],同时葡萄枝相关提取物结合制备的纳米晶体可开发应用于纳米纤维素薄膜[122],为生物基食品包装材料探索出生物聚合物材料新的替代来源。总之,葡萄枝条提取化合物具有复杂多样的特点,根据不同类型化合物的提取,优化工艺参数、选取合适的技术手段始终是首要考虑的问题,同时探明提取过程中深层次的反应机理也是研究的重要课题。

表3 葡萄枝其他高值化合物提取研究现状

2.3.2 生物活性炭制备

生物质活性炭可利用农业副产物作为原料制备,在污染处理、化学、制药、食品等领域应用前景广阔。目前,将葡萄修剪残枝进行生物活性炭开发已成为学界研究热点之一。

较早研究着眼于评估葡萄枝制备活性炭的可行性方面,通常采用磷酸化学活化[126]、二氧化碳活化[127]等方法,结合理化分析和结构表征,探明葡萄枝是制备活性炭的适宜原料。接着,人们将研究重点转向工艺手段对活性炭性能的影响上,对比分析了物理活化法、化学活化法所制活性炭的结构特征,发现化学活化较物理活化更能有效地制备多孔性较好的活性炭[128-129]。同时,对所制活性炭的吸附性能进行了探究,如氯化锌活化所制活性炭对利福平的最大吸附量可达476.2 mg/g[130],且开展了模拟体液中的镍(II)污染物吸附研究,结果表明其可用于紧急干预镍中毒及含镍废水的处理[131];利用氮气氛围下热解制备的活性炭具有弱碱性和高矿物质含量,可有效吸附水中的铅和镉[132];还对CO2物理活化和KOH化学活化所制活性炭的CO2吸附能力进行了对比,发现经CO2物理活化在800 ℃、浸泡时间1 h所制备的活性炭具有较高的CO2吸附率,在工业领域具有广阔的应用前景[133]。

近年来,活性炭因具有良好孔隙结构及较高碳含量,在燃料电池领域开发方面引起了人们的注意。首先,对物理活化、化学活化所得的活性炭进行了直流电导率与温度间的影响研究,发现活性炭的体积电导率受多种因素的影响,其中质地和表面化学最为显著;同时,电导率测量结果表明,活性炭表现出典型的半导体材料特性,其导电过程与能隙有关[134]。有研究对葡萄枝所制活性炭进行了氧还原反应和硼氢化物氧化反应,并与商用活性炭Vulcan XC72对比,可知经化学活化制备的生物基碳负载Pd NPs电催化剂具有更好的催化活性,为推动燃料电池商业化应用提供技术支持[135];进一步地,有研究利用葡萄枝生产的活性基碳用作钯纳米颗粒(Pd NP)的载体,并评估其用于析氢反应的潜在阴极碱性介质,该新型Pd电催化剂在低过电位下的高电流密度方面表现出良好的析氢反应活性[136]。此外,以葡萄枝为模型生物质,研究并生产用于能源储存和转换装置的生物基碳材料,发现热解与水热碳化相结合可显著提升芳香族碳结构、碳含量、电导率和孔隙率等,以获取适于电化学双层电容器制备的材料[137]。

3 存在的问题及发展趋势

葡萄枝条是一种可再生能源,如何“变废为宝”走资源化综合利用发展之路,是实现资源、环境和经济可持续发展的重要途径,利于“双碳”目标的有效推进。葡萄枝资源化综合利用的实施需紧跟实际发展诉求,走有效化、精简化和高值化的发展路径。因此,在实施过程中要考虑以下因素:一是低成本、规模化收集葡萄枝条;二是合理高效稳定的转化和提质技术;三是终端产品能够较好地符合社会发展需求。然而,鉴于以上发展诉求,目前葡萄枝的资源化综合利用仍任重道远。其中,低成本规模化收集是面临的首要问题,主要原因在于葡萄种植管理方面的机械化水平低,且栽培模式不统一,导致葡萄枝从修剪、收集至处理等各环节的劳动力输出大、生产成本高、效率低,制约着原料节本高效规模化收集和处理。第二点高效稳定转化提质技术一直是研究的热点核心问题,根据不同的利用方式提出了系列技术方案,但无论是传统的或是新近提出的应用技术尚不成熟,均需在实际应用中进一步检验。第三点则是所制备的产品应具有实际应有价值和需求,紧跟社会发展,且结合各地实际发展特点进行合理地开发利用。鉴于此,应在以下方面做深入研究:

1)规范栽培模式,提升葡萄种植管理机械化水平。葡萄修剪残枝高效、规模化收集和处理是系统工程,农机与农艺需结合,即规范葡萄园栽培模式,构建适于机械化作业的行距、架形和株高等,同时应结合葡萄修剪残枝的物料特征和结构特点,研制开发集捡拾、输送、粉碎、收集等多功能为一体的机械设备,节本增效。

2)高值高效综合开发利用,探索绿色发展之路。以高值化、综合化利用的绿色发展理念为指引,开发高效稳定的转化提质技术和装备。

①肥料化利用方面。开发机械化粉碎还田设备是葡萄枝直接粉碎还田的关键,葡萄枝富含纤维素、木质素,还田后腐烂降解难度较大,应着力研发粉碎粒度小、效率高、功耗低的粉碎设备;关于堆肥化,则需加强堆肥机理研究,探究堆肥过程腐殖质形成规律及其关键影响因素,并利用外源添加剂进行堆肥调控,建立稳定高效的酶促生物化学反应系统,提升堆肥效率和质量;生物炭是堆肥化最具发展潜力的利用方式,应深入开展生物炭制备技术和修饰改性方面的研究,优化完善葡萄枝制备生物炭的技术手段,同时加强生物炭农田应用的固碳减排机制研究,实现葡萄枝在生物炭方面的高效开发利用。

②燃料化利用方面。气体燃料制备应深入研究厌氧消化过程生物强化机制,提升厌氧发酵效率,并探究沼气的高效脱硫脱碳技术,实现沼气向生物天然气的转化,同时应开展发酵后沼渣沼液有机肥施用关键技术研究,实现沼渣沼液养分的再利用;液体燃料制备则可借鉴石油化工行业的成功经验,引入化学催化法,筛选适于葡萄枝高效转化乙醇的催化剂,且要建立低成本的预处理工艺,缩短工艺流程,提升生产效率,此外开发过程废弃物的合理转化技术,达到节本增效的目的;固体燃料制备研究重点则应放在烘焙成型过程的传热与粘结机理上,同时开发新型高效配套炉具与成型设备,实现成型燃料制备的高品质和低能耗。

③原料化利用方面。亲脂性提取物、可降解塑料、纤维素纳米晶体、燃料电池电极材料、生物活性炭等高值化生物质产品的开发是葡萄枝条利用的发展趋势,相关原料的提取是开发高值生物质产品的基础。首先要优化提取过程相关参数及工艺流程,分析提取、转化、制备目标化合物的过程机理,构建高效转换体系,耦合多步反应工序,实现提质增效;同时,开发新型高效的配套设备,制定和规范综合开发利用技术方案和标准,推进高值化合物生产系统的可靠性、稳定性。

4 结 论

葡萄枝条资源化利用可改善生态环境,推进美丽乡村建设,符合“双碳”发展目标,是实现资源、环境和经济可持续发展的重要途径。本文从肥料化、燃料化、原料化3个方面对葡萄枝条资源化综合利用现状和研究进展做了系统总结和梳理。在肥料化利用方面,粉碎后直接还田是短期内高效处理大量修剪残枝的有效方式,机械化处理设备是关键;堆肥化处理受多种因素的影响,如温度、水分、粒径、养分、微生物情况等,引入蚯蚓堆肥技术,可提升堆肥效果,同时堆肥可作为土壤调节剂,改善土壤条件,促进作物生长;生物炭制备过程中,粒径是其稳定性的关键因素,且CO2可代替N2作为热解环境,生物炭农田应用,可用于土壤改良和碳封存。在燃料化利用方面,对葡萄枝的生物质能源潜力评估表明,葡萄枝燃料特性良好,是理想的替代燃料;直燃技术操作简单,燃烧设备和催化剂是提升燃烧效果的关键;气体与液体燃料的制备,工艺手段对燃料的获取至关重要,还要进行相应的预处理;固体燃料的制备,其成型过程和燃烧特性是研究的重点,并开展效益分析,取得了较好的结果。在原料化利用方面,酚类物质提取得到了广泛的研究,并对多种提取方式进行了分析,但目前针对不同类型葡萄枝条并未形成系统有效的提取方案,仍需开展深入研究;对于其他类高值化合物而言,多种类型化合物的提取为开发高值化生物质产品提供了原料支撑;生物活性炭则是葡萄枝原料化开发的热点之一,在燃料电池等领域应用前景广阔。

总之,葡萄枝条的开发利用形式多样,应基于中国农业发展特点及实际需求,优化产业布局,规范栽培模式,提升葡萄种植管理机械化水平,加大葡萄枝条粉碎还田、堆肥、生物炭制备、生物发电、燃料以及生物基材料/化学品等的开发,形成快速高效处理和高值化开发相结合的多元化利用模式。

[1] International Vine and Wine Organization. OIV Database[EB/OL]. (2020-11-20)[2022-04-01]. https: //www. oiv. int/en/.

[2] Achaby M E, Miri N E, Hannache H, et al. Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials[J]. International Journal of Biological Macromolecules, 2018, 117: 592-600.

[3] Pachón E R, Mandade P, Gnansounou E. Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept[J]. Bioresource Technology, 2020, 303: 122946.

[4] Cebrián-Tarancón C, Sánchez-Gómez R, Cabrita M J, et al. Assessment of vine-shoots in a model wines as enological additives[J]. Food Chemistry, 2019, 288: 86-95.

[5] Sánchez-Gómez R, Alonso G L, Salinas M R, et al. Reuse of vine-shoots wastes for agricultural purposes[J]. Handbook of Grape Processing By-Products, 2017: 79-104.

[6] Pizzi A, Foppa Pedretti E, Duca D, et al. Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects[J]. Renewable Energy, 2018, 121: 513-520.

[7] 国家发展改革委等. 关于“十四五”大宗固体废弃物综合利用的指导意见[发改环资〔2021〕381号][EB/OL]. [2022-04-01]. https: //www. ndrc. gov. cn/xxgk/zcfb/ tz/202103/t20210324_1270286. html?code=&state=123.

[8] 张德俐,王芳,易维明,等. 木质纤维素生物质厌氧发酵沼渣热化学转化利用研究进展[J]. 农业工程学报,2021,37(21):225-236.

Zhang Deli, Wang Fang, Yi Weiming, et al. Thermochemical conversion and utilization of digestates from anaerobic digestion of lignocellulosic biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 225-236. (in Chinese with English abstract)

[9] 王芳,刘晓风,陈伦刚,等. 生物质资源能源化与高值利用研究现状及发展前景[J]. 农业工程学报,2021,37(18):219-231.

Wang Fang, Liu Xiaofeng, Chen Lungang, et al. Research status and development prospect of energy and high value utilization of biomass resources[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 219-231. (in Chinese with English abstract)

[10] Sánchez A, Ysunza F, Beltrán-García M J, et al. Biodegradation of viticulture wastes by Pleurotus: a source of microbial and human food and its potential use in animal feeding[J]. Journal of Agricultural & Food Chemistry, 2002, 50(9): 2537-2542.

[11] Sun X Y, Wei X F, Zhang J X, et al. Biomass estimation and physicochemical characterization of winter vine prunings in the Chinese and global grape and wine industries[J]. Waste Management, 2020, 104: 119-129.

[12] Dávila I, Gordobil O, Labidi J, et al. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing[J]. Bioresource Technology, 2016, 211: 636-644.

[13] Peralbo-Molina Á, Luque De Castro M D. Potential of residues from the mediterranean agriculture and agrifood industry[J]. Trends in Food Science & Technology, 2013, 32(1): 16-24.

[14] 高园,房玉林,张昂,等. 葡萄枝条中多酚类物质的超声波辅助提取[J]. 西北农林科技大学学报(自然科学版),2009,37(9):77-82.

Gao Yuan, Fang Yulin, Zhang Ang, et al. Study on the extraction of polyphenol from grapevine branch by ultrasonic adjunct extraction method[J]. Journal of Northwest A&F University (Nat. Sci. Ed. ), 2009, 37(9): 77-82. (in Chinese with English abstract)

[15] 薛雯,房玉林,孙艳,等. 41种葡萄枝条废弃物中膳食纤维及营养成分研究[J]. 西北林学院学报,2012,27(5):139-145.

Xue Wen, Fang Yulin, Sun Yan, et al. Dietrary fiber and nutrients from the grape vines of 41 cultivars[J]. Journal of Northwest Forestry University, 2012, 27(5): 139-145. (in Chinese with English abstract)

[16] Adamchuk V, Bulgakov V, Skorikov N, et al. Developing a new design of wood chopper for grape vine and fruit tree pruning and the results of field testing[J]. Agronomy Research, 2016, 14(5): 1519-1529.

[17] 张福印. 葡萄残枝粉碎还田机的设计与试验研究[D]. 北京:中国农业大学,2019.

Zhang Fuyin. Design and Experimental Research on Grape Residuum Branches Chopping and Returning Machine[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)

[18] Yılmaza E, Çanakcıb M, Topakcıb M, et al. Effect of vineyard pruning residue application on soil aggregate formation, aggregate stability and carbon content in different aggregate sizes[J]. Catena, 2019, 183: 1-9.

[19] Yilmaz E, Canakci M, Topakci M, et al. The effects of application of vine pruning residue on soil properties and productivity under mediterranean climate conditions in Turkey[J]. Fresenius Environmental Bulletin, 2017, 26(8): 5447-5457.

[20] Pisciotta A, Lorenzo R D, Novara A, et al. Cover crop and pruning residue management to reduce nitrogen mineral fertilization in mediterranean vineyards[J]. Agronomy (Basel), 2021, 11(1): 164.

[21] 苏宏,张鹤,黄建全,等. 添加葡萄枝条对土壤真菌群落结构及葡萄树体生长的影响[J]. 吉林农业大学学报. DOI:10.13327/j.jjlau.2020.6047.

Su Hong, Zhang He, Huang Jianquan, et al. Influence of grape prunings addition on soil fungal community structure and grape tree growth[J]. Journal of Jilin Agricultural University. DOI:10.13327/j.jjlau.2020.6047. (in Chinese with English abstract)

[22] Pergola M, Persiani A, Palese A M, et al. Composting: The way for a sustainable agriculture[J]. Applied Soil Ecology, 2018, 123: 744-750.

[23] 王引权. 葡萄冬剪枝条高温堆制化机理研究[D]. 兰州: 甘肃农业大学,2005.

Wang Yinquan. Studies on Composting Mechanism for Vineyard Pruning Residues[D]. Lanzhou: Gansu Agricultural University, 2005. (in Chinese with English abstract)

[24] Nogales R, Cifuentes C, Benitez E. Vermicomposting of winery wastes: a laboratory study[J]. Journal of Environmental Science and Health Part B, 2005, 40(4): 659-673.

[25] Nogales R, Fernández-Gomez M J, Delgado-Moreno L, et al. Eco-friendly vermitechnological winery waste management: A pilot-scale study[J]. SN Applied Sciences, 2020, 2(4): 1-13.

[26] Castillo J M, Romero E, Nogales R. Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes[J]. Bioresource Technology, 2013, 146(10): 345-354.

[27] Chan K Y, Fahey D J, Newell M, et al. Using composted mulch in vineyards-effects on grape yield and quality[J]. International Journal of Fruit Science, 2010, 10(4): 441-453.

[28] Nicolás C, Masciandaro G, Hernández T, et al. Chemical-structural changes of organic matter in a semi-arid soil after organic amendment[J]. Pedosphere, 2012, 22(3): 283-293.

[29] Gaiotti F, Marcuzzo P, Belfiore N, et al. Influence of compost addition on soil properties, root growth and vine performances of Vitis vinifera cv Cabernet sauvignon[J]. Scientia Horticulturae, 2017, 225: 88-95.

[30] Initiative International Biochar. About biochar[EB/OL]. (2021-11-09)[2022-04-01]. https: //biochar-international. org/.

[31] Manyà J J, Ortigosa M A, Laguarta S, et al. Experimental study on the effect of pyrolysis pressure, peak temperature, and particle size on the potential stability of vine shoots-derived biochar[J]. Fuel, 2014, 133: 163-172.

[32] Azuara M, Sáiz E, Manso J A, et al. Study on the effects of using a carbon dioxide atmosphere on the properties of vine shoots-derived biochar[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 719-725.

[33] Libutti A, Trotta V, Rivelli A R. Biochar, vermicompost, and compost as soil organic amendments: Influence on growth parameters, nitrate and chlorophyll content of Swiss chard (L. var.)[J]. Agronomy (Basel), 2020, 10(3): 346.

[34] Nunes L J R, Rodrigues A M, Matias J C O, et al. Production of biochar from vine pruning: Waste recovery in the wine industry[J]. Agriculture (Basel), 2021, 11(6): 489.

[35] 张蓓蓓. 我国生物质原料资源及能源潜力评估[D]. 北京:中国农业大学,2018.

Zhang Beibei. Assessment of Raw Material Supply Capability and Energy Potential of Biomass Resources in China[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)

[36] Jiménez L, González F. Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels[J]. Fuel, 1991, 70(8): 947-950.

[37] Velázquez-Martí B, Fernández-González E, López-Cortés I, et al. Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area[J]. Biomass and Bioenergy, 2011, 35(8): 3453-3464.

[38] Corona G, Nicoletti G. Renewable energy from the production residues of vineyards and wine: Evaluation of a business case[J]. New Medit, 2010, 9(4): 41-47.

[39] Mendfvil M A, Munoz P, Morales M P, et al. Chemical characterization of pruned vine shoots from La Rioja (Spain) for obtaining solid bio-fuels[J]. Journal of Renewable & Sustainable Energy, 2013, 5(3): 033113.

[40] Mendívil M A, Muñoz P, Morales M P, et al. Energy potential of vine shoots in La Rioja (Spain) and their dependence on several viticultural factors[J]. Ciencia e Investigación Agraria, 2015, 42(3): 443-451.

[41] Manzone M, Paravidino E, Bonifacino G, et al. Biomass availability and quality produced by vineyard management during a period of 15 years[J]. Renewable Energy, 2016, 99: 465-471.

[42] Vamvuka D, Trikouvertis M, Pentari D, et al. Characterization and evaluation of fly and bottom ashes from combustion of residues from vineyards and processing industry[J]. Journal of the Energy Institute, 2017, 90(4): 574-587.

[43] José M J S, Alvarez S, López R. Conical spouted bed combustor for combustion of vine shoots wastes[J]. International Journal of Energy and Environmental Engineering, 2018, 12(3): 275-278.

[44] José San José M, Alvarez S, García I, et al. A novel conical combustor for thermal exploitation of vineyard pruning wastes[J]. Fuel, 2013, 110: 178-184.

[45] Fernández-Puratich H, Hernández D, Tenreiro C. Analysis of energetic performance of vine biomass residues as an alternative fuel for Chilean wine industry[J]. Renewable Energy, 2015, 83: 1260-1267.

[46] Gañán J, Abdulla A K, Cuerda E M C, et al. Energetic exploitation of vine shoot by gasification processes[J]. Fuel Processing Technology, 2006, 87(10): 891-897.

[47] Unal H, Alibas K. Agricultural residues as biomass energy[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2007, 2(2): 123-140.

[48] Rajabi Hamedani S, Del Zotto L, Bocci E, et al. Eco-efficiency assessment of bioelectricity production from Iranian vineyard biomass gasification[J]. Biomass and Bioenergy, 2019, 127: 1-13.

[49] Nitsos C, Matsakas L, Triantafyllidis K, et al. Evaluation of mediterranean agricultural residues as a potential feedstock for the production of biogas via anaerobic fermentation[J]. BioMed Research International, 2015, 2015: 171635.

[50] Montalvo S, Martinez J, Castillo A, et al. Sustainable energy for a winery through biogas production and its utilization: A Chilean case study[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100640.

[51] Pérez-Rodríguez N, García-Bernet D, Domínguez J M. Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production[J]. Bioresource Technology, 2016, 221: 130-138.

[52] Pérez-Rodríguez N, García-Bernet D, Domínguez J M. Faster methane production after sequential extrusion and enzymatic hydrolysis of vine trimming shoots[J]. Environmental Chemistry Letters, 2018, 16(1): 295-299.

[53] Gomez S J, Causapé M C C, Martinez A A. Tracking variables in crude and treated vine shoots digestion process[J]. Environmental Technology, 1991, 12(4): 349-354.

[54] Biagini E, Barontini F, Tognotti L. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks[J]. Bioresource Technology, 2015, 194: 36-42.

[55] Buratti C, Barbanera M, Lascaro E. Ethanol production from vineyard pruning residues with steam explosion pretreatment[J]. Environmental Progress & Sustainable Energy, 2014, 34(3): 802-809.

[56] Senila L, Neag E, Torok I, et al. Vine shoots waste-new resources for bioethanol production[J]. Romanian Biotechnological Letters, 2020, 25(1): 1253-1259.

[57] Davila I, Gullon P, Labidi J, et al. Assessment of the influence of the temperature in the microwave-assisted alkaline delignification of vine shoots[J]. Chemical Engineering Transactions, 2018, 70: 1687-1692.

[58] Garita-Cambronero J, Paniagua-García A I, Hijosa-Valserohij M, et al. Biobutanol production from pruned vine shoots[J]. Renewable Energy, 2021, 177: 124-133.

[59] Jäger N, Conti R, Neumann J, et al. Thermo-catalytic reforming of woody biomass[J]. Energy Fuels, 2016, 30(10): 7923-7929.

[60] Szamosi Z, Tóth P, Koós T, et al. Explosion characteristics of torrefied wheat straw, rape straw, and vine shoots fuels[J]. Energy Fuels, 2017, 31(11): 12192-12199.

[61] 秦蓓,徐万里,姚红宇,等. 炭化温度和时间对葡萄枝条炭和棉杆炭特性的影响[J]. 西北农业学报,2017,26(11):1672-1680.

Qin Bei, Xu Wanli, Yao Hongyu, et al. Effects of carbonization temperature and time on characteristics of Vitis vinirera and cotton stalk-chars[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(11): 1672-1680. (in Chinese with English abstract)

[62] Nunes L J R. Torrefied biomass as an alternative in coal-fueled power plants: A case study on grindability of agroforestry waste forms[J]. Clean Technologies, 2020, 2(3): 270-289.

[63] Torres R, Valdez B, Beleño M T, et al. Char production with high-energy value and standardized properties from two types of biomass[J]. Biomass Conversion and Biorefinery, 2021. DOI:10.1007/s13399-021-01498-7.

[64] Mediavilla I, Fernández M J, Esteban L S. Optimization of pelletisation and combustion in a boiler of 17. 5 kWthfor vine shoots and industrial cork residue[J]. Fuel Processing Technology, 2009, 90(4): 621-628.

[65] Picchi G, Silvestri S, Cristoforetti A. Vineyard residues as a fuel for domestic boilers in Trento Province (Italy): Comparison to wood chips and means of polluting emissions control[J]. Fuel, 2013, 113: 43-49.

[66] Nunes L J R, Loureiro L M E F, Sá L C R, et al. Energy recovery of agricultural residues: Incorporation of vine pruning in the iroduction of biomass pellets with ENplus® certification[J]. Recycling, 2021, 6(2): 28.

[67] Ramírez-Gómez Á, Gallego E, Fuentes J M, et al. Values for particle-scale properties of biomass briquettes made from agroforestry residues[J]. Particuology, 2014, 12: 100-106.

[68] Rajabi Hamedani S, Colantoni A, Gallucci F, et al. Comparative energy and environmental analysis of agro-pellet production from orchard woody biomass[J]. Biomass and Bioenergy, 2019, 129: 105334.

[69] Ilari A, Toscano G, Foppa Pedretti E, et al. Environmental sustainability of geating systems based on pellets produced in mobile and stationary plants from vineyard pruning residues[J]. Resources, 2020, 9(8): 94.

[70] Torreiro Y, Pérez L, Piñeiro G, et al. The role of energy valuation of agroforestry biomass on the circular economy[J]. Energies, 2020, 13(10): 2516.

[71] 谭敏尧. 移动式生物质粉碎成型联合机的设计与研究[D]. 哈尔滨:东北林业大学,2013.

Tan Minyao. Design and Research of Biomass Mobile Crushing Forming Joint Machine[D]. Harbin: Northeast Forest Universtiy, 2013. (in Chinese with English abstract)

[72] 赵洪元. 自走式削片机的设计与研究[D]. 哈尔滨:东北林业大学,2017.

Zhao Hongyuan. Design and Research of Self Propelled Chipper[D]. Harbin: Northeast Forest Universtiy, 2017. (in Chinese with English abstract)

[73] Bisaglia C, Romano E. Utilization of vineyard prunings: A new mechanization system from residues harvest to CHIPS production[J]. Biomass and Bioenergy, 2018, 115: 136-142.

[74] Dávila I, Gullón B, Alonso J L, et al. Vine shoots as new source for the manufacture of prebiotic oligosaccharides[J]. Carbohydrate Polymers, 2019, 207: 34-43.

[75] 郭志君,房玉林,马立娜. 中国野生刺葡萄冬剪枝条多酚类物质含量及其抗氧化活性研究[J]. 食品科学,2012,33(19):159-163.

Guo Zhijun, Fang Yulin, Ma Lina. Polyphenol content and antioxidant activity of pruned branches of wild spine grape trees (Vitis davidii Foex) in winter[J]. Food Science, 2012, 33(19): 159-163. (in Chinese with English abstract)

[76] Ju Y L, Zhang A, Fang Y L, et al. Phenolic compounds and antioxidant activities of grape canes extracts from vineyards[J]. Spanish Journal of Agricultural Research, 2016, 14(3): e0805.

[77] Salvador  C, Simões M M Q, Silva A M S, et al. Vine waste valorisation: integrated approach for the prospection of bioactive lipophilic phytochemicals[J]. International Journal of Molecular Sciences, 2019, 20(17): 4239.

[78] 孙玉霞,史红梅,蒋锡龙,等. 响应面法优化葡萄枝条中多酚化合物提取条件的研究[J]. 中国农学通报,2011,27(7):466-471.

Sun Yuxia, Shi Hongmei, Jiang Xilong, et al. Study on the optimum extracting condition of polyphenols in grapevine cane by response surface methodology[J]. Chinese Agricultural Science Bulletin, 2011, 27(7): 466-471. (in Chinese with English abstract)

[79] 张静,高园,万力,等. 大孔吸附树脂分离纯化葡萄枝条中多酚类物质[J]. 西北农业学报,2013,22(3):173-177.

Zhang Jing, Gao Yuan, Wan Li, et al. Macroporous resin adsorption for purification of grape polyphenols from grapevine cane[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(3): 173-177. (in Chinese with English abstract)

[80] Porto C D, Natolino A, Scalet M. Ultrasound-assisted extraction of proanthocyanidins from vine shoots of Vitis vinifera[J]. Journal of Wine Research, 2018, 29(4): 290-301.

[81] Rätsep R, Karp K, Maante-Kuljus M, et al. Recovery of polyphenols from vineyard pruning wastes-shoots and cane of hybrid grapevine (sp. ) cultivars[J]. Antioxidants, 2021, 10(7): 1059.

[82] Cebrián C, Sánchez-Gómez R, Salinas M R, et al. Effect of post-pruning vine-shoots storage on the evolution of high-value compounds[J]. Industrial Crops and Products, 2017, 109: 730-736.

[83] Sánchez-Gómez R, Zalacain A, Pardo F, et al. An innovative use of vine-shoots residues and their “feedback” effect on wine quality[J]. Innovative Food Science & Emerging Technologies, 2016, 37: 18-26.

[84] Jesus M S, Ballesteros L F, Pereira R N, et al. Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity[J]. Food Chemistry, 2020, 316: 126298.

[85] Luque-Rodríguez J M, Pérez-Juan P, Luque De Castro M D. Extraction of polyphenols from vine shoots of vitis vinifera by superheated ethanol-water mixtures[J]. Journal of Agricultural and Food Chemistry, 2006, 54(23): 8775-8781.

[86] Moreira M M, Rodrigues F, Dorosh O, et al. Vine-canes as a source of value-added compounds for cosmetic formulations[J]. Molecules, 2020, 25(13): 2969.

[87] Rajha H N, Boussetta N, Louka N, et al. Electrical, mechanical, and chemical effects of high-voltage electrical discharges on the polyphenol extraction from vine shoots[J]. Innovative Food Science & Emerging Technologies, 2015, 31: 60-66.

[88] Rajha H N, Chacar S, Afif C, et al.-cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars[J]. Journal of Agricultural and Food Chemistry, 2015, 63(13): 3387-3393.

[89] Max B, Salgado J M, Cortés S, et al. Extraction of phenolic acids by alkaline hydrolysis from the solid residue obtained after prehydrolysis of trimming vine shoots[J]. Journal of Agricultural and Food Chemistry, 2010, 58(3): 1909-1917.

[90] Delgado-Torre M P, Ferreiro-Vera C, Priego-Capote F, et al. Comparison of accelerated methods for the extraction of phenolic compounds from different vine-shoot cultivars[J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 3051-3060.

[91] Moreira M M, Barroso M F, Porto João V, et al. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds[J]. Science of The Total Environment, 2018, 634: 831-842.

[92] Jesus M S, Genisheva Z, Romaní A, et al. Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods[J]. Industrial Crops and Products, 2019, 132: 99-110.

[93] Rajha H N, Kantar S E, Afif C, et al. Selective multistage extraction process of biomolecules from vine shoots by a combination of biological, chemical, and physical treatments[J]. Comptes Rendus Chimie, 2018, 21: 581-589.

[94] Rajha H N, Boussetta N, Louka N, et al. A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots[J]. Food Research International, 2014, 65: 462-468.

[95] 万力,郭志君,闵卓,等. 野生葡萄枝条多酚粗提物抑菌活性研究[J]. 西北林学院学报,2014,29(1):122-126.

Wan Li, Guo Zhijun, Min Zhuo, et al. Antimicrobial activities of phenolics from Chinese wild grape canes[J]. Journal of Northwest Forestry University, 2014, 29(1): 122-126. (in Chinese with English abstract)

[96] 孙玉霞,蒋锡龙,史红梅,等. 葡萄枝条提取物的抑菌活性及其在红地球葡萄防腐保鲜上的应用研究[J]. 食品工业科技,2015,36(2):129-132.

Sun Yuxia, Jiang Xilong, Shi Hongmei, et al. Anti-microbial activity of grape cane extracts and its application on storage of Red Globe grape[J]. Science and Technology of Food Industry, 2015, 36(2): 129-132. (in Chinese with English abstract)

[97] Jesus M S, Carvalho A C, Teixeira J A, et al. Ohmic heating extract of vine pruning residue has anti-colorectal cancer activity and increases sensitivity to the chemotherapeutic drug 5-FU[J]. Foods, 2020, 9(8): 1102.

[98] Romain C, Gaillet S, Carillon J, et al. Vineatrol and cardiovascular disease: Beneficial effects of a vine-shoot phenolic extract in a hamster atherosclerosis model[J]. Journal of Agricultural and Food Chemistry, 2012, 60(44): 11029-11036.

[99] Sánchez-Gómez R, Zalacain A, Pardo F, et al. Moscatel vine-shoot extracts as a grapevine biostimulant to enhance wine quality[J]. Food Research International, 2017, 98: 40-49.

[100] Sánchez-Gómez R, Pérez-Álvarez E P, Salinas R, et al. Effect of vine-shoot and oak extract foliar grapevine applications on oenological parameters, phenolic acids and glutathione content of white musts and wines[J]. Oeno One, 2020, 54(1): 145-156.

[101] Torre M P D, Priego-Capote F, Castro M D L. Comparative profiling analysis of woody flavouring from vine-shoots and oak chips[J]. Journal of the Science of Food and Agriculture, 2014, 94(3): 504-514.

[102] Sánchez Gómez R, Zalacain A, Alonso G L, et al. Effect of vine-shoots toasting on the generation of high added value volatiles[J]. Flavour and Fragrance Journal, 2016, 31(4): 293-301.

[103] Sánchez-Gómez R, Zalacain A, Alonso G L, et al. Effect of toasting on non-volatile and volatile vine-shoots low molecular weight phenolic compounds[J]. Food Chemistry, 2016, 204: 499-505.

[104] Cebrián-Tarancón C, Sánchez-Gómez R, Salinas M R, et al. Toasted vine-shoot chips as enological additive[J]. Food Chemistry, 2018, 263: 96-103.

[105] Cebrián-Tarancón C, Sánchez-Gómez R, Gómez-Alonso S, et al. Vine-shoot tannins: Effect of post-pruning storage and toasting treatment[J]. Journal of Agricultural and Food Chemistry, 2018, 66(22): 5556-5562.

[106] Cebrián-Tarancón C, Sánchez-Gómez R, Cabrita M J, et al. Winemaking with vine-shoots modulating the composition of wines by using their own resources[J]. Food Research International, 2019, 121: 117-126.

[107] Cebrián-Tarancón C, Fernández-Roldán F, Sánchez-Gómez R, et al. Vine-shoots as enological additives a study of acute toxicity and cytotoxicity[J]. Foods, 2021, 10(6): 1267.

[108] Gullón B, Eibes G, Dávila I, et al. Valorization of vine shoots based on the autohydrolysis fractionation optimized by a kinetic approach[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14164-14171.

[109] Jesus M S, Romaní A, Genisheva Z, et al. Integral valorization of vine pruning residue by sequential autohydrolysis stages[J]. Journal of Cleaner Production, 2017, 168: 74-86.

[110] Gullón B, Eibes G, Moreira M M, et al. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots[J]. Industrial Crops and Products, 2017, 107: 105-113.

[111] Amine D, Abdeltif A, Tounsia A, et al. Characterization of cardinal vine shoot waste as new resource of lignocellulosic biomass and valorization into value-added chemical using Plackett-Burman and Box Behnken[J]. Biomass Conversion and Biorefinery, 2021. [2022-04-01]. DOI: 10.1007/s13399-021-01717-1.

[112] Rivas S, Parajó J C. Single-stage fractionation of vine shoots using microwave heating[J]. Applied Sciences, 2021, 11(17): 7954.

[113] Dávila I, Gullón P, Labidi J. Influence of the heating mechanism during the aqueous processing of vine shoots for the obtaining of hemicellulosic oligosaccharides[J]. Waste Management, 2021, 120: 146-155.

[114] Kovacs E, Scurtu D A, Senila L, et al. Green protocols for the isolation of carbohydrates from vineyard vine-shoot waste[J]. Analytical Letters, 2020, 54(1/2): 1-18.

[115] Moldes A B, Torrado A M, Barral M T, et al. Evaluation of biosurfactant production from various agricultural residues by lactobacillus pentosus[J]. Journal of Agricultural and Food Chemistry, 2007, 55(11): 4481-4486.

[116] Rodríguez-Pazo N, Salgado J M, Cortés-Diéguez S, et al. Biotechnological production of phenyllactic acid and biosurfactants from trimming vine shoot hydrolyzates by microbial coculture fermentation[J]. Applied Biochemistry and Biotechnology, 2013, 169(7): 2175-2188.

[117] Moldes A B, Bustos G, Torrado A, et al. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion[J]. Applied Biochemistry and Biotechnology, 2007, 143(3): 244-256.

[118] Rivas S, López L, Vila C, et al. Organosolv processing of vine shoots: Fractionation and conversion of hemicellulosic sugars into platform chemicals by microwave irradiation[J]. Bioresource Technology, 2021, 342: 125967.

[119] Pachón E R, Mandade P, Gnansounou E. Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept[J]. Bioresource Technology, 2020, 303: 122946.

[120] Dávila I, Gullón P, Andrés M A, et al. Coproduction of lignin and glucose from vine shoots by eco-friendly strategies: Toward the development of an integrated biorefinery[J]. Bioresource Technology, 2017, 244: 328-337.

[121] Amendola D, De Faveri D M, Egües I, et al. Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks[J]. Bioresource Technology, 2012, 107: 267-274.

[122] Benito-González I, Jaén-Cano C M, López-Rubio A, et al. Valorisation of vine shoots for the development of cellulose-based biocomposite films with improved performance and bioactivity[J]. International Journal of Biological Macromolecules, 2020, 165: 1540-1551.

[123] Davila I, Robles E, Andres M A, et al. Delignification alternatives of spent solid from autohydrolysis of vine shoots[J]. Chemical Engineering Transactions, 2017, 57: 85-90.

[124] Portilla O M, Rivas B, Torrado A, et al. Revalorisation of vine trimming wastes using Lactobacillus acidophilus and Debaryomyces hansenii[J]. Journal of the Science of Food and Agriculture, 2008, 88(13): 2298-2308.

[125] Bustos G, De la Torre N, Moldes A B, et al. Revalorization of hemicellulosic trimming vine shoots hydrolyzates trough continuous production of lactic acid and biosurfactants by L.[J]. Journal of Food Engineering, 2007, 78(2): 405-412.

[126] Corcho-Corral B, Olivares-Marín M, Fernández-González C, et al. Preparation and textural characterisation of activated carbon from vine shoots () by H3PO4-Chemical activation[J]. Applied Surface Science, 2006, 252(17): 5961-5966.

[127] Nabais J M Valente, Laginhas C, Carrott P J M, et al. Thermal conversion of a novel biomass agricultural residue (vine shoots) into activated carbon using activation with CO2[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(1): 8-13.

[128] Ruiz-Fernández M, Alexandre-Franco M, Fernández González C, et al. Adsorption isotherms of methylene blue in aqueous solution onto activated carbons developed from vine shoots () by physical and chemical methods[J]. Adsorption Science & Technology, 2010, 28(8/9): 751-759.

[129] Ruiz-Fernández M, Alexandre-Franco M, Fernández González C, et al. Development of activated carbon from vine shoots by physical and chemical activation methods Some insight into activation mechanisms[J]. Adsorption, 2011, 17(3): 621-629.

[130] Erdem M, Orhan R, Şahin M, et al. Preparation and characterization of a novel activated carbon from vine shoots by ZnCl2activation and investigation of its rifampicine removal capability[J]. Water Air Soil Pollut, 2016, 227(7): 226.

[131] Çalişkan Ç E, Çiftçi H, Çiftçi T, et al. Use of activated carbon obtained from waste vine shoots in nickel adsorption in simulated stomach medium[J]. Biomass Conversion and Biorefinery. DOI: 10.1007/s13399-021-01954-4.

[132] Li H Y, Yao D H, Feng Q J, et al. Adsorption of Cd(II) and Pb(II) on biochars derived from grape vine shoots[J]. Desalination and Water Treatment, 2018, 118: 195-204.

[133] Manyà J J, González B, Azuara M, et al. Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2uptake and CO2/N2selectivity[J]. Chemical Engineering Journal, 2018, 345: 631-639.

[134] Barroso-Bogeat A, Alexandre-Franco M, Fernández González C, et al. Temperature dependence of the electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods[J]. Microporous and Mesoporous Materials, 2015, 209: 90-98.

[135] Martins M, Šljukić B, Sequeira C A C, et al. Biobased carbon-supported palladium electrocatalysts for borohydride fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(25): 10914-10922.

[136] Cardoso J A S B, Šljukić B, Erdem M, et al. Vine shoots and grape stalks as carbon sources for hydrogen evolution reaction electrocatalyst supports[J]. Catalysts, 2018, 8(2): 50.

[137] Hoffmann V, Jung D, Zimmermann J, et al. Conductive carbon materials from the hydrothermal carbonization of vineyard residues for the application in electrochemical double-layer capacitors (EDLCs) and direct carbon fuel cells (DCFCs)[J]. Materials, 2019, 12(10): 1703.

Status and prospect of resource utilization for grape vine stalks

Liu Wenzheng, Ping Fengjiao, Bai Xuebing, Fang Yulin, Dong Shumeng, Yang Jihong※, Yuan Chunlong,Lai Jiangwen

(1.,,712100,;2.,750104,)

Grape () is one of the most widely spread and the largest productive fruit crops in the world. It can be eaten fresh as the table grapes, or used for making wine, jam, and juice. A high productive of grapes is also found in China. For instance, 14.8 million tons of grapes were produced, and the area under the grape cultivation was 7.68×104hm2in China in 2020. The yield and planting area of grape have been ranked at first and second around the world, respectively. There are many pruned grape vine stalks every year, particularly with the development of the grape industry. Grape vine stalks are rich in the lignin, cellulose and hemicellulose, in order to serve as the renewable biomass resource with the high content of nitrogen, phosphorus, potassium, and organic nutrients. However, the utilization rate of grape vine stalks is very low, leading to the waste of biomass resources and environmental pollution. Large-scale utilization and development of grape vine stalks can greatly contribute to the low-carbon economic development, ecological civilization construction, and energy revolution. In addition, it is of great significance to ensure the national strategies implementation in China, such as the beautiful villages’ construction, the goal of “carbon neutrality”, and global climate change. Therefore, this study aims to focus mainly on the general goal of comprehensive utilization of pruned grape vine stalks. Currently, the grape vine stalks are mainly used as the fertilizer, fuel and raw material. Among them, the fertilizer can be mainly divided into returning to the field directly after crushing, and composting. Besides, the aqueous extract and biochar from the grape vine stalks can be applied as the foliar fertilizer and soil amendment, respectively. In fuel, the grape vine stalks have the high energy storage suitable for the production of biomass fuels. The energy potential of biomass resources was also evaluated to identify the fuel convention mode. Moreover, the fuel convention mode of grape vine stalks was divided into the direct combustion, gasification, liquefaction, and carbonization. In raw material, the high value and performance of products were made from the grape vine stalk, due to the richness in biomass contents. Nowadays, the grape vine stalks are used as raw material for the research hotspot. The main utilization modes include the high-value compound extract, study making, particle board manufacturing, and active carbon preparation. A series of investigations were conducted to extract the high-value compounds, such as phenolic, oligosaccharides, reducing sugar, and protein. The extraction included the conventional way, ultrasonic adjunct, microwave-assisted, solid-liquid, superheated liquid, and high-voltage electrical discharges. Overall, the integrated utilization of grape vine stalks is the reasonable way as the renewable energy sources for the sustainable development of resources, environment and economy. Finally, the existing approaches were summarize to evaluate the development prospects for the comprehensive utilization of grape vine stalks. This review can provide a strong reference for the high value and efficiency integrated utilization of grape vine stalks, in order to promote the green and sustainable development of agriculture.

environmental engineering; biomass; resourcization; comprehensive utilization of grape vine stalks; sustainable development

10.11975/j.issn.1002-6819.2022.16.030

S216;TK6

A

1002-6819(2022)-16-0270-14

刘文政,平凤姣,白雪冰,等. 葡萄枝条资源化利用研究现状及进展[J]. 农业工程学报,2022,38(16):270-283.doi:10.11975/j.issn.1002-6819.2022.16.030 http://www.tcsae.org

Liu Wenzheng, Ping Fengjiao, Bai Xuebing, et al. Status and prospect of resource utilization for grape vine stalks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(16): 270-283. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.16.030 http://www.tcsae.org

2022-04-01

2022-07-08

国家重点研发计划项目(2019YFD1002500);宁夏回族自治区重点研发计划项目(2021BEF02016);中央高校基础科研业务费专项资金项目(2452020201)

刘文政,博士,讲师,研究方向为农业副产物资源化利用技术与装备。Email:lwzheng@nwafu.edu.cn

杨继红,博士,副教授,研究方向为葡萄酿酒副产物加工利用技术。Email:yangjihong@nwsuaf.edu.cn

猜你喜欢
资源化枝条燃料
磷石膏资源化综合利用任重道远
人造石行业固废资源化处理及综合利用概述
来自沙特的新燃料
生物燃料
导弹燃料知多少
冬天的枝条是破折号
闪光的枝条
污泥的处理及资源化利用
绝句
秸秆资源化综合利用的探讨