单片机设计方向

2016-05-30 10:48王瑜
科技风 2016年5期
关键词:测试仪单片机

摘要:智能脉冲测试技术主要应用于单片机实现。随着电子技术的市场需求和发展,越来越多的地方需要单片机完成。智能化脉冲测试仪是利用AT89C51完成的信号数据采集,通过硬件设备进行电路放大,加强数据计数功能,确定累加的数量范围,提高单片机运行效果,实现多次脉冲。在系统运行过程中,一旦出现系统突然停止,脉冲次数就会通过显示屏显示在系统上,确定系统运行情况,保证设计的准确。本文将利用单片机AT89C51分析智能脉冲测试技术,设计有效的脉冲测试仪测试效果,完善单片机运行过程,提高单片机应用的发展水平。

关键词:单片机;智能脉冲;测试仪

随着人们生活品质的逐步提高,健康状况受到大家的重视。医院利用医疗设备仪器对病人进行基础脉搏测试分析,确定患者的病情。通过脉搏测试设备测量患者脉搏每分钟数量。确保测量准确程度,提高医疗治疗价值,从而完善医学诊断的准确性。然而目前的脉搏测量仪器技术不够完善,在很多医学领域无法完成脉搏测量工作,为了有效的提高脉搏测算准确性,实现科学治疗诊断。本文将针对单片机的智能化脉搏测量仪器进行具体分析和研究,提高脉搏测量器的应用范围,确保测量脉搏的准确性,实现单片机的有效应用。

一、单片机脉搏测量器基本原理

1.现状。

脉搏测量器的应用较为广泛,除了基本医学应用外,在中医测量、心血管功能测量、妊娠测量等多个方面都具有较为深入的研究。通过测算脉搏心率,确定测试人的基本脉搏情况。这可以用于基本身体健康检查判断,可以用于健身运动,可以用于多项商业发展。

2.脉冲测量器的结构。

脉冲测量仪器的结构主要通过光电感应进行传导,通过元器件的变化,完成脉搏跳动数据采集,通过红外远程遥控,确定基本显示内容,确定设备装置的基本工作状态。通过信号传输、单片机设备电路处理、显示屏数码显示、电源端控制等多个部分实现整体系统的组合管理。以下对相关的脉冲测量结构进行具体分析。

传感器电路是通过红外远程转换,确定红外光转换为光电能的过程,通过二极管或三级管对其进行发光,组成可变光的线性关系,通过测量物理量完成电流电量的输出过程。其输入的信号是光传感器发出的低频模拟电路,其电路内部包括信号的放大、信号的整合调整,信号的调拨。通过信号调整控制,确定基本输入信号的合理性。利用单片机对电路进行终端技术设置,通过输入电流判断低频信号,通过放大转换为模拟电路,经过脉冲电平,完成信号放大计数,完成运算,确定外晶体基本中断情况。通过数码显示在单片机上完成数码显示功能。通过误码器确定基本数据,将相关数据进行调节处理,即完成电路信号的传输感应。单片机智能脉冲传感器的基本电路需要配备4伏的基本稳定电压,通过信号传输确定基本交流电或直流电的选用。

3.原理。

工作原理是应用单片机AT89C51为基本的控制单元,通过测量仪器的基本功能,确定测量仪器的基本硬件电路。当照射光束通过发光二极管传递,通过对心脏血管中的脉冲流进行测量,就可以确定主动变换量。利用心跳的基本节拍,对光束受影响轻重强度进行判断,确定红外信号发射的有效基本传递路径,通过光束强度的调整,确定心跳节拍,提高红外线脉冲输出信号的准确程度。信号需要通过传输、对比、放大、整形后,完成信号的输出调整,确定输出脉冲信号的中断水平,及时调整中断信号量,控制单片机的基本电路,对输出的脉冲信号进行基本云存储计算,实现数码显示管信息的准确显示。通过调节单片机智能脉冲的输出的脉冲量,调节输出信号水平,实现智能脉冲设计。

4.智能脉冲基本特点。

智能脉冲与传统的脉冲测量器相比,具有较为不同的特点。传统的测量仪器需要接触机体表面,而智能化脉冲测量不需要接触机体表面,只需要通过脉冲信号实现外部测量。智能脉冲测量器可以反复的进行使用,通过传感器设置,确定精度水平,需要的基本环境低,具有寿命长,稳定性高的特点。通过合理的控制电压和电流,可以实现长效稳定工作,而且后续维修费用较低,磨损较小。脉冲的基本结构较为简单,具有良好的体积,可以应用在体积需求较为严格的智能化应用上,质量较强,性价比较高。因为智能脉冲具有的有效优势特点较多,深受市场欢迎。

二、硬件电路

智能化单片机的应用基础是AT89C51,通过设计系统的相关功能标准,确定可实现的单片机设计方案。单片机的主要指令系统通过mcs系统指令完成,采用4k字节重复化闪存可擦拭处理,实现每周的1000次的重复读写存储,通过硬件操作实现全静态控制管理。采用三级的加密控制存储电路,采用内部存储RAM128字节,实现接收和输出端口的重复编程,采用32位计数器进行定位,设置中断判断源,通过UART确定有效的可编程控制串行,采用低电平的空闲电压功能,同时设置掉电模式器,实现智能化单片机的基本硬件配置。

1.AT89C51单片机的封装。

AT89C51是由基本四十个引脚封装组成完成的结构。结构具有基本的电路输入端和输出端。通过脉冲确定系统显示。主要的脉冲采集方法有光电信号采集、脉冲耦合传感器信号采集、数据阻尼式电压传感器、应变脉冲传感器等。其中,光电检测技术在实际的临床应用中较为广泛,受到了市场的综合认可,其主要利用光电闭合电路,探测数据电磁干扰水平,确定脉冲信号的传输频率和传输效果,具有较高的绝缘性效果,可以有效地实现无损脉冲信号采集和分析,其精度较高,具有较良好的重复可擦性,结构较为简单,稳定封装性良好,是受到市场一直认可的一个单片机型号。

2.原理及结构。

物质是具有能量守恒的,按照物质的这种基本原理,通过波长吸收情况、波频率水平进行正比例关系分析,确定恒定波长的光照射到人体时的情况。通过判断人体对光波吸收、反射、衰退情况的分析,确定可测量波长的光强水平,在一定程度上完成了动态脉冲成分的分析。基础检测可以采用手指检测,确定光强水平,按照皮肤、骨骼、肌肉血液组织进行分析,其中在非血液的组织中光的吸收量是能量守恒的。但是,在血液中,因为静脉血的脉冲波动较弱,在测量脉搏时可以忽略,采用手指透射光照射的方式,确定动脉血脉冲的水平,及时调整光照射脉冲守恒水平,确定光可以检测的脉搏信号水平,确定光脉搏照射信号的效果。

光传感器的基本结构是由发光管组成的。通过红外线晶体管完成最佳方向的指向工作管理。透过光源分析发光与手指接触吸收情况,一部分在血液中完成反射,大部分完成渗透工作。通过光电脉搏传感器实现光接收方式的有效反射处理。透射的光源需要与光接收器距离相当。操作的基本光应当是透射光。通过透射光对电传感器进行研究,实现光电脉冲测量,减少模拟电路的干扰情况,实现对透射光电路传感器的有效测定过程。

3.检测。

检测电路通过脉动情况,对人体组织进行透明度调整。通过血液输送的方式,确定组织半透明水平。当血液流回心脏的时候,组织内的半透明水平逐步增大,这种情况主要发生在指尖或耳垂处。因本设计主要是将二极管产生的红外线光照射到指尖,故经过手指组织反射的时候,由此部分产生的发光管接收,将透射光转换为电路信号。通过手指动脉血循环传输,实现周期性的脉动变化调节。而这种光反射和衰减也是周期性变化的,通过红外接收管对输出信号进行调节,确定动脉血最终的脉冲信号变化水平,从而逐步完善电信号,实现脉冲的整合管理,确定计数、显示变化,通过实际读数确定脉冲次量。

4.采集电路。

采集电路是由红外发射端、接收设备设置结合完成的。通过红外发射管提高电流量,降低发射角度,改善发射强度,实现对阻值的有效控制。通过电阻的选择,确定红外接收管的红外光感灵敏程度。如果电阻过大,红外发射二极管的综合电流减小,三极管会出现无脉冲的状态。当传感器的光干扰较强,直接影响输入端电压水平,造成输出端变化误差较大,直接影响脉冲检测。采用串联的耦合电容,阻隔端误差阻滞,提高传感器有效输出信号的基本频率,改善电路脉冲次数,确定有效脉冲输出和输入频率。在脉冲信号数据采集电路设计中,需要控制电路信号的过滤频次,控制干扰水平,确定耦合量,提高放大输入脉冲测试准确度。

5.电路的处理和显示。

通过51单片机对核心元件进行处理,通过硬件设备确定数据的有效运算过程,根据实际情况进行数据分析,结合数据电路基本原理,确定外围元器件,确定编程过程,确定省电的基本原则。通过传感器对输出电路进行脉冲电平整合,采用单片机通断电路确定有效输出端电路的基本触发情况,确定电路终端的相关计数。当电路出现脉冲附加次序的时候,采用脉冲测量,确定脉冲量,通过单片机端口对数据测量过程进行分析,通过现实器现实在显示屏上。显示功能的有效数据资源较多,动态显示是对每一位的信号进行扫码设置,即通过对数码管上的显示量进行调节,确定数码管的有效显示亮度。通过判断数码管亮度间隔时间,确定相关比例系数,采用合理的电流时间参数完成对显示器亮度、显示屏、LTE动态状态的有效调节控制,逐步提高硬件设备的应用效果。

三、软件设计

1.主系统软件的设计流程。

通过判断主系统的基本操控流程,确定操作运行方式。主程序依据单片机为基本应用程序的框架,通过系统上电,构建电路系统有效初始化流程。通过判断初始化水平,确定单片机专用寄存设备,通过定时器控制各个端口的工作状态,确定系统初始情况。通过判断定时水平,确定外部设备的中断情况,将相关数据显示在电路上,提高不同硬件电路的内部程序控制调节,实现主程序的有效调控。

2.测量仪器的基本使用。

测量仪器采用C语言,具有可读性。每一次都需要对脉搏数据进行自动保存,确定数码显示情况。通过程序调节控制,发现有干扰而不显示的误码,一步步检查相关误差数据。通过数码0和1的显示,确定可传递传感器中,有压迫感表现。通过判断二极管发光情况,确定脉搏是否是正常工作频率,从而降低测量仪的使用级别,提高数码显示效果,方便测量数量复位的准确性。

综上所述,基于·智能化脉搏测试设计中,通过应用AT89C51单片机技术,提高最小系统单元的数码显示,实现脉搏测量系统的有效调节。通过光电传感器,集中调节脉冲数码信号,加强信号的稳定性,完成信号的输出、放大、调节、整合和接收。通过单片机外部存储设备,确定最终数码编码显示内容,提高有效中断性作用,完成技数、外部中断和内部中断等多项功能的应用。应用单片机不仅可以完成脉搏测量水平,完善系统功能应用的广泛作用。实现高效抗干扰的智能化应用,实现医疗仪器水平的逐步提高。

参考文献:

[1]肖瑶,眭国平,陆逊,孙荣荣,滕婧静,王鹏德. 血糖自动分析仪测量不确定度评定[J]. 中国计量. 2015(07) .

[2]牛凤岐,朱承纲,程洋,马启福,张辉. B超的声束切片厚度参数及标准化检测技术[J]. 中国计量. 2015(07).

[3]彭韵. 胶囊内窥镜成像技术专利分析[J]. 医疗装备. 2015(07).

[4]余冬明. B超诊断仪图像质量降低故障的维修分析[J]. 医疗装备. 2015(07).

[5]秦志强,赵晓,李贵,罗春娜. 巧修日本富士能胃肠镜EPX-2200主机冷光源[J]. 医疗装备. 2015(07).

[6]赵德春,彭承琳. 无线内窥镜中高效电磁感应连接[J]. 清华大学学报(自然科学版)网络.预览. 2008(09).

作者简介:王瑜(1993—),男 ,辽宁省瓦房店市,大学本科学历,自动化专业。

猜你喜欢
测试仪单片机
SDL Atlas推出第二代HydroPro耐静水压测试仪
使用快速水洗色牢度测试仪检测超细纤维脱落
基于单片机的SPWM控制逆变器的设计与实现
基于单片机的层次渐变暖灯的研究
基于单片机的便捷式LCF测量仪
便携式转辙机转换力测试仪
小议PLC与单片机之间的串行通信及应用
基于单片机的平衡控制系统设计
基于单片机的PM2.5测试仪设计与应用
便携式25Hz相敏轨道电路模拟测试仪