新型吲哚席夫碱类化合物的合成及其抗菌活性研究

2016-06-18 02:19陈佰灵赵志刚刘兴利石治川郑礼婷西南民族大学化学与环境保护工程学院四川成都610041
关键词:席夫碱吲哚

陈佰灵,赵志刚,刘兴利,石治川,郑礼婷(西南民族大学化学与环境保护工程学院,四川 成都 610041)

新型吲哚席夫碱类化合物的合成及其抗菌活性研究

陈佰灵,赵志刚,刘兴利,石治川,郑礼婷
(西南民族大学化学与环境保护工程学院,四川 成都 610041)

摘 要:以吲哚-3-甲酸甲酯为原料,通过偶联、肼解、消除等反应,合成了一系列具有对称结构的吲哚席夫碱衍生物,以期为新药筛选提供先导化合物.其结构均经1H NMR,ESI-MS,IR及元素分析所证实.初步抗菌活性测定结果表明:化合物5e对枯草芽孢杆菌、金黄色葡萄球菌具有较强的抑菌效果;化合物5f对大肠杆菌的抑菌效果优于阿莫西林,对绿脓杆菌表现出与对照品阿莫西林相当的抑菌效果.

关键词:吲哚;席夫碱;抗菌活性

杂环化合物是众所周知药效广泛的医药中间体,其独特结构为药物发展提供了新的方向[1].吲哚及其衍生物是重要的稠环杂环化合物,因其独特的结构和潜在的药物生理活性、相对较低的毒性、高效的生物相容性,在杂环化学中占有重要的地位[2].吲哚衍生物在医药方面可以合成解热镇痛剂、血管扩张药、抗组胺药、抗肿瘤药等[3-4];在农药方面,可作为高效植物生长调节剂、杀菌剂等[5-8].近年来,医药和农药的合成正趋向于选择杂环化合物以适应生物进化对新型农药和医药的需求.故而在杂环化学中占有重要地位的吲哚类化合物具有值得进一步深入研究和开发的价值.席夫碱的基本结构中含有亚胺(-N = CH-)基团,可通过伯氨与活泼羰基缩合反应得到.由于其特殊的生理活性和良好的配位能力,在医药领域越来越有重要的应用如抗肿瘤、抗病毒、抗细菌、抗真菌、抗疟疾、抗细胞增殖等[9-13],具有潜在的药用价值.

将具有不同生物活性的官能团在同一分子中聚集,实现活性的叠加,是开发新的具有高效,广谱活性的新化合物的有效方法.本课题组已经合成了一系列根据活性叠加原理设计的高效广谱活性的新化合物[14-16].因此本文以吲哚-3-甲酸甲酯为原料,通过偶联、肼解、消除等反应,合成了具有对称结构的双席夫碱吲哚化合物(5a-5l,Scheme 1).并测试了这些化合物对四种致病菌株(枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌、绿脓杆菌)的抑菌活性.

路线图1 目标化合物5a-5l合成Scheme 1 Synthesis protocol of 5a-5l

1 实验部分

1.1 仪器与试剂

Agilent-NMR-vnmrs400MHz型核磁共振仪(TMS作内标,DMSO-d6作溶剂);WRS-1B型数字显示显微熔点仪(温度未校正);FINNIGAN-LCQ ADVANTAGE MAX型质谱仪;PERKIN-ELMER1700型红外光谱仪(KBr压片); VarioMICRO自动元素分析仪;锐品ECA-9272型电热恒温培养箱;东联DL-CJ-1N型垂直层流洁净工作台;三申YX280A型手提式高压蒸汽灭菌锅;友联HY-2A型数显调速多用振荡器.供试菌种枯草芽孢杆菌(ATCC 6633)、金黄色葡萄球菌(ATCC 6538)、大肠杆菌(ATCC 35218)及绿脓杆菌(ATCC 27853);其余所用试剂均为分析纯.

1.2 合成

(1)中间体3的合成

在反应管中加入1.75 g(10 mmol)吲哚-3-甲酸甲酯1,0.4 mL(0.45 mmol)1,2-二溴乙烷2,0.94g(6.8 mmol)K2CO3和10 mL无水DMF,在室温下搅拌反应24 h(TLC监测),反应完全后,通过柱层析得到中间体3.白色固体,产率65%,m.p.179-180°C;1H NMR (400 MHz,CDCl3)δ:8.19-8.17(m,2H,ArH),7.38 (s,2H,Indole-CH),7.31-7.23(m,6H,ArH),4.54(s,4H,CH2CH2),3.85(s,6H,COOCH3);IR(KBr):2945,1694,1380,1177,1080,750 cm-1;ESI-MS m/ z(%): 399([M+Na]+,100).Ana1.Calcd for C22H20N2O4: C,70.20; H,5.36; N,7.44% .Found: C,70.21; H,5.38;N,7.47%.

(2)中间体4的合成

在反应瓶中将0.376 g(1 mmol)中间体3溶于5mL水合肼(80%)中,在60°C反应20 h(TLC监测反应进程),反应结束后冷却,过滤,用无水乙醇重结晶得到中间体4.白色固体,产率97%,m.p.249-250° C;1H NMR (400 MHz,CDCl3)δ: 11.35 ( s,2H,CONH),8.27-8.20 (m,4H,Indole-H),8.17 (s,2H,CONH),7.38(s,2H,Indole-CH),7.30-7.21(m,6H,ArH),4.53(s,4H,CH2CH2),1.60(s,4H,NH2);IR (KBr):3347,1690,1623,750 cm-1;ESI-MS m/ z(%): 377([M+H]+,100).Ana1.Calcd for C20H20N6O2:C,63.82;H,5.36;N,22.33%.Found:C,63.80;H,5.37; N,22.31%.

(3)目标化合物5的合成通法

在反应瓶中加入0.376 g(1 mmol)中间体4,2mmol芳香醛,5 mL无水DMF,用冰醋酸调节pH值至4左右,于90°C下搅拌反应8 h(TLC监测反应进程),反应完全后冷却有固体析出,过滤,用乙醇重结晶得5a-5l.

5a:棕色固体,产率85%,m.p.249-250°C;1H NMR(400 MHz,DMSO-d6)δ:11.35(s,2H,CONH),8.27-8.20(m,4H,Indole-H),8.17(s,2H,ArCH = N),7.87(d,2H,J = 7.2 Hz,ArH),7.58(d,J = 8.0 Hz,2H,Indole-H),7.30-7.23(m,4H,Indole-H),6.89(d,2H,J =7.6 Hz,ArH),6.69(d,2H,J =7.2 Hz,ArH),4.81(s,4H,CH2CH2);IR(KBr):3206,1635,1606,1533,834cm-1;ESI-MS m/ z(%):532.9([M+H]+,100).Ana1.Calcd for C30H24N6O4:C,67.66;H,4.54; N,15.78%.Found:C,66.77;H,4.52;N,15.75%.

5b:淡黄色固体,产率76%,m.p.300-301°C;1H NMR(400 MHz,DMSO-d6)δ:11.17(s,2H,CONH),8.20-8.11(m,4H,Indole-H),8.09(s,2H,ArCH = N),7.62-7.56(m,2H,Indole-H),7.49(d,4H,J =8.8 Hz,ArH),7.22-7.15(m,4H,Indole-H),6.98(d,2H,J = 8.4 Hz,ArH),4.75(s,4H,CH2CH2),3.79(s,6H,Ar-OCH3);IR (KBr):3442,1638,1606,1513,834cm-1; ESI-MS m/ z(%):1247.1([2M+Na]+,100).Ana1.Calcd for C36H32N6O4:C,70.57;H,5.26;N,13.72%.Found:C,70.55;H,5.29;N,13.69%.

5c:棕色固体,产率79%,m.p.286-287°C;1H NMR(400 MHz,DMSO-d6)δ:11.42(s,2H,CONH),8.46-7.95(m,8H,ArH and ArCH = N),7.48(brs,4H,ArH),7.19(brs,6H,ArH and Indole-H),6.91(d,2H,J = 7.2 Hz,Indole-H),4.75 ( s,4H,CH2CH2); IR (KBr):3161,1640,1605,1526,1182,782,747cm-1; ESI-MS m/ z (%):588.9 ([ M+H]+,100).Ana1.Calcd for C34H26F2N6O4: C,69.38; H,4.45; N,14.28%.Found:C,69.40;H,4.43;N,14.30%.

5d:淡黄色固体,产率65%,m.p.274-275℃;1H NMR(400 MHz,DMSO-d6)δ:11.85 ( s,2H,OH),11.62(s,2H,CONH),8.46(s,2H,ArCH = N),8.20-8.18(m,2H,Indole-H),8.05(s,2H,Indole-H),7.97-7.94(m,2H,ArH and Indole-H),7.50-7.43(m,4H,ArH),7.21-7.14 (m,4H,ArH and Indole-H),6.93-6.88 ( m,4H,ArH and Indole-H ),4.72 ( s,4H,CH2CH2);IR ( KBr):3432,3016,1636,1602,1530,1165,746cm-1; ESI-MS m/ z (%): 1190.9 ([ 2M+Na]+,100).Ana1.Calcd for C34H28N6O4:C,69.85;H,4.83; N,14.38% .Found: C,69.88; H,4.80; N,14.33%.

5e:棕色固体,产率78%,m.p.332-333°C;1H NMR(400 MHz,DMSO-d6)δ:11.35(s,2H,CONH),8.20(s,2H,ArCH = N),8.04-7.95(m,4H,Indole-H),7.63-7.47(m,10H,ArH and Indole-H),7.19(d,2H,J =6.8 Hz,ArH),4.75(s,4H,CH2CH2);IR(KBr): 3161,1636,1600,1521,1089,841.ESI-MS m/ z(%): 642.9([ M+Na+]+,100) .Ana1.Calcd for C34H26Cl2N6O2: C,65.71; H,4.22; N,13.52% .Found: C,65.66;H,4.26;N,13.50%.

5f:白色固体,产率80%,m.p.340-341°C;1H NMR(400 MHz,DMSO-d6)δ:11.29(s,2H,CONH),8.20(s,2H,ArCH = N),8.04 (d,4H,J = 6.4 Hz,ArH),7.82-7.68(m,2H,Indole-H),7.49(d,4H,J = 6.8 Hz,ArH),7.24-7.11(m,8H,Indole-H),4.76(s,4H,CH2CH2); IR ( KBr): 3159,1644,1605,1550,1165,841.ESI-MS m/ z (%):588.9 ([ M+Na+]+,100).Ana1.Calcd for C34H26F2N6O2: C,69.38; H,4.45; N,14.28% .Found: C,69.33; H,4.44; N,14.30%.

5g:黄色固体,产率73%,m.p.265-266°C;1HNMR(400 MHz,DMSO-d6)δ:11.62(s,2H,CONH),8.39-8.21(m,8H,ArH and Indole-H),8.11(s,2H,ArCH = N),7.96-7.82(m,4H,Indole-H),7.61-7.56 (m,2H,Indole-H),7.38-7.21(m,4H,ArH),4.86(s,4H,CH2CH2); IR ( KBr): 3436,1638,1605,1552,1515,1338,840.ESI-MS m/ z (%):1307.1 ([2M+Na+]+,100).Ana1.Calcd for C34H26N8O6:C,63.55; H,4.08; N,17.44% .Found: C,63.53; H,4.10; N,17.44%.

5h:白色固体,产率60%,m.p.283-284°C;1H NMR(400 MHz,DMSO-d6)δ:11.56(s,2H,CONH),8.88(s,2H,ArCH = N),8.63-8.59(m,4H,Indole-H),8.21-8.19(m,2H,ArH),7.50-7.48(m,4H,ArH and Indole-H),7.42-7.40 ( m,4H,ArH and Indole-H),7.20-7.16(m,4H,ArH and Indole-H),4.75(s,4H,CH2CH2);IR ( KBr):3170,1634,1607,1526,1049,746.ESI-MS m/ z (%):643.1 ([M+Na+]+,100).Ana1.Calcd for C34H26Cl2N6O2:C,65.71;H,4.22;N,13.52%.Found:C,65.68;H,4.25;N,13.50%.

5i:白色固体,产率82%,m.p.285-286°C;1H NMR(400 MHz,DMSO-d6)δ:11.57(s,2H,CONH),8.58(s,2H,ArCH = N),8.20-7.91(m,4H,ArH and Indole-H),7.66(d,2H,J = 6.4 Hz,ArH),7.49-7.33 (m,8H,ArH and Indole-H),7.19-7.17(m,4H,ArH and Indole-H),4.75 ( s,4H,CH2CH2); IR ( KBr): 3178,1635,1604,1526,1056,750.ESI-MS m/ z(%): 1442.7([2M+Na+]+,100).Ana1.Calcd for C34H26Br2N6O2:C,57.48; H,3.69; N,11.83% .Found: C,57.44;H,3.72;N,11.85%.

5j:淡黄色固体,产率80%,m.p.311-312°C;1H NMR(400 MHz,DMSO-d6)δ:11.36(s,2H,CONH),8.20(s,2H,ArCH = N),8.05-7.92(m,4H,Indole-H),7.62-7.49 ( m,10H,ArH and Indole-H),7.20-7.17 (m,4H,ArH),4.75 ( s,4H,CH2CH2); IR ( KBr): 3154,1640,1601,1555,1110,839.ESI-MS m/ z(%): 733.0([ M+Na+]+,100) .Ana1.Calcd for C34H26Br2N6O2:C,57.48; H,3.69; N,11.83% .Found: C,57.50;H,3.70;N,11.85%.

5k:黑色固体,产率65%,m.p.310-311°C;1H NMR(400 MHz,DMSO-d6)δ:10.98(s,2H,CONH), 8.18(s,2H,ArCH = N),8.00-7.48(m,5H,Indole-H),7.23-7.04(m,5H,Indole-H),4.73(s,4H,CH2CH2),4.73(s,4H,H-2 H-5,Fc),4.31(s,4H,H-3 H-4,Fc),4.20(s,10H,Fc-unsubst ring);IR(KBr):3406,1602,1601,1540,1100,1008.ESI-MS m/ z(%):769.9([M +H+]+,100) .Ana1.Calcd for C42H36Fe2N6O2:C,65.64;H,4.72;N,10.94%.Found:C,65.66;H,4.75; N,10.90%.

5l:棕色固体,产率74%,m.p.259-260°C;1H NMR(400 MHz,DMSO-d6)δ:13.75 ( s,2H,NH),12.81(s,2H,CONH),8.29(s,2H,ArCH = N),7.98-7.95( m,4H,Indole-H),7.68 ( d,2H,J = 9.6 Hz,ArH),7.49(d,2H,J = 8.8 Hz,ArH),7.35(s,2H,indole-H),7.18(d,4H,J = 2.4 Hz,Indole-H),4.77(s,4H,CH2CH2);IR(KBr):3046,1657,1612,1565.ESIMS m/ z(%):555.1([M+Na+]+,100).Ana1.Calcd for C28H24N10O2: C,63.15; H,4.54; N,26.30%.Found:C,63.20;H,4.55;N,26.33%.

1.3 抗菌活性测试

化合物5a-5l的体外抗菌活性测试使用革兰氏阳性菌(枯草芽孢杆菌、金黄色葡萄球菌)与革兰氏阴性菌(大肠杆菌、绿脓杆菌),以阿莫西林作为阳性对照,DMSO为阴性对照.采用二倍稀释法与纸片扩散法进行抗菌活性筛选,每个测试重复三次.同时分别计算IC50与MIC值.

1.3.1 IC50值

用2 mL容量瓶,对目标物和阿莫西林与环丙沙星分别选取无菌DMSO溶解定容,得到浓度为640μg/ mL的母液.取无菌试管将母液依次稀释为640,320,160,80,40,20,10,5 μg/ mL,0 μg/ mL作为空白对照.将活化后的细菌接种在培养基中,菌液浓度配成0.5麦氏比浊标准,约含1-2×108CFU/ mL,用MH肉汤将菌液进行1:100稀释后,用无菌棉沾取菌液在营养琼脂培养基平板表面均匀涂抹3次,室温干燥10 min,将含有400 μL各梯度浓度药液的无菌干燥滤纸片(直径6 mm),贴放于培养基平板表面.37℃恒温孵化18 h后得到抑菌圈直径,测量并计算IC50值.

1.3.2 MIC值

将活化后的细菌接种在培养基中,菌液浓度配成0.5麦氏比浊标准,用MH肉汤将菌液进行1:100稀释后备用.用2 mL容量瓶,对目标物和阿莫西林分别选取无菌DMSO溶解定容,得到的母液浓度为:1280 μg/ mL.采用二倍稀释法将依次稀释至浓度为256,128,64,32,16,8,4,2,1,0.5,0.25 μg/ mL,0 μg/ mL作为空白对照.将1 mL配制好菌液加入各梯度浓度药物原液,37°C恒温孵化18 h后,观察结果并记录MIC值.

2 结果与讨论

2.1 抗菌活性

表1为化合物5a-5l的抗菌活性数据.部分测试的化合物对枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和绿脓杆菌具有不同程度的抗菌活性.其中,对于枯草芽孢杆菌,5e最佳,其抑菌效果超过对照品阿莫西林;对于金黄色葡萄球菌,化合物5c,5e和5f都显示出抑制效果,5e的效果优于5c与5f;对于大肠杆菌,化合物5c、5e和5f都显示出抑制效果,其中5f明显优于其他化合物和对照品阿莫西林;对于绿脓杆菌,化合物5a、5c和5f都显示出抑菌效果,其中5f抑菌效果与标准对照药物阿莫西林相当.该系列化合物其他方面的活性效果及化合物结构与生物活性之间的关系正在进一步研究中.

表1 目标化合物5a~5l的抗菌活性Table 1 Antibacterial activities of target compounds 5a~5l

3 结论

以吲哚-3-甲酸甲酯为起始原料,经过偶联、肼解、消除等反应,快速合成了一种结构新颖的吲哚席夫碱类衍生物,产率在60%~85%之间.抗菌活性测试结果表明:部分目标化合物具有良好的抗菌活性,其中氟取代化合物显示出比其它取代基更优良的生物活性,化合物5e和5f的抗菌效果甚至优于对照片阿莫西林的抗菌活性,这对新药的研发提供了进一步的研究依据.

参考文献

[1]SHELKE S H,MHASKE P C,KASAM S K,et al.Synthesis and pharmacological evaluation of a novel series of 2-((2-Aryl thiazol-4-yl) methyl)-5-( alkyl/ alkylnitrile thio)-1,3,4-oxadiazole derivatives as possible antifungal agents[J].Journal of Heterocyclic Chemistry,2014,51(6):1893-1897.

[2]AZIZI N,GHOLIBEGHLO E,MANOCHERI Z,et al.Green procedure for the synthesis of bis(indolyl)methanes in water[J].Scientia Iranica C,2012,19(3):574-578.

[3]HENRIK J,TANJA B J,DAVID E G,et al.3-Substituted 2-phenyl-indoles:privileged structures for medicinal chemistry[J].RSC Advances,2013,3(3):945-960.

[4]HASSAM M,BASSON A E,LIOTTA D C,et al.Novel cyclopropyl-Indole derivatives as HIV non-nucleoside reverse transcriptase inhibitors [J].ACS Medicinal Chemistry Letters,2012,3(6):470-475.

[5]EL-NAGA R N,AHMED H I,ABD AL HALEEM E N.Effects of indole-3-carbinol on clonidine-induced neurotoxicity in rats:Impact on oxidative stress,inflammation,apoptosis and monoamine levels [ J].Neurotoxicology,2014,44(1):48-57.

[6]SONG Y L,WU F,ZHANG C C,et al.Ionic liquid catalyzed synthesis of 2-(indole-3-yl)-thiochroman-4-ones and their novel antifungal activities[J].Bioorganic&Medicinal Chemistry Letters,2015,25(2):259-261.

[7]KAUSHIK N K,KAUSHIK N,ATTRI P,et al.Biomedical Importance of Indoles[J].Molecules,2013,18(6):6620-6662.

[8]LEE W I,JUNG J W,SIM J,et al.Microwave-assisted synthesis of 3-substituted indoles viaintramolecular areneealkene coupling of o-iodoanilino enamines[J].Tetrahedron,2013,69(35):7211-7219.

[9]SRINIVAS V,KOKETSU M.Synthesis of indole-2-,3-,or 5-substituted propargylamines viagold(III)-catalyzed three component reaction of aldehyde,alkyne,and amine in aqueous medium[J].Tetrahedron,2013,69(37):8025-8033.

[10]ASIRI A M,KHAN S A.Palladium(II)complexes of NS donor ligands derived from steroidal thiosemicarbazones as antibacterial agents[J].Molecules,2010,15(7):4784-4791.

[11]ASIRI A M,KHAN S A,MARWANI H M,et al.Synthesis,spectroscopic and physicochemical investigations of environmentally benign heterocyclic Schiff base derivatives as antibacterial agents on the bases of in vitro and density functional theory[J].Journal of Photochemistry and Photobiology B:Biology,2013,120(5):82-89.

[12]ABOUL-FADL T,ABDEL-AZIZ H A,ABDEL-HAMID M K,et al.Schiff bases of indoline-2,3-dione:potential novel inhibitors of mycobacterium tuberculosis ( Mtb) DNA Gyrase [ J].Molecules,2011,16 (9):7865-7879.

[13]TAHA M,BAHARUDIN M S,ISMAIL N H,et al.Synthesis of 2-methoxybenzoylhydrazone and evaluation of their antileishmanial activity [J].Bioorganic&Medicinal Chemistry Letters,2013,23(11):3463-3466.

[14]张丽娜,赵志刚,谭炯,等.新型胆酸不对称双缩二氨基硫脲类衍生物的合成及其抗菌活性[J].合成化学,2015,23(8):677-682.

[15]赵志刚,刘兴利,陈宇,等.微波辐射下吲哚连噁二唑啉衍生物的合成和抗菌活性测定[J].有机化学,2010,30(12):1949-1954.

[16]SHI Z C,ZHAO Z G,LIU M,et al.Solvent-free synthesis of novel unsymmetric chenodeoxycholic acid bis thiocarbazone derivatives promoted by microwave irradiation and evaluation of their antibacterial activity [J].Comptes Rendus Chimie,2013,16(11):977-984.

(责任编辑:李建忠,付强,张阳,罗敏;英文编辑:周序林,郑玉才)

Synthesis and antibacterial activities of novel indole Schiff base derivatives

CHEN Bai-ling,ZHAO Zhi-gang,LIU Xing-li,SHI Zhi-chuan,ZHENG Li-ting
(School of Chemistry and Environmental Protection Engineering,Southwest University for Nationalities,Chengdu 610041,P.R.C.)

Abstract:A series of novel indole Schiff base derivatives were synthesized through coupling,hydrazine,and elimination reaction by using methyl indole-3-carboxylate as starting material.Their structures were elucidated by1H NMR,ESI-MS spectra,IR and elemental analyses.The antibacterial activities of compounds were tested against two kinds of bacteria.The preliminary results indicated that compound 5e had potent inhibition activity against B.subtilis and S.aureus;Compound 5f showed higher antibacterial activity against E.coli and similar effect against P.aeruginosa than the standard reference drug(amoxicillin),respectively.Key words:indole;Schiff base;antibacterial activity

中图分类号:O621.3;R9

文献标志码:A

文章编号:2095-4271(2016)02-0170-06

doi:10.11920/ xnmdzk.2016.02.008

收稿日期:2015-12-23

通信作者:刘兴利(1966 - ),女,汉族,四川都江堰人,教授,研究方向:药物合成.E-mail:liuxingli2000@ swun.cn.

基金项目:四川省应用基础研究项目(2012JY0028);西南民族大学研究生创新型科研项目(CX2014SZ44)

猜你喜欢
席夫碱吲哚
萘酚醛席夫碱铜配合物的合成、表征及荧光性质
吲哚美辛肠溶Eudragit L 100-55聚合物纳米粒的制备
HPV16E6与吲哚胺2,3-二氧化酶在宫颈病变组织中的表达
席夫碱-镍配合物的合成与表征
金属催化下吲哚7位的修饰
氧代吲哚啉在天然产物合成中的应用
两种邻苯二胺类席夫碱缓蚀剂缓蚀性能研究
稀土La3+,Ce3+配合视黄基席夫碱盐的制备与吸波性能
检测Al3+的席夫碱荧光探针的合成和性能研究
新型聚席夫碱及镍配合物的制备与发光性能研究