洛河地区高自然伽马砂岩识别及主控因素

2023-07-20 03:30师学耀高超利刘伟周志杰安鑫胜李宁孙欢

师学耀 高超利 刘伟 周志杰 安鑫胜 李宁 孙欢

摘 要:為识别洛河区延长组长6与泥岩、凝灰质泥岩具有类似常规测井响应特征的高自然伽马砂岩,分析高自然伽马砂岩的成因与主控因素。综合分析高自然伽马砂岩的岩性、物性特征及对应测井响应特征,优选测井曲线敏感参数进行曲线重叠处理,快速识别高自然伽马砂岩,通过多敏感测井参数组合构建新指示参数进行交会,验证高自然伽马砂岩。结果表明:与常规砂岩相比高自然伽马砂岩中钍元素含量相对较高,铀和钾元素含量正常;高自然伽马砂岩纵向随机分布于三角洲前缘水下分流河道沉积旋回砂体的任何部位;高自然伽马砂岩平面展布整体与三角洲前缘水下分流河道砂体平面展布特征基本一致,受沉积微相控制。洛河区高自然伽马砂岩为同沉积期火山事件沉积的凝灰质叠加在三角洲前缘水下分流河道沉积中形成,高放射性主要来自高含量钍元素。

关键词:高自然伽马砂岩;新指示参数;火山事件沉积;水下分流河道;洛河区

中图分类号:TE 121文献标志码:A

文章编号:1672-9315(2023)03-0530-09

DOI:10.13800/j.cnki.xakjdxxb.2023.0310开放科学(资源服务)标识码(OSID):

Identification and main controlling factors of method high Gamma sandstone in Luohe Area

SHI Xueyao1,GAO Chaoli1,2,LIU Wei1,ZHOU Zhijie3,AN Xinsheng1,LI Ning1,SUN Huan3

(1.Technology and Information Management Department of Yanchang Oilfield Co.,Ltd.,Yanan 716000,China;2.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China;3.National and Local Joint Engineering Research Center of Carbon Capture and Storage Technology/Department of Geology,Northwest University,Xian 710069,China)

Abstract:In order to effectively identify the sandstone with high gamma ray in the Triassic Yanchang Chang 6 Member,which have similar conventional well logging response characteristics to the surrounding argillaceous rocks and tuffaceous rocks deposited by volcanic events from conventional well logging response characteristics in Luohe Area,are analyzed the possible genesis and main control factors of the sandstone with high gamma ray.A comprehensive study has been made of  the lithology,physical property characteristics and their variations,with well logging curves  optimized to quickly identify the sandstone with high gamma ray.And the cross plots of the well logging response characteristics of the sandstone with high gamma ray,the overlapping processing of sensitive new indicator parameters constructed according to the combination of multi sensitive well logging parameters are compiled to verify the sandstone with high gamma ray.Further,an analysis of the radioactive elements,vertical distribution and plane distribution characteristics of the sandstone with high gamma ray shows that:compared with conventional sandstone,the sandstone with high gamma ray has high thorium content,normal uranium and potassium.Sandstone with high gamma ray is vertically distributed in any part of the underwater distributary channel cycle sand body in the delta front.The plane distribution of the sandstone with high gamma ray is basically consistent with that of underwater distributary channel sand bodies in delta front,which is controlled by sedimentary microfacies.It is inferred that the sandstone with high gamma ray of Chang 6 Member in Luohe Area may be formed by the superposition of the tuff deposited by the contemporaneous volcanic event in the underwater distributary channel sediments of the delta front,and the high gamma ray  comes mainly from the contribution of thorium.

Key words:sandstone with high gamma ray;new indicator parameters;volcanic  sedimentation;underwater distributary channel;Luohe Area

0 引 言

碎屑岩中陆续发现高自然伽马砂岩,如珠江口盆地珠一坳陷古近系[1]、海拉尔盆地乌南凹陷南一段[2]、川西坳陷须家河组、鄂尔多斯盆地的中生界三叠系延长组和上古生界二叠系山西组[3-7]、准噶尔盆地二叠系夏子街组[8]、乌尔禾区三叠系百口泉组中均发现存在高自然伽马砂岩[9]。一般认为高自然伽马砂岩自然伽马测井值相对较高,甚至高于围岩泥质岩石的自然伽马值,运用自然伽马相对值法计算的砂岩视泥质含量>30.0%,特别是视泥质含量≥40.0%的砂岩。区分相对高自然伽马砂岩的主要依据是自然伽马相对值,即统一换算为自然伽马相对值法求取的视泥质含量[4]。不同学者从岩石学特征、主量及微量元素、物源特征、沉积微相特征、成岩作用、深部热液活动、火山事件沉积等方面开展了大量高自然伽马砂岩成因的研究,归纳为以下4种:①来源于深部的高铀离子放射性流体在砂体中富集[1],或深部热液溶解碎屑中铀同位素后再次富集沉淀导致[8];②同沉积期火山事件凝灰岩及其成岩蚀变产物所导致[2,4,6-7];③物源供给物放射性差异及沉积微相差异导致[5,9];④成岩作用导致砂岩放射性元素相对富集具有高自然伽马特征。向巧维等认为珠江口盆地古近系高自然伽马砂岩形成机制为地下流体携带的放射性元素铀离子在氧化—还原面处富集后导致地层的自然伽马值偏高,在具有连通基底大断裂旁的圈闭中铀元素富集所导致[1]。毛志强等认为准噶尔盆地夏子街组的特殊岩性段是由深部热液沿断裂上升至沉积层而形成的热液蚀变体,特殊岩性段内异常高自然伽马是热液溶解母岩碎屑中铀同位素后沿热液活动通道运移并再次富集沉淀的结果[8]。珠江口盆地古近系高自然伽马砂岩、准噶尔盆地夏子街组高自然伽马砂岩的成因与深部热液活动密切相关。冯春珍、黄建松、张小莉、于振锋等通过对鄂尔多斯盆地中生界三叠系延长组、上古生界二叠系山西组高自然伽马砂岩成因研究,提出高自然伽马砂岩主要成因为同沉积期火山凝灰岩添加及其成岩蚀变产物,即沉积过程中火山事件沉积物添加导致砂岩的自然伽马值高[2,4,6-7]。LIU等和周俊林等認为物源供给的母岩中富含铀或凝灰质岩石等高放射性物质,同时沉积物粒度变化、搬运距离和沉积相带展布控制了砂岩自然伽马异常的空间变化,砂岩物源供给差异及沉积微相差异导致砂岩自然伽马高[5,9]。刘国强认为成岩作用过程中生成伊利石、蒙脱石等富含放射性元素的黏土矿物富集,导致砂岩放射性增强,具有高自然伽马的特征[10]

鄂尔多斯盆地中生界三叠系延长组不断发现高自然伽马砂岩且普遍含油,从上向下包括长2至长10段都取得一定的勘探效果[11-21]。但由于高自然伽马砂岩层位多、分布范围广,纵横向非均质性强,对成因特征、主控因素及分布模式认识整体不足,导致识别与评价困难。其中鄂尔多斯盆地中部洛河区延长组长6高自然伽马砂岩取得良好勘探效果,对洛河区长6段高自然伽马砂岩主控因素分析与重点解剖,有助于把握高自然伽马砂岩成因特征与分布模式。

1 洛河地区长6地质特征

洛河地区处于鄂尔多斯盆地伊陕斜坡中部(图1),三叠系延长组长6段属于安塞—志丹三角洲前缘沉积范围(图2)[22]。根据长6沉积特征等划分为长63、长62、长61亚段,长62、长61期主要为三角洲前缘水下分流河道、分流河道间。水下分流河道砂体发育,多期河道沉积叠置形成连片砂体,并且长61、长62中存在相对高自然伽马砂岩且普遍含油。

结合常规砂岩、泥岩自然伽马特征,认为洛河区延长组长6自然伽马大于90API的砂岩属于相对高自然伽马砂岩。长61、长62沉积旋回砂体中,高自然伽马砂岩以间互式、夹层式等与具有常规测井响应特征的砂岩共生或独立成层出现,高自然伽马砂岩段累计厚度0.5~10.1 m(图3)。除自然电位测井响应外,高自然伽马砂岩的测井响应特征与泥岩、凝灰质泥岩的测井响应特征类似,容易被误解释为泥岩、凝灰质泥岩而导致岩性划分的混乱[23]。厘清高自然伽马砂岩地质特征及测井响应,有助于探讨识别方法、成因机制及展布。

2 高自然伽马砂岩特征

洛河区长61、长62高自然伽马砂岩的自然伽马值一般90~115 API,个别高达130 API左右,自然电位曲线负异常明显,声波时差中—较高值,主要分布在220~ 250 μs/m,深、浅电阻率偏低,主要分布为5.8~26.0 Ω·m(图4)。

根据元素俘获谱测井、自然伽马能谱、核磁共振、中子—密度测井组合能够较好识别高自然伽马砂岩并计算泥质含量[3,6],洛河区长6测井资料包括自然电位、自然伽马、井径、声波时差、双感应—八侧向、视电阻率,个别井中测有自然伽马能谱、补偿密度、补偿中子、阵列感应等。如何利用洛河区常规测井系列资料有效识别高自然伽马砂岩是一个必须解决的问题[24]

2.1 敏感测井曲线重叠

长6厚层泥岩、常规纯砂岩部位自然电位、自然伽马进行最大程度拟合重叠,其他部位如果存在自然电位明显负异常、自然伽马大于90 API,两曲线间存在明显幅度差,可能为相对高自然伽马砂岩发育部位(图3),上述可能的高自然伽马砂岩段对应自然电位与声波时差两曲线重叠之间如存在明显幅度差,反映物性较好。自然电位与自然伽马、声波时差与自然电位敏感测井曲线重叠处理可快速识别高自然伽马砂岩。

2.2 构建新指示参数

洛河区长6取芯、试油段测井参数表明高自然伽马砂岩自然电位异常幅度明显,声波时差值比常规砂岩偏高,深感应电阻率偏低,各项测井参数变化范围较大。

为了利用多敏感测井参数有效识别验证高自然伽马砂岩,利用高自然伽马砂岩各项测井参数特征,构建由敏感测井响应参数如自然伽马、自然电位异常幅度系数组合生成的新指示参数(GR×GR×kusp/1 000)与深感应电阻率的交会图(图5),识别验证高自然伽马砂岩,高自然伽马砂岩资料点分布相对集中,主要分布于图中标注的①区。因此,构建由多敏感测井参数组合的新指示参数,能有效验证高自然伽马砂岩。

3 高自然伽马砂岩成因

3.1 同期或准同期火山事件沉积叠加

三叠纪长6期鄂尔多斯盆地周缘火山事件频繁[25],大量火山灰或沉积于湖盆,或由河流带入,火山凝灰质添加到三角洲前缘砂体中,导致砂岩的自然伽马值相对高、电阻率相对低。高自然伽马砂岩为砂体沉积与火山事件沉积共同作用,砂岩中的凝灰质成分后期容易溶蚀,导致次生孔隙發育,物性较好,自然电位曲线特征为明显负异常,声波时差值相对较高[5,26-27]

3.2 深部流体活动

通过对鄂尔多斯盆地三叠系延长组高自然伽马砂岩及邻近常规砂岩薄片、X光衍射及黏土矿物、电子探针及质谱仪化学元素以及沉积分布特征分析,刘行军等认为与常规砂岩相比,高自然伽马砂岩钾长石、绿泥石、铁泥质黏土杂基含量明显上升,石英含量明显减少,长石高岭石化强烈,岩屑含量较高,且岩屑假杂基化较普遍;钍、铀、钾元素含量较高,其中钍元素含量上升最为显著,主要存在于独居石、金红石、铁泥质黏土、钾长石及部分锆石、磷灰石、黑云母、岩屑中;铀元素主要存在于大多数锆石、部分磷灰石、黑云母及含镁方解石中;钾元素主要存在于钾长石、黑云母、金红石、铁泥质粘土、部分钠长石及岩屑中,认为深部热液活动可能导致形成了高自然伽马砂岩[28-30]

3.3 物源供给差异性

鄂尔多斯盆地三叠纪相对高自然伽马砂岩的成因主要与物源有关,由于物源供给特征差异性导致[5],如物源供给中火山物质较多,物源母岩相对富含放射性物质,导致砂岩的放射性强自然伽马值高。

洛河地区长6高自然伽马砂岩段的自然伽马能谱测井反映,钍元素含量相对高,铀、钾元素含量与常规砂岩的特征类似,高自然伽马砂岩自然伽马能谱测井曲线特征与长6中的凝灰质岩层的自然伽马能谱测井曲线特征类似,F557井的井深1 790 m、1 797 m附近的高自然伽马砂岩,明显具有钍含量高的特征(图6)。

由于钍元素相对稳定,主要依靠机械搬运迁移而不容易随流体迁移。洛河地区长6砂体同沉积期添加的富含钍元素的凝灰质成分,后期凝灰质成分溶蚀形成次生孔隙,钍元素留存在砂岩中,对放射性贡献导致砂岩自然伽马值相对高[5,27]

洛河地区长61、长62中,单井高自然伽马砂岩纵向分布于旋回砂体的中下部、中部、中上部、上部或呈互层状与常规砂岩共生,或单独成层出现(图3、图6)。高自然伽马砂岩累计厚度平面展布特征与三角洲前缘水下分流河道沉积砂岩累计总厚度展布特征一致(图7),长61高自然伽马分布相对广泛,连片分布,主要成因可能为水下分流河道沉积过程中火山事件沉积的凝灰质添加导致砂岩放射性增强。

4 结 论

1)自然电位与自然伽马曲线重叠处理,可快速识别高放射性砂岩,自然电位与声波时差曲线重叠处理,核定高自然伽马砂岩发育段。

2)根据敏感测井参数组合所构建的新指示参数与敏感测井参数交会处理,有效验证高自然伽马砂岩发育段。

3)洛河地区长6高自然伽马砂岩由三角洲前缘水下分流河道沉积过程中火山事件沉积的凝灰质导致,高放射性主要来自于高含量钍元素。

参考文献(References):

[1] 向巧维,李小平,丁琳,等.珠江口盆地珠一坳陷古近系高自然伽马砂岩形成机制及油气地质意义[J].岩性油气藏,2021,33(2):93-103.

XIANG Qiaowei,LI Xiaoping,DING Lin,et al.Formation mechanism and petroleum geological significance of Paleogene sandstone with high natural gamma value in Zhuyi Depression,Pearl River Mouth Basin[J].Litho-logic Reservoirs,2021,33(2):93-103.

[2]于振锋,程日辉,赵小青,等.海拉尔盆地乌南凹陷南一段高伽马砂岩成因与识别[J].中国石油大学学报(自然科学版),2012,36(3):76-83.

YU Zhenfeng,CHENG Rihui,ZHAO Xiaoqing,et al.Genesis and identification of high gamma sandstone in the first member of Nantun Formation of Wunan Depression in Hailar Basin[J].Journal of China University of Petroleum(Natural Science Edition),2012,36(3):76-83.

[3]李高仁,郭清婭,石玉江,等.鄂尔多斯盆地高自然伽马储层识别研究[J].测井技术,2006,30(6):511-515,586.

LI Gaoren,GUO Qingya,SHI Yujiang,et al.Identification of high gamma ray reservoir in Ordos Basin[J].Well Logging Technology,2006,30(6):511-515,586.

[4]张小莉,冯乔,孙佩,等.鄂尔多斯盆地延长组高自然伽马砂岩储层特征[J].地球物理学报,2010,53(1):205-213.

ZHANG Xiaoli,FENG Qiao,SUN Pei,et al.Characteristics of high gamma ray reservoir of Yanchang Formation in Ordos Basin[J].Chinese Journal of Geophysics,2010,53(1):205-213.

[5]LIU H Q,LI X B,LIAO J B,et al.Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin,China[J].Petroleum Science,2013,10(1):50-54.

[6]冯春珍,林伟川,梁重阳,等.低渗透岩性气藏高自然伽马砂岩识别方法[J].石油天然气学报(江汉石油学院学报),2005(S1):201-203,7.

FENG Chunzhen,LIN Weichuan,LIANG Chongyang,et al.Mrthods for recognizing natural gamma sandstones in low permeability and lithologic gas reservoirs[J].Journal of Oil & Gas Technology,2005(S1):201-203,7.

[7]黄建松,安文武,白武厚.陕北榆林气田山2段高自然伽马储集层特征及其成因分析[J].录井工程,2007,12(4):74-79,84.

HUANG Jiansong,AN Wenwu,BAI Wuhou.Characte-ristics and genesis of high natural gamma reservoir in Shan2 member of Yulin Gas Field,northern Shaanxi[J].Mudlogging Engineering,2007,12(4):74-79,84.

[8]毛志强,申波,匡立春,等.夏子街组特殊岩性段地球物理特征及其成因[J].新疆石油地质,2013,34(1):98-100.

MAO Zhiqiang,SHEN Bo,KUANG Lichun,et al.The special lithologic sections of Permian Xiazijie Formation in Junggar Basin:geophysical characteristics and origin[J].Xinjiang Petroleum Geology,2013,34(1):98-100.

[9]周俊林,王仲军,丁超,等.准噶尔盆地乌尔禾油田高自然伽马砂砾岩特征及其沉积微相研究—以乌36井区百口泉组为例[J].沉积学报,2014,32(4):734-743.

ZHOU Junlin,WANG Zhongjun,DING Chao,et al.High GR glutinite feature and micro-sedimentary facies in Wuerhe Oil-field,Junggar Basin:Taking the Baikouquan Group in Wu 36 area as an example[J].Acta Sedimentologica Sinica,2014,32(4):734-743.

[10]刘国强.岩性油气藏的测井评价方法与技术[M].北京:石油工业出版社,2005.

[11]赵虹,党犇,姚泾利,等.鄂尔多斯盆地姬塬地区延长组长2低阻油层成因机理[J].石油试验地质,2009,31(6):588-592.

ZHAO Hong,DANG Ben,YAO Jingli,et al.Forming mechanism of Chang 2 low resistivity oil layer Yanchang Formation,Jiyuan region,Ordos Basin[J].Petroleum Geology and Experiment,2009,31(6):588-592.

[12]申怡博,张小莉,孙佩,等.定边东韩长2油层组复杂油水层识别技术[J].西北大学学报(自然科学版),2010,40(1):121-125.

SHEN Yibo,ZHANG Xiaoli,SUN Pei,et al.Recognition technology of the complicated oil and water layers in Chang 2 oil-bearing formation of Donghan area in Dingbian oilfield[J].Journal of Northwest University(Natural Science Edition),2010,40(1):121-125.

[13]石玉江,张小莉,申贻博,等.鄂尔多斯盆地东南部长6储层岩电关系特征[J].地球物理学进展,2010,25(5):1716-1722.

SHI Yujiang,ZHANG Xiaoli,SHEN Yibo,el al.Rock-logging relation of Chang 6 Formation,southeast of Ordos Basin[J].Progress in Geophysics,2010,25(5):1716-1722.

[14]郭順,王震亮,张小莉,等.陕北志丹油田樊川区长61低阻油层成因分析与识别方法[J].吉林大学学报(地球科学版),2012,42(1):18-24.

GUO Shun,WANG Zhenliang,ZHANG Xiaoli,et al.Origin analysis on Chang 61reservoir with low resistivity and its identificating methods from Fanchuan area,Zhidan Oilfield,Northern Shaanxi,Ordos Basin[J].Journal of Jilin University(Earth Science Edition),2012,42(1):18-24.

[15]张小莉,冯乔,冯强汉,等.鄂尔多斯盆地中东部长6复杂低渗储层测井评价[J].地球物理学进展,2012,27(4):1519-1524.

ZHANG Xiaoli,FENG Qiao,FENG Qianghan,et al.Logging evaluation of low permeability reservoirs in Chang 6,east-central Ordos Basin[J].Progress in Geophysics,2012,27(4):1519-1524.

[16]郭浩鹏,石玉江,王长胜,等.鄂尔多斯盆地延安组低对比度油藏饱和度分布模式与测井评价[J].测井技术,2016,40(5):556-563.

GUO Haopeng,SHI Yujiang,WANG Changsheng,et al.Saturation distribution and log interpretation method of low-contrast reservoir in Mesozoic Yanan Formation of Ordos Basin[J].Well Logging Technology,2016,40(5):556-563.

[17]郭兰,张小莉,丁超,等.川口油田川46井区长61低阻油层成因机理分析[J].国外测井技术,2012,33(3):19-22,3.

GUO Lan,ZHANG Xiaoli,DING Chao,et al.Research on the formation mechanism of Chang 61low-resistivity oil reservoir of Chuan 46 well block in Chuankou Oilfield[J].World Well Logging Technology,2012,189(3):19-22,3.

[18]张少华,石玉江,陈刚,等.鄂尔多斯盆地姬塬地区长61低对比度油层识别方法与产水率分级评价[J].中国石油勘探,2018,23(1):71-80.

ZHANG Shaohua,SHI Yujiang,CHEN Gang,et al.Identification methods and water productivity classification evaluation of low contrast Chang 61oil reservoirs in Jiyuan area,Ordos Basin[J].China Petroleum Exploration,2018,23(1):71-80.

[19]安思谨,冯张斌,何斌,等.鄂尔多斯盆地志丹地区长6储层“四性关系”研究[J].非常规油气,2020,7(3):37-45.

AN Sijin,FENG Zhangbin,HE Bin,et al.Study on four property relationship of Chang 6 reservoir in Zhidan area,Ordos Basin[J].Unconventional Oil &Gas,2020,7(3):37-45.

[20]谢青,杨兴科,梁莉.陕北志丹地区长6低电阻率油层成因机制研究[J].西安科技大学学报,2015,35(2):214-220.

XIE Qing,YANG Xingke,LIANG Li.Genetic mechanism research of Chang 6 low resistivity oil layer in Zhidan region,Northern Shaanxi[J].Journal of Xian University of Science and Technology,2015,35(2):214-220.

[21]杨春梅,周灿灿,程相志.低电阻率油层成因机理分析及有利区预测[J].石油勘探与开发,2008,35(5):600-605.

YANG Chunmei,ZHOU Cancan,CHENG Xiangzhi.Origin of low resistivity pays and forecasting of favorable prospecting areas[J].Petroleum Exploration and Development,2008,35(5):600-605.

[22]李玉宏,李文厚,张倩,等.鄂尔多斯盆地及周缘沉积相图册[M].北京:地质出版社,2019.

[23]赖锦,庞小娇,赵鑫,等.测井地质学研究中的典型误区与科学思维[J].天然气工业,2022,42(7):31-44.

LAI Jin,PANG Xiaojiao,ZHAO Xin,et al.Typical misunderstandings and scientific ideas in well logging geology research[J].Natural Gas Industry,2022,42(7):31-44.

[24]LI Y J,ZHANG X L,YAN Y Z.Quantitative identification of relatively high-level radioactive sandstone in the Upper Triassic Yanchang Formation of the Ordos Basin,China[J].Applied Geophysics,2019,16(3):314-320.

[25]吕强.鄂尔多斯盆地西南部晚三叠世长6期沉积体系与油藏富集规律研究[D].成都:成都理工大学,2009.

LYU Qiang.The study on the sedimentary systems and enrichment laws of oil reservoirs during the depositional period of interval 6 of Late-Triassic in southwestern Ordos Basin[D].Chengdu:Chengdu University of Technology,2009.

[26]孫佩,张小莉,郭兰,等.相对高放射性砂岩成因及储集性能定性评价——以鄂尔多斯盆地志丹油田长6油层组为例[J].西安石油大学学报(自然科学版),2010,25(2):18-21.

SUN Pei,ZHANG Xiaoli,GUO Lan,et al.Genesis of the sandstone with higher radioactivity and the qualitative evaluation of its reservoir property:Taking Chang 6 oil bearing strata in Zhidan oilfield,Ordos Basin as an example[J].Journal of Xian Shiyou University(Natural Science Edition),2010,25(2):18-21.

[27]ZHANG X L,FENG Q,FENG Q H,et al.Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin,China:A reply[J].Petroleum Science,2013,10(1):55-57.

[28]刘行军,柳益群,周鼎武,等.鄂尔多斯盆地深部流体示踪:三叠系延长组高自然伽马砂岩特征及成因分析[J].地学前缘,2013,20(5):149-165.

LIU Xingjun,LIU Yiqun,ZHOU Dingwu,et al.Deep fluid tracer in Ordos Basin:Characteristics and origin of high natural gamma sandstone in Triassic Yanchang Formation[J].Earth Science Frontiers,2013,20(5):149-165.

[29]刘行军,冯春珍,柳益群,等.陕北长6段高自然伽马砂岩地球化学特征及意义[J].成都理工大学学报(自然科学版),2013,40(4):445-456.

LIU Xingjun,FENG Chunzhen,LIU Yiqun,et al.Geochemical characteristics and significance of high natural gamma-ray sandstone in Chang 6 member of northern Shanxi[J].Journal of Chengdu University of Technology(Science & Technology Edition),2013,40(4):445-456.

[30]ZHENG Q H,LIU X J,YOU J Y,et al.Discovery and prediction of high natural gamma sandstones in Chang 73submember of Triassic Yanchang Formation in Ordos Basin,China[J].Journal of Central South University,2019,26(7):1840-1855.

(责任编辑:李克永)