新疆西准噶尔巴尔努克早石炭世富Nb 岛弧玄武岩的发现及其地质意义*

2014-03-15 12:47李永军沈锐王冉郭少婷佟丽莉杨高学
岩石学报 2014年12期
关键词:岛弧底图玄武

李永军 沈锐 王冉 郭少婷 佟丽莉 杨高学

LI YongJun,SHEN Rui,WANG Ran,GUO ShaoTing,TONG LiLi and YANG GaoXue

长安大学地球科学与资源学院,西部矿产资源与地质工程教育部重点实验室,西安 710054

Key Laboratory of Western China’s Mineral Resources and Geological Engineering,Ministry of Education,Earth Science & Resources College of Chang’an University,Xi’an 710054,China

2014-01-08 收稿,2014-04-25 改回.

1 引言

富Nb 玄武岩或富Nb 玄武质岩石是近年来岩石学家和岩石地球化学家们十分关注的一种极为独特和少见的新岩石类型。最早于1993 年由Sajona 等在研究菲律宾Mindanao的Zamboanga 半岛的岛弧玄武岩时发现(Sajona et al.,1993)。随后仅在加拿大(Hollings and Kerrich,2000;Wyman et al.,2000;Polat and Kerrich,2001;Hollings,2002;Ujike and Goodwin,2003;Ujike et al.,2007)、西澳(Smithies et al.,2005)等地见及,在俄罗斯东北波罗的也有报道(Shchipansky et al.,2004)。总之,这类岩石在国内外的报道并不多。

富Nb 玄武岩主要由钙碱性系列的玄武岩或玄武安山岩组成,其矿物与正常岛弧岩石相似。Sajona et al.(1993)确认富铌岛弧玄武岩是一类硅饱和,并富钠的岛弧玄武岩,与正常岛弧玄武岩相比,它具有相对高的Nb(7 ×10-6~16 ×10-6)、TiO2(1% ~2%)和P2O5含量,以及低LILE/HFSE 和LREE/HFSE 比值,同时富集高场强元素;原始地幔标准化微量元素蛛网图显示了弱的Nb、Ta 负异常(有时出现弱的正异常),(La/Nb)PM比值小于2,但很少小于0.7(Sajona et al.,1993,1996)。富Nb 玄武岩的共生岩石组合极为独特,或与埃达克岩共生,或为埃达克岩+富铌玄武岩+高镁安山岩组合(Sajona et al.,1994)。因此,它们是大洋板片俯冲作用的直接产物,是典型的岛弧岩浆岩组合,有特定的构造环境意义(许继峰等,2001;张海祥等,2004,2005,2008;赵振华等,2006;王强等,2003,2006)。

迄今,在中国发现和确认的富Nb 岛弧玄武质岩石报道更少,除冀北太古代麻粒岩带和其北侧古元古代地层中发现富Nb 玄武质岩石(王仁民等,2007)外,其他仅有的4 处均产于新疆,分别位于阿拉套山(王强等,2003)、北天山(王强等,2006)、阿勒泰南缘(张海祥等,2004)、西准东部(王方正等,2002)等(图1)。

西准东部陆梁地区的富Nb 玄武岩(王方正等,2002),因样品采于石油钻孔中,地层对比受限,原划归下石炭统包古图组无确切证据。而我们近年在这一带进行多个1∶5 万区域地质填图中,地表已全部精细控制了包古图组的分布,虽发现了多个玄武岩及玄武安山岩夹层,但并未发现有富Nb玄武岩产出。

图1 新疆富Nb 玄武岩分布简图(底图据王强等,2006,有改动)Fig.1 Distribution of the Nb-enriched basalts in Xinjiang (modified after Wang et al.,2006)

图2 巴尔努克富Nb 玄武岩地质简图(底图据田陟贤等,2013,有改动)Fig.2 Geological sketch of the Nb-enriched basalts in Barnuke (modified after Tian et al.,2013)

阿勒泰南缘的富Nb 岛弧玄武岩产于富蕴县境内的下泥盆统托让格库都克组中(张海祥等,2004),形成于岛弧环境无异议。

北天山的延东、土屋富Nb 玄武岩(王强等,2006),伊宁地块的阿拉套、巴仑台-骆驼沟的富Nb 玄武岩(王强等,2003,2006)是否属于岛弧环境还有较大认识分歧,夏林圻等(2009)专文指出其是富Nb 大陆玄武岩,而并非真正意义上的富Nb 岛弧玄武岩。

因此,富Nb 岛弧玄武岩的发现和报道,对于丰富我国富Nb 岛弧玄武岩产地与层位,提供更多研究其地球化学特征的信息,揭示其分布区大地构造环境有重要的意义和价值。新疆西准巴尔努克山一带早石炭世黑山头组富Nb 岛弧玄武岩的发现,也为肯定本区这一时期位于岛弧构造环境提供了可靠依据。

2 地质概况与岩石学特征

研究区巴尔努克山一带位于西准西部(图1、图2a),归属于谢米斯台火山岩带(丁天府,1998)内。该火山岩带形成于古生代准噶尔洋闭合时洋-陆格局演化期间(李锦轶等,2006),发育中奥陶世-早二叠世的火山岩。前人无富Nb 岛弧玄武岩的报导。

本文报导的早石炭世黑山头组(C1h),据其岩石组合划分为上、下两段(图2b,c)。下段(C1ha)主要为火山熔岩(局部夹凝灰岩),底部为浅灰色粉砂岩与深灰色泥岩互层(图3a)。火山岩厚度>400m,主要岩性为深灰-灰黑色玄武岩、玄武安山岩,次为安山玄武岩,个别见气孔、杏仁构造。该套火山岩在走向上还见有英安岩和少量流纹岩,总体显示为一套海相钙碱性火山岩组合;上段(C1hb)为陆源碎屑岩夹凝灰质砂岩(图3b),产珊瑚、腕足等化石。黑山头组与泥盆系巴尔努克组(D2be)呈断层接触,后者岩性主要为深灰色、灰色泥质粉砂岩、粉砂岩、硅质岩夹凝灰粉砂岩及砂质灰岩,为一套次深海相(大陆边缘弧型)复理石沉积。二叠系库吉尔台组(P2k)陆相磨拉石建造呈角度不整合覆于前二叠系之上(图2c)。

区内从泥盆纪到晚石炭世全为海相沉积建造,黑山头组火山岩之上覆地层为深灰色硅质凝灰质粉砂岩,其间的泥灰岩夹层中见腕足化石,其下伏地层为浅灰色粉砂岩-深灰色泥岩互层,并有珊瑚、腕足化石产出,是典型的海相沉积组合(图3a),佐证该套火山岩为海相建造。

图3 巴尔努克富Nb 玄武岩之下伏地层(a)与上覆地层照片(b)Fig.3 The photographs of underlying (a)and overlying(b)strata of the Nb-enriched basalts in Barnuke

作者等在富Nb 玄武岩下伏碎屑岩中采获早石炭世Cladopora vermicularies,Thamnopora boloniensis,Famenelasma cf. sinensis 等珊瑚、腕足化石,其时代与富Nb 玄武安山岩中的LA-ICP-MS 锆石U-Pb 年龄(349Ma,田陟贤等,2013)相吻合。

采样地黑山头组火山岩总体以玄武岩或玄武质岩石为主,共生有安山岩及少量英安岩。岩石多为深灰-灰黑色,个别灰绿色,斑状结构。镜下以间隐结构为主(图4a,b),少数具间粒结构(图4c)。玄武岩斑晶以拉长石(Pl)为主,辉石(Px)次之。基质由斜长石、辉石和火山玻璃组成间隐结构。少量玄武岩大斑晶为斜长石,小斑晶由普通辉石、斜长石组成,杂乱分布的长条状斜长石格架中充填普通辉石和橄榄石(偶见并已伊丁石化),另见间粒间隐结构。拉长石大多数以斑晶存在,呈板条状,粒径多1 ~2mm,含量20% ~30%;辉石含量2% ~5%,斑晶和基质中均有,斑晶中多无色,短柱状,两组正交解理发育,多色性不明显。

3 地球化学特征及构造环境

本次在火山岩中逐层采样22 件,剔除部分分析超差样品和中酸性火山岩样品,共有13 件样品符合玄武岩或玄武质岩石。主要分析数据见表1、表2、表3(主量与微量元素测定在长安大学教育部重点实验分别用湿法和ICP-MS 方法,Nd、Sr 同位素组成在北京核工业地质研究院TIMS 方法)。

图4 巴尔努克富Nb 玄武岩镜下特征照片(a、b)-间隐结构玄武岩;(c)-玄武岩间粒结构Fig.4 Microphotos of the Nb-enriched basalts in Barnuke(a,b)-intersertal texture in basalt;(c)-intergranular texture in basalt

图5 巴尔努克富Nb 玄武岩Na2O+K2O-SiO2(a,底图据Le Maitre et al.,1989)及Zr/Ti-Nb/Y (b,底图据Winchester and Floyd,1977)图解Fig.5 Na2O+K2O vs. SiO2(a,after Le Maitre et al.,1989)and Zr/Ti vs. Nb/Y (b,after Winchester and Floyd,1977)diagrams of the Nb-enriched basalts in Barnuke

表1 巴尔努克黑山头组火山岩主量元素含量(wt%)及相关参数计算表Table 1 The concentration of major elements (wt%)and their parameters for volcanic rocks from Heishantou Formation in Barnuke

表2 巴尔努克黑山头组火山岩微量元素含量(×10 -6)及参数计算表Table 2 The concentration of trace elements (×10 -6)and their parameters for volcanic rocks from Heishantou Formation in Barnuke

SiO2含量为49.62% ~55.68%,平均为52.70%,属于玄武质岩石范围;明显高TiO2(1.16% ~1.99%),全部样品均高于岛弧拉斑玄武岩(TiO2=0.80%,Wilson,1989),但均低于洋岛拉斑玄武岩(TiO2=2.63%,Wilson,1989);显著富Na2O 而贫K2O,Na2O 为3.17% ~6.35%,平均为4.90%,Na2O/K2O 为1.19 ~26.08,2/3 样品该比值>4(平均8.93)。由于显著富Na2O,Na2O + K2O 总体较高,因而里特曼指数(δ)偏大,2/3 样品δ >4,故在硅碱图中投影于碱性岩区(图5a)。主量及微量元素相关图解显示这些岩石总体以玄武岩为主向玄武安山岩过渡(图5b、图6a,b),综合判别为低(中)钾钙碱性岩石(图7)。Nb 含量均>7 ×10-6(7.29 ×10-6~12.32 ×10-6,平均9.48 ×10-6),明显高于正常岛弧玄武质岩类。以上地球化学特征与富Nb 玄武质岩类可比(图8)。

表3 巴尔努克黑山头组火山岩稀土元素含量(×10 -6)及参数计算表Table 3 The contents of rare earth elements (×10 -6)and their parameters for volcanic rocks from Heishantou Formation in Barnuke

图6 巴尔努克富Nb 玄武岩Ti/100-Zr-Sr/2 (a,底图据Pearce and Cann,1973)及K2O-SiO2(b,底图据Miller et al.,1999)图解Fig.6 Ti/100-Zr-Sr/2 (a,after Pearce and Cann,1973)and K2O-SiO2(b,after Miller et al.,1999)diagrams of diagrams of the Nb-enriched basalts in Barnuke

表4 及相关图解显示,巴尔努克玄武质岩石富Nb,富集大离子亲石元素Rb、Ba、Sr 和Zr、Sc,轻稀土明显富集而重稀土亏损显著,但确有基本一致的弱正Eu 异常(图9a),低LILE/HFSE、低LREE/HFSE 比值,在微量元素洋脊玄武岩标准化图解中弱正Nb 异常,而Ta、Hf 仅有极微弱的负异常(图9b)。这些地球化学特征与Sajona et al. (1993,1994,1996)提出的富Nb 玄武岩基本一致,而与正常岛弧玄武岩有明显区别,与巴尔努克地区近邻的西准东部包古图地区早石炭世岛弧玄武岩也有显著区别(表4)。

图7 巴尔努克富Nb 玄武岩F1-F2 和F2-F3 图解(底图据Pearce,1976)IAB-岛弧玄武岩;OFB-大洋玄武岩;CAB-钙碱性玄武岩;WPB-板内玄武岩;SHO-钾玄岩或橄榄安粗岩;LKT-岛弧拉斑玄武岩Fig. 7 F1-F2-F3 diagram of the Nb-enriched basalts in Barnuke (after Pearce,1976)IAB-island arc basalt;OFB-ocean floor basalt;CAB-calc-alkaline basalt;WPB-within plate basalt; SHO-shoshonite; LKT-island arc tholeiitic

巴尔努克富Nb 玄武质岩石强富Sr,全部样品均>400 ×10-6(618 ×10-6~1107 ×10-6),平均为825 ×10-6,相对正Eu 异常(这两项地球化学特征又极类似adakite 的Sr、Eu 的地球化学特征,但相关图解还是可以很好与adakite 相区分),总体仍属经典岛弧玄武岩范畴(图10)。

图8 巴尔努克富Nb 玄武岩与经典玄武岩对比图(a,底图据Defant et al.,1992;b,底图据Kepezhinskas et al.,1996;转引自王强等,2006)Fig.8 Comparison diagrams between typical basalts and the Nb-enriched basalts in Barbuke (a,after Defant et al.,1992;b,after Kepezhinskas et al.,1996;Wang et al.,2006)

图9 巴尔努克富Nb 玄武岩球粒陨石标准化稀土元素配分图(标准化值据Boynton,1984)和洋脊玄武岩标准化微量元素蛛网图(标准化值据Sun and McDonough,1989)Fig.9 Chondrite-normalized rare earth element patterns (a,normalization values after Boynton,1984)and mid-ocean ridge basalt normalized trace element spider diagrams (b,normalization values after Sun and McDonough,1989)for the Nb-enriched basalts in Barnuke

图10 巴尔努克富Nb 玄武岩与adakite 岩的区别图解(底图据Castillo et al.,1999)Fig.10 The difference between adakite and the Nb-enriched basalts in Barnuke (after Castillo et al.,1999)

和前人报道的富Nb 玄武岩一样,巴尔努克富Nb 玄武岩的各类图解均显示岛弧构造环境(图11)。

图11 巴尔努克富Nb 玄武岩构造环境判别图(a-c,据李曙光,1993;d,e,底图据Wood,1980;f,底图据赵崇贺,1989)Fig.11 Tectonic discrimination diagrams of the Nb-enriched basalts in Barnuke (a-c,after Li,1993;d,e,after Wood,1980;f,after Zhao,1989)

图12 巴尔努克富铌玄武岩及邻区富铌玄武岩的(143Nd/144Nd)i-(87Sr/86Sr)i(a,底图据Zindler and Hart,1986)及εNd(t)-(87Sr/86Sr)i(b,底图转引自王强等,2006)同位素图解Fig.12 Plots of (143Nd/144Nd)i-(87Sr/86Sr)i(a,after Zindler and Hart,1986)and εNd(t)-(87 Sr/86 Sr)i(b,after Wang et al.,2006)for the Nb-enriched basalts in Barnuke and adjacent areas

表5 是本次获得的富铌玄武岩Nd、Sr 同位素的数据和计算结果,6 个样品的Nd、Sr 同位素变化范围均较小,分析测试获得87Sr/86Sr 为0.70379 ~0.70406,143Nd/144Nd 为0.5128~0.5129,计算(87Sr/86Sr)i为0.7035 ~0.7039,εNd(t)为5.49 ~7.13,在Nd-Sr 图上的投点较集中(图12a),与西天山及阿拉套山地区发现的富铌玄武岩分布范围相吻合(图12b)。

4 结论

巴尔努克富Nb 岛弧玄武岩在本区属首次发现和报道,与有争议的中天山阿拉套、巴仑台-骆驼沟富Nb 玄武岩(夏林圻等,2009)相比,更符合富Nb 岛弧玄武岩的地球化学特征。为确认新疆西准噶尔石炭纪存在富Nb 岛弧玄武岩提供了详实的地质地球化学资料和信息,丰富了新疆乃至我国的富Nb 岛弧玄武岩产地与层位。

富Nb 岛弧玄武岩是大洋板片俯冲作用的直接产物(张海祥等,2005),是指示岛弧构造环境的有力证据。因此,黑山头组富Nb 岛弧玄武岩的发现,不仅肯定了巴尔努克一带在早石炭世位于岛弧构造环境,而且为研究西准噶尔地区这一时期洋壳俯冲作用和过程提供了极为重要的地球化学信息。

表4 巴尔努克火山岩与岛弧玄武岩以及典型富Nb 玄武岩对比表Table 4 The comparison among volcanic rocks in Barnuke,island arc basalts and typical Nb-enriched basalts

表5 巴尔努克富铌玄武岩的Sr、Nd 同位素数据Table 5 Sr,Nd isotopic compositions of the Nb-enriched basalts in Barnuke

由于富Nb 岛弧玄武岩是在俯冲带之上,由受埃达克质熔体交代过的地幔橄榄岩部分熔融的产物(Sajona et al.,1993,1996;张海祥等,2005),这一特殊的成因机制,为研究西准噶尔地区洋壳俯冲作用过程中的岩浆活动特征,以及与俯冲作用有关的流体和熔体的性质,反演俯冲带的岩浆活动和构造演化历史提供了重要信息。

Boynton WV. 1984. Geochemistry of the rare earth elements:Meteorite studies. In:Henderson P (ed.). Rare Earth Element Geochemistry.Amsterdam,Netherlands:Elsevier,63 -114

Castillo PR, Janney PE and Solidum R. 1999. Petrology and geochemistry of Camiguin Island,southern Philippines:Insights to the source of adakite and other lavas in a complex arc setting.Contributions to Mineralogy and Petrology,134(1):33 -51

Defant MJ,Jackson TE,Drummond MS et al. 1992. Geochemistry of young volcanism throughout western Panama and southeastern Costa Rica:An overview. Journal of the Geological Society (London),149(4):569 -579

Ding TF. 1998. Division of volcanic rocks and its geological significance in Xinjiang. Xinjiang Geology,16(1):39 -48 (in Chinese with English abstract)

Geng HY, Sun M, Yuan C et al. 2011. Geochemical and geochronological study of Early Carboniferous volcanic rocks from the West Junggar:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences,42(5):854 -866

Hollings P and Kerrich R. 2000. An Archean arc basalt Nb-enriched basalt adakite association:The 2. 7Ga confederation assemblage of the Birch-Uchi greenstone belt,Superior Province. Contributions to Mineralogy and Petrology,139(2):208 -226

Hollings P. 2002. Archean Nb-enriched basalts in the northern Superior province. Lithos,64(1 -2):1 -140

Kepezhinskas PK,Defant MJ and Drummonds MS. 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta,60(7):1217 -1229

Le Maitre RW,Baterman P,Dudek A et al. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford:Blackwell

Li JY,He GQ,Xu X et al. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica,80(1):148 -168 (in Chinese with English abstract)

Li SG. 1993. Ba-Th-Nb-La diagrams used to identify tectonic environments of opholite. Acta Petrologica Sinica,9(2):146 -157(in Chinese with English abstract)

Miller C,Schuster R,Klötzli U et al. 1999. Post-collisional potassic and ultra-potassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology,40(9):1399 -1424

Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters,19(2):290 -300

Pearce JA. 1976. Statistical analysis of major element patterns in basalts.Journal of Petrology,17(1):15 -43

Polat A and Kerrich R. 2001. Magnesian andesites,Nb-enriched basaltandesites,and adakites from Late-Archean 2.7Ga Wawa greenstone belts,Superior Province,Canada:Implications for Late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology,141(1):36 -52

Sajona FG,Maury RC,Bellon H et al. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao,Philippines. Geology,21(11):1007 -1010

Sajona FG,Bellon H,Maury RC et al. 1994. Magmatic response to abrupt changes in geodynamic settings, Pliocene Quaternary calcalka-line and Nb enriched lavas basalts from Mindanao(Philippines). Tectonophysics,237(1 -2):47 -72

Sajona FG,Maury RC,Bellon H et al. 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts,Zamrboanga Peninsula,western Mindanao (Philippines). Journal of Petrology,37(3):693 -726

Shchipansky AA,Samsonov EV,Bibikova EV et al. 2004. 2. 8Ga boninite-hosting partial suprasubduction zone ophiolite sequences from the North Karelian greenstone belt,NE Baltic Shield,Russia.In:Kusky TM (ed.). Precambrian Ophiolites and Related Rocks.Amsterdam:Elsevier,425 -486

Smithies RH,Van Kranendonk MJ,Champion DC. 2005. It started with a plume:Early Archaean basaltic proto-continental crust. Earth and Planetary Science Letters,238(3 -4):284 -297

Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publication,42(1):313 -345

Tian ZX,Yan J,Li YJ et al. 2013. LA-ICP-MS zircon U-Pb age,geochemistry and tectonic setting of the volcanic rocks in the Heishantou Formation from the area of Barleik,West Junggar. Acta Geologica Sinica,87(3):343 - 352 (in Chinese with English abstract)

Ujike O and Goodwin AM. 2003. Origin of Archean adakites and NEBA from the upper Keewatin assemblage,the Lake of the Woods greenstone belt,Western Wabigoon Subprovince. Geochimica et Cosmochimica Acta,67(18):503

Ujike O,Goodwin A and Schibata T. 2007. Geochemistry and origin of Archean Volcanic rocks from the upper Keewatin assemblage (ca.2.7Ga),lake of the Woods greenstone belt,western Wabigoon Subprovince,Superior Province,Canada. Island Arc,16(1):191-208

Wang FZ,Yang MZ and Zheng JP. 2002. Geochemical characteristics and geological environment of basement volcanic rocks in Luliang,central region in Junggar basin. Acta Petrologica Sinica,18(1):9-16 (in Chinese with English abstract)

Wang Q,Zhao ZH,Bai ZH et al. 2003. Carboniferous adakites and Nbenriched arc basaltic rocks association in the Alataw Mountains,North Xinjiang:Interactions between slab melt and mantle peridotite and implications for crustal growth. Chinese Science Bulletin,48(12):1342 -1349 (in Chinese)

Wang Q,Zhao ZH,Xu JF et al. 2006. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in the northern Tianshan area:Implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu-Au mineralization. Acta Petrologica Sinica,22(1):11 -30 (in Chinese with English abstract)

Wang RM,Feng YG and Cheng SH. 2007. Discovery of the Precambrian Nb-enriched basalts in the northern Hebei Province. Geological Journal of China Universities,13(3):458 -462 (in Chinese with English abstract)

Wilson M. 1989. Igneous Petrogenesis. London:Unwin Hyman,101-149

Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology,20:325 -343

Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters,50(1):11 -30

Wyman D,Ayer JA and Devaney JR. 2000. Niobium-enriched basalts from the Wabigoon subprovince,Canada evidence for adakitic metasomtism above an Archean subduction zone. Earth and Planetary Science Letters,179(1):21 -30

Xia LQ,Xia ZC,Xu XY et al. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method. Acta Petrological et Mineralogica,26(1):77 - 89 (in Chinese with English abstract)

Xia LQ,Xia ZC,Xu XY et al. 2009. Do the Tianshan Carboniferous volcanic successions contain Nb-enriched arc basalts?Earth Science Frontiers,16(6):303 -317 (in Chinese with English abstract)

Xu JF,Mei HJ,Yu XY et al. 2001. Adakites related to subduction in the northern margin of Junggar arc for the Late Paleozoic:Products of slab melting. Chinese Science Bulletin,46(15):1312 -1316

Zhang HX,Niu HC,Hiroaki S et al. 2004. Late Paleozoic adakite and Nb-enriched basalt from northern Xinjiang: Evidence for the southward subduction of the Paleo-Asian Ocean. Geological Journal of China Universities,10(1):106 -113 (in Chinese with English abstract)

Zhang HX,Zhang BY and Niu HC. 2005. Nb-enriched basalt:The product of the partial melting of the slab-derived melt metasomatized mantle peridotite. Advances in Earth Sciences,20(11):1234 -1242 (in Chinese with English abstract)

Zhang HX,Shen XM,Ma L et al. 2008. Geochronology of the Fuyun adakite,North Xinjiang and its constraint to the initiation of the Paleo-Asian Ocean subduction. Acta Petrologica Sinica,24(5):1054 -1058 (in Chinese with English abstract)

Zhao CH. 1989. The ATK diagram of basic-intermediate volcanic rocks and tectonic environment. Geological Science and Technology Information,8(4):1 -5 (in Chinese with English abstract)

Zhao ZH,Wang Q,Xiong XL et al. 2006. Two types of adakites in North Xinjiang,China. Acta Petrologica Sinica,22(5):1249 -1265 (in Chinese with English abstract)

Zindler A and Hart SR. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences,14:493 -571

附中文参考文献

丁天府. 1998. 新疆火山岩分区及其地质意义. 新疆地质,16(1):39 -48

李锦轶,何国琦,徐新等. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报,80(1):148 -168

李曙光. 1993. 蛇绿岩生成构造环境的Ba-Th-Nb-La 判别图. 岩石学报,9(2):146 -157

田陟贤,阎军,李永军等. 2013. 西准噶尔巴尔雷克一带石炭系黑山头组火山岩LA-ICP-MS 锆石U-Pb 年龄、地球化学特征及构造环境. 地质学报,87(3):343 -352

王方正,杨梅珍,郑建平. 2002. 准噶尔盆地陆梁地区基底火山岩的岩石地球化学及其构造环境. 岩石学报,18(1):9 -16

王强,赵振华,白正华等. 2003. 新疆阿拉套山石炭纪埃达克岩、富Nb 岛弧玄武质岩板片熔体与地慢橄榄岩相互作用及地壳增生.科学通报,48(12):1342 -1349

王强,赵振华,许继峰等. 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb 岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报,22(1):11 -30

王仁民,凤永刚,程素华. 2007. 富Nb 玄武岩在冀北前寒武纪地区的发现. 高校地质学报,13(3):458 -462

夏林圻,夏祖春,徐学义等. 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志,26(1):77 -89

夏林圻,夏祖春,徐学义等. 2009. 天山石炭纪火山岩系中含有富Nb 岛弧玄武岩吗?地学前缘,16(6):303 -317

许继峰,梅厚钧,于学元等. 2001. 准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite 火山岩:消减板片部分熔融的产物. 科学通报,46(8):684 -688

张海祥,牛贺才,Hiroaki S 等. 2004. 新疆北部晚古生代埃达克岩、富铌玄富铌玄武岩组合:古亚洲洋板块南向俯冲的证据. 高校地质学报,10(1):106 -113

张海祥,沈晓明,马林等. 2008. 新疆北部富蕴县埃达克岩的同位素年代学及其对古亚洲洋板块俯冲时限的制约. 岩石学报,24(5):1054 -1058

张海祥,张伯友,牛贺才. 2005. 富铌玄武岩:板片熔体交代的地幔楔橄榄岩部分熔融产物. 地球科学进展,20(11):1234 -1242

赵崇贺. 1989. 中基性火山岩成分的ATK 图解与构造环境. 地质科技情报,8(4):1 -5

赵振华,王强,熊小林等. 2006. 新疆北部的两类埃达克岩. 岩石学报,22(5):1249 -1265

猜你喜欢
岛弧底图玄武
一种基于实际GIS底图的精准计费方式探究
玄武
伊豆-博宁-马里亚纳岛弧地壳厚度分布及其对岩浆活动的指示
东天山帕尔塔格西铜矿床地质特征及找矿方向
青海多彩铜多金属矿区火山岩地球化学特征及其对岛弧环境的限定
科研院所底图管理模式转型研究
大洋岛弧的前世今生*
玄武烟柳
企业底图档案的归档管理
玄武