综合化航空电子系统中SMP架构、MPP架构的应用分析

2013-04-24 00:53中国航空工业第631所李乔杨
电子世界 2013年9期
关键词:总线子系统航空

中国航空工业第631所 李乔杨

1.引言

现代航空电子系统是一个由多个系统、多种环境、多项任务、多种资源构成的相互关联、相互支持、相互集成和相互制约的复杂系统,具有多目标、多信息、多专业、多任务、多功能、多资源和多过程支持的显著特征。在这个前提下,如何满足复杂系统功能、品质、能力、成本等要素的综合优化需求,是新一代航空电子系统发展面临的严峻挑战。

航空电子系统在第三代战机中基本使用联合式架构(又称属地管理架构),在第四代战机中又提出了航空电子系统的综合化技术。航空电子系统综合化技术就是针对复杂系统特征,根据系统目标、信息、任务、资源、过程特征和一体化思维,通过各自能力的权衡与系统能力组合,通过各自过程效率组织与系统效率集成,通过各自数据融合与系统信息效能合成,实现系统能力、功能、品质、效率和成本最优化的系统技术。

2.联合式航空电子系统

2.1 联合式航空电子系统基本结构

第三代战机的航空电子系统多使用联合式构架。在联合式航空电子系统架构中通信、导航、探测以及飞行控制系统等功能子系统中的信息处理和操作均由各自的专用机载计算机完成,各子系统作为功能部件连接到机载多路数据传输总线(1553B)总线上。显示和控制的信息通过数据总线与各子系统进行交换,所有信息由一个平视显示器和若干个多功能显示器显示。飞行员通过座舱控制系统输入控制信息。

2.2 联合式航空电子系统存在的问题

航空电子系统各子系统内部资源独立配置,各系统独立管理,各个系统使用通信总线进行交互。这样的结构造成了很多问题,具体如下:

1)系统中资源使用频度不同,各部分资源分时使用以及各个系统之间的资源不能共享,造成了各系统中的资源多数时候被闲置,造成资源浪费。

2)任务构成专门化。由于任务需求不同,各航空电子系统中的机载计算机多为专用定制设计,研发成本高,研制周期长。但是功能构件不能通用或公用,而是只针对特定系统而设计使用。

3)子系统独立构成,存在大量的计算重复,各子系统之间计算结果(最终结果和中间结果)共享度较低。

4)系统组织固态化,任务、功能、状态、资源构成固态化,缺乏管理与调整空间。随着系统规模以及复杂度的提高,故障、失效、异常等带来的系统可靠性问题非常严重。

5)信息能力与处理模式固化,缺乏融合与固化的空间。

3.综合化航空电子系统

系统综合化技术不但解决了联合式架构中存在的问题,而且拥有以下三方面的优势:集成各子系统的优点和能力、增强子系统之间的协同和支持、提升系统处理的品质和效率。它是面向复杂系统组成与特征形成的系统优化技术。综合化航空电子系统基本结构,如图1所示。

综合化航空电子系统包括综合化的射频与传感器单元以及综合化的核心处理单元,其中综合核心处理机具备数据、信号、图形图像视频的综合处理能力,综合的飞机管理单元、任务管理单元,综合显示单元等等;由统一的高速航空电子网络将各部分连接起来。这样的结构节省了系统资源,提高了处理能力,增加了系统可靠性,降低了研制成本和维护费用,射频与光电孔径综合还提高了战机的隐身能力。

4.综合核心处理系统

在综合化航空电子系统中综合核心处理系统是航空电子系统综合化技术发展的核心技术,也是航空电子系统任务和功能运营与管理的平台。综合核心处理系统是指:利用一套通用模块(软件和硬件),通过接口和外部非通用的传感器前端、效应器、接口、显控设备、应用软件等组合,能够被使用到任何一个航空电子系统上,满足降低生命期成本,提高互用性等要求。综合核心处理系统包含了飞行器最主要的处理功能,包括信号处理、数据处理、图像处理、海量存储、通信网络、电源供给等等。当前航空电子系统对综合核心处理系统的性能要求越来越高。

在美国第四代战机F35的航空电子系统中,其综合核心处理单元总的数据处理速度为40.8DMIPS,信号处理速度为75.6G每秒浮点运算次数(FLOPS)。如此高的性能要求对于传统的单机处理模式已经无法完成,需要引入并行计算机技术来实现。

5.并行计算技术

当前并行计算技术中有多种体系结构:对称多处理机SMP、并行向量机PVP、大规模并行处理机MPP和集群Cluster等。

其中SMP系统与MPP系统结构技术成熟,应用广泛,相对于其他并行结构更适合在机载环境下使用。SMP系统与MPP系统结构在航空电子处理方面有着各自的优势,也存在很多不足。

5.1 对称多处理机SMP

SMP系统使用商业化微处理器(具有片上或外置高速缓存),它们经由系统总线(或交叉开关)连向共享存储器。这种结构中,多个处理器运行同一个操作系统,并共享计算机上包括存储器、系统总线在内的一切资源。每个处理器通过系统总线平等地访问共享存储器、I/O设备和外部中断。

图1 综合化航空电子系统基本结构

图2 大规模并行计算MPP结构

对称多处理系统技术成熟,实现起来比较容易,系统处理规模也比较适合当前航空电子系统的性能要求。但是SMP系统所有处理节点共享一套总线(或者交叉开关),由于这两种网络互连方式传输带宽有限,当处理器数增多时,访问贮存的冲突概率会加大。一般情况下系统的处理机数目限定在2-16个之间。这决定了SMP系统的处理能力无法满足未来航空电子系统发展的要求。另外SMP结构的扩展性能差,系统使用动态互连技术(总线或交叉网络),在互连网络中实现cache一致性等功能,整个系统一旦做成很难再扩展。SMP结构中所有处理机共享一套总线设备、存储器和操作系统,如果这些设备出现问题,整个系统可能崩溃,这对于可靠性要求极高的航空电子系统是无法接受的。对于SMP系统可靠性不高的问题,可以采用多级交叉网络替换总线或者交叉开关结构,提高互连网络的可靠性,同时多级交叉网络还可以增加互连网络的传输带宽,增强系统的处理能力。而子系统多余度设计技术可以提高整个系统冗余度和可靠性,使其可靠性满足航空电子系统要求。

5.2 大规模并行计算MPP

MPP指使用专有的非商品化的硬件和软件,耦合紧密的分布存储多计算机系统,系统中多个处理节点通过高带宽低延迟互连网络紧密连接,使用专用或非专用通信协议进行通信的定制网络。系统中的互连网络是与处理机的I/O相连,实现节点间的通信,而共享存储并行计算机系统中的互连网络是与处理机的局存相连,每个处理机都能直接访问其他局存单元。基本结构如图2所示。

相对于共享存储结构,MPP系统扩展能力强,计算能力完全可以满足未来航空电子系统发展的要求。其系统内部各节点独立工作,冗余度高,模块化强,适合航空电子系统中应用。互连网络采用静态网络或者交叉开关、多级网络等形式,可靠性高,一个处理节点发生异常并不影响整个系统正常工作。

相对于共享存储器的紧耦合方式,MPP结构中为存储器松散耦合,处理效率低于SMP结构等共享存储模式。此外MPP系统规模一般比较大,计算能力强,当需要处理的数据达到一定规模时MPP系统优势明显。

6.结论

综合化航空电子系统已经成为发展的趋势。综合化的航空电子系统需要一系列的关键技术支撑,综合核心处理系统就是其中最重要的关键技术之一。而随着航空电子系统的不断发展,综合核心处理系统处理能力不断调高,采用MPP结构是未来必然的发展趋势,MPP系统结构的小型化也将成为未来发展中的重要挑战。

[1]王国庆.航空电子系统综合化技术的发展与思考[J].国际航空,2011(8).

[2]袁晓晗.航空电子综合核心处理技术研究[J].航空电子技术,2004(3).

[3]熊华钢,王中华.先进航空电子综合技术[M].北京:国防工业出版社,2009,1.

[4]陈健,郑卫华.高速互连技术综述[R].2008年全国高性能计算学术年会.

猜你喜欢
总线子系统航空
不对中转子系统耦合动力学特性研究
“闪电航空”来啦
“闪电航空”来啦
GSM-R基站子系统同步方案研究
基于PCI Express总线的xHC与FPGA的直接通信
机载飞控1553B总线转以太网总线设计
驼峰测长设备在线监测子系统的设计与应用
达美航空的重生之路
CAN总线并发通信时下位机应用软件设计
多通道ARINC429总线检查仪