地质雷达在隧道检测中的应用

2015-10-21 18:50李革孟灵鑫
建筑工程技术与设计 2015年20期
关键词:电磁波天线雷达

李革 孟灵鑫

【摘要】为了研究地质雷达在隧道无损检测中的应用,从理论出发对地质雷达参数选择及病害判别方法进行研究,结合实际工程分析隧道衬砌背后空洞,衬砌混凝土密实程度等病害,结果表明雷达解释准确性比较高。为其他类似工程积累宝贵经验,具有一定指导意义。

【关键词】地质雷达 隧道 无损检测

1前言

隨着我国交通事业的蓬勃发展,隧道建设数量越来越多,断面也不断增大,施工难度越来越大,为了保证人民生命及财产安全,对隧道的施工质量要求越来越来高。隧道在建设过程中隐蔽工程较多,病害一旦形成,如果得不到及时处理,在隧道运营中会产生很多安全威胁,如衬砌厚度不足,空洞等都会对安全构成极大威胁,相比较传统检测方法,如取芯、开挖等直观检测,地质雷达有快速、连续、无损的特点,能够在不破坏衬砌的情况下对隧道病害进行检测,再通过计算机进行数据处理、分析、解释,可判释隧道存在的病害。目前应用探地雷达进行无损检测成为隧道质量检测的重要手段。

2地质雷达方法

2.1地质雷达原理

地质雷达探测中一般以电磁脉冲的形式进行探测,脉冲在介质中的传播遵循惠更斯原理、费马原理和斯涅耳原理,发生反射、折射等现象,其运动规律与地震勘探方法相似。这也是地震数据采集、处理和解释方法技术广泛应用于地质雷达的基础。

地质雷达是一种对地下的或物体内不可见的目标体或界面进行定位的电磁技术。其工作原理是高频电磁波一宽频带脉冲形式,通过发射天线被定向送入地下,经存在电性差异的地下地层或目标体反射后返回地面,由接收天线所接收。高频电磁波在介质中传播时,其路径、电磁场强度与波形将随所通过介质的电性特征及几何形态而变化。故通过对时域波形的采集、处理和分析,可确定地下界面或地质体的空间位置及结构。

2.2隧道衬砌质量检测

衬砌是隧道的主要承载结构,也是隧道防水的重要工程,其施工质量对隧道长期稳定发挥着重要的作用,因此对隧道工程质量的检测也显得尤为重要。隧道衬砌质量检测包括隧道衬砌厚度,衬砌背后未填实的空洞,两层衬砌间的脱空,地下水的侵入,衬砌混凝土的密实程度等,主要检测方法即地质雷达法。

地质雷达进行隧道衬砌质量检测一般采用400MHz或900MHz天线,检测厚度因天线频率不同而相差较大。检测时一般布置5条测线,分布在隧道的拱顶、拱腰及边墙三个部位,拱顶为隧道的正顶部附近,拱腰为隧道的起拱线以上1m作用,边墙为排水改版以上1.5m左右。测量方式采用连续测量方式,为保证地质雷达时间剖面上各测点位置与实际检测里程相对应,在检测时在隧道边墙上每10m做一个里程标记,以供校正剖面上的里程桩号。检测时天线要贴紧洞壁保持匀速运动,避免天线的颠簸对时间剖面产生干扰。

隧道衬砌检测时会受到很多因素的干扰为了压制干扰,对隧道衬砌检测的地质雷达数据在解释前,需经过背景消除和反褶积滤波等数据处理,消除多次波和其他背景干扰波,突出衬砌介质与围岩接触面上的反射信号。隧道衬砌质量检测中,相关介质的物理参数如表2.1所示。

2.2.1检测参数的选择

检测参数选择合适与否关系到探测的效果。探测参数包括天线中心频率、时窗、采样率、滤波设置等。

(1) 天线中心频率选择

天线中心频率的选择通常需要考虑三个主要因素,即设计的空间分辨率、杂波的干扰和探测深度。根据每一个因素的计算都会得到一个中心频率。

一般来说,在满足分辨率且场地条件又许可时,应该尽量使用中心频率较低的天线。如果要求的空间分辨率为 (单位为m),目标体相对介电常数为 ,则天线中心频率可由下式初步选定:

(MHz) (1.1)

根据探测深度,也可以获得中心频率的选择值。假设探测深度为D,则

(MHz) (1.2)

天线的中心频率与对应的探测深度如表2.2。

(2) 时窗选择

时窗选择主要取决于最大探测深度 (单位为m)与地层电磁波速度 (单位为m/ns)。时窗 可由下式估算:

(1.3)

上式中时窗的选择值应增加30%,这是为了地层速度与目标深度变化所留出的余量。表2.3给出天线主频与时窗大小的选择。

(3) 滤波参数的选择

地质雷达测量中,自然界具有多种频率成分的电磁波,这些电磁波将对测量造成较大的影响。在测量中需要设置滤波参数,来增强目标体的异常响应。

一般情况下,当天线中心频率确定以后,以一个天线中心频率为带宽进行带通滤波。即假设选择100MHz天线,带同范围为50~150MHz。

2.2.2隧道衬砌病害识别

衬砌质量检测过程中,首先要在地质雷达剖面上确认出混凝土与围岩或二衬与初支界面间的反射波同相轴,读取反射波双走时时间,按照公式 计算出混凝土衬砌厚度及异常埋深。电磁波在衬砌中传播速度的求取方法可以采用标定厚度的方法,即在已知厚度的衬砌上采用地质雷达探测,通过厚度及双程走时计算出电磁波在介质中传播速度。

脱空是隧道衬砌质量检测的重要内容之一,如果脱空体内为空气,当电磁波在混凝土与空气、空气与围岩之间传播时,上下界面会产生两次强反射,雷达剖面上会出现双曲线形态的强反射波,其同相轴与相邻道发生错位,依此特征可确定出空洞位置、分布范围等。

衬砌混凝土欠密实在地质雷达上会有明显的显示,在欠密实的区域,地质雷达上出现反射相位不连续强反射信号。地质雷达检测分析的密实与否是反射波振幅与相位的变化程度得到的,其物理意义很难用密实度来量化。我们可以根据地质雷达剖面反射波振幅、相位的频率的变化特征将衬砌混凝土划分为密实和相对不密实两种类型,在密实性好的混凝土上,雷达反射波的振幅呈指数衰减,反射相位稳定,层内没有强振幅的杂乱反射;在不密实的混凝土上,雷达反射波的振幅变化较大,反射相位不稳定,剖面上波形杂乱。

3工程实例

3.1工程概况

正岙隧道是温州绕城高速公路西南线工程(仰义至阁巷)第01标段内双洞六车道分离式隧道。左线隧道设计长度564m,设計桩号范围为ZK3+361~ZK3+925;右线隧道设计长度697m,设计桩号范围为K3+351~K4+048。隧道左右线净高均为5m,净宽为14.5m。衬砌采用复合式衬砌,二衬厚度Ⅲ级围岩为450mm,Ⅳ级围岩为500mm,Ⅴ级为围岩为600mm。

3.2现场测试

为检测正岙隧道右洞K3+710- K3+750衬砌背后空洞及密实情况,共布置5条测线,分别位于拱顶、左右拱腰及左右边墙。为准确确定病害位置,每10m打一标记。地质雷达采用中国电波传播研究所LTD2100型探地雷达,采用400MHz屏蔽天线,详细参数设置如下:

3.3数据分析及解释

地质雷达天线采集到的信号,其中包含很多干扰波,使雷达图像很多有用信息被覆盖,不能清晰的反应目标体。另外电磁波在传播过程中会有不同程度的衰减,导致天线接收到的反射波与原始波形产生差异,因此需要借助计算机进行有效处理,为使数据解释更加正确。将采集的地质雷达数据传至计算机中,应用IDSP6软件进行处理,通过滤波、反褶积等处理达到突出有效信息,压制干扰波的目的,通过雷达波形图提取有效信息,判定隧道衬砌质量病害。经过处理后部分雷达处理图如图3.1、图3.2。

图3.1 右洞右拱腰K3+710- K3+730雷达检测图

图3.2 右洞右拱腰K3+730- K3+750雷达检测图

图3.1为正岙隧道右洞右拱腰处一段雷达图,图中可明显看到钢筋分布,钢筋在雷达图中是以多点状信号亮点组成的较规则的梳状结构。含有大量水,电磁波反射强烈,同相轴不连续,波形杂乱,振幅较大,并有多次反射,可判定此处含水。图3.2中没有钢筋分布,并可看到二衬与初支界面,K3+738处有一脱空段,在地质雷达图上主要表现为在混凝土层以下出现多次反射波,同相轴呈弧形,并与相邻道之间发生相位错位,且具有能量明显增强。

对于检测结果与设计相差较大的地方,采用取芯法进行确认,证明检测结果的正确性。地质雷达技术有一定的局限性,因此对于雷达的应用,要有针对性。

4结论

地质雷达作为一种快速、连续、无损的检测方式应用到各个领域,它具有高分辨率、高效率、无损、结果直观的优点,相比较重磁方法、直流电法等采用位场进行探测,地质雷达都具有高分辨率的特点。但也与其他探测方法一样,存在着一些缺陷,雷达波在传播过程中有较大的衰减,限制雷达波的穿透能力。而且对于电磁脉冲,不同频率成分的衰减程度不同,高频成分衰减较严重,而低频成分衰减较少,探测中会降低探测的分辨率,这是探地雷达的一个主要局限性。

参考文献:

[1]吕康成.隧道工程试验检测技术[M].成都:人民交通出版社,2002.

[2]李大心.探地雷达方法与应用[M].北京:地质出版社,1994.

[3]肖宏跃,雷宛等.隧道衬砌质量缺陷的探地雷达图像分析[J].工程勘察,2008.

[4]薛建,田刚,谭笑平等.地质雷达在高速公路检测上的应用[J].世界地质,1997.

[5]钟世航.探地雷达在混凝土结构物检测中几个问题的探讨[J].地质与勘探,2003.

猜你喜欢
电磁波天线雷达
隐形飞机哪里躲
神秘的电磁波
应用于5G移动终端的宽带八天线系统
天线音响
降“奥”十八掌之投石问路
班上的“小雷达”
高通的LTE与Wi—Fi共享天线技术
能分身的雷达
第二十一章 信息的传递
天线、生发剂