青藏工程走廊沿线不同植被类型带土壤典型理化特征

2016-07-19 03:51董林水宋爱云周金星姜鑫贵滨州学院山东省黄河三角洲生态环境重点实验室25660山东滨州北京林业大学水土保持学院水土保持与荒漠化防治教育部重点实验室0008北京中国林业科学研究院荒漠化研究所0009北京
中国水土保持科学 2016年3期

董林水,宋爱云,周金星,姜鑫贵(.滨州学院,山东省黄河三角洲生态环境重点实验室,25660,山东滨州;2.北京林业大学水土保持学院,水土保持与荒漠化防治教育部重点实验室,0008,北京;.中国林业科学研究院荒漠化研究所,0009,北京)



青藏工程走廊沿线不同植被类型带土壤典型理化特征

董林水1,宋爱云1,周金星2†,姜鑫贵3
(1.滨州学院,山东省黄河三角洲生态环境重点实验室,256603,山东滨州;2.北京林业大学水土保持学院,水土保持与荒漠化防治教育部重点实验室,100083,北京;3.中国林业科学研究院荒漠化研究所,100091,北京)

摘要:为制订科学合理的青藏工程走廊沿线植被恢复策略,掌握沿线土壤的理化特征及其与植被分布的相关关系,本文研究沿线不同植被类型带的土壤典型理化特征,共设置样带27条,测定指标包括有机质、全氮、全磷、全钾、pH值、阳离子交换量和碳酸钙质量分数。结果表明,沿线土壤有机质和全氮质量分数,由北至南均表现出逐渐增高的趋势,并与植被类型密切相关,土壤有机质质量分数多在10.0~40.0 g/kg之间,全氮则多介于0.4~2.0 g/kg之间。线性模型拟合结果表明:有机质和全氮呈明显的线性相关;全磷质量分数多在0.3~0.8 g/kg之间,由北至南呈“两端高,中间低”变化趋势;全钾质量分数多介于13.0~30.0 g/kg,由北至南增高趋势明显;土壤pH值则表现为“北高南低”;沿线阳离子交换量多在6.0~24.0 cmol(+)/kg之间;碳酸钙质量分数呈现“南北迥异”的变化规律,北部样带多在8.0% ~15.0%之间,南部样带则多只有1.0% ~3.0%,这与土壤钙积作用密切相关。综上所述,沿线土壤各理化指标表现出不同的变化规律,部分指标与植被类型存在一定的相关性。

关键词:青藏工程走廊;土壤理化特征;植被类型;样带

项目名称:林业公益性行业科研专项经费项目“青藏铁路沿线沙害综合防治技术研发与示范”(201504401);国家自然科学基金“青藏铁路沿线外来植物空间扩散机理模型研究”(30870231)

自从20世纪50年代青藏公路建成以来,公路沿线区域又先后建设完成兰西拉光缆、110输变线、格拉输油管道、青藏铁路以及其他的一些线性工程;沿线北起格尔木市,南到拉萨市,形成一条长约1 120 km的带状走廊,被称为“青藏工程走廊”[1]。沿线为开展青藏高原生态学研究,提供了非常便利的条件,作为宝贵的“条形样带”,具有重要的生态学研究价值。

青藏工程走廊地带植被、土壤受自然气候及人为干扰等因素影响,由北至南存在一定程度的植被、土地退化现象,比如“黑土滩”、土地沙化和荒漠化等[2 6],只有系统掌握沿线的土壤理化特征,才能制定科学合理的植被恢复策略;因而,笔者对沿线不同植被类型带进行系统研究,共计调查样带27条,分析了土壤有机质、全氮、全磷、全钾、pH值、阳离子交换量和碳酸钙等理化指标,分析总结沿线土壤典型理化特征的变化规律,以期为沿线自然植被的保护和恢复提供一定的理论依据。

1 研究区概况

青藏工程走廊除格尔木至南山口属于柴达木盆地南缘外,其余地段均属于青藏高原。其中,走廊北端南山口到西大滩和南端羊八井、再到拉萨段,均为坡降较大的河谷地形,中部地段昆仑山至羊八井段,总体上呈现为高准平原地貌,地形开阔、平坦[7]。沿线土壤类型自北向南,依次为柴达木冻漠土、高寒草原土、高寒草甸土以及拉萨附近的阿嘎土、寒毡土等,生长的植被类型依次为荒漠植被、高寒草原、高寒草甸、沼泽草甸以及灌丛草原等。

2 研究方法

研究地点为青藏工程走廊沿线区域,自南山口至拉萨段,每间隔一定距离,设置一条样带,共设置样带27条,具体情况见表1。每条样带调查20 m× 20 m样地数量为8个,在各样地内,按0~20 cm和20~40 cm的土层,随机各取土样5次,分别混合后各做为一个土样。在土壤调查的同时,采用样方法调查各样地的植物群落特征、各样带位置分布及植被特征(见表1)。测定的土壤理化指标包括土壤有机质、全氮、全磷、全钾、pH值、阳离子交换量和碳酸钙等指标。各土壤理化指标分析方法,主要采用经典的土壤农业化学分析方法[8 9]。

3 结果分析

3.1土壤有机质质量分数变化特征

对比分析沿线不同植被类型带的土壤有机质质量分数特征,由图1可知,沿线土壤有机质质量分数,由北至南呈逐渐增高的趋势,沿线土壤有机质质量分数多介于10.0~40.0 g/kg。

表1 沿线各样带位置及植被类型Tab.1 Location and vegetation types of each transect along Qinghai-Tibet Engineering Corridor(QTEC)

沿线表层土壤(0~20 cm,下同)有机质质量分数对比分析表明,扎加藏布以北各高山草原、草甸样带,表层土壤有机质质量分数多在10.0~30.0 g/kg之间。其中:五道梁、开心岭样带均为高山嵩草草甸,其质量分数相对较高,而青海境内其他以高寒草原植被为主的样带,质量分数则相对较低;最北端南山口、纳赤台荒漠样带则更低,均在5.0 g/kg以下。南部扎加藏布至拉萨之间样带,其质量分数在20.0~40.0 g/kg之间,明显高于北部青海境内各样带。沿各样带下层土壤(20~40 cm,下同)有机质质量分数多小于表层的质量分数,其多变动在10.0~30.0 g/kg之间。南部西藏境内,各样带表层与下层土壤有机质质量分数差异更为明显。

3.2土壤全氮质量分数变化特征

沿线表层土壤全氮质量分数,由北至南呈逐渐增高的趋势(图2),其质量分数多数介于0.4~2.0 g/kg。北段多数样带,其质量分数在1.0 g/kg以下;而安多以南地区,则多在1.0~2.0 g/kg之间。其中,扎加藏布样带土壤全氮质量分数较低,只有0.3~0.4 g/kg,该样带为海拔接近5 000 m的高山草原,土壤较为贫瘠,因而,土壤氮素质量分数较低。

图1 沿线不同植被类型带土壤有机质质量分数Fig.1 Content of soil organic matter in different vegetation types along QTEC

图2 沿线不同植被类型带土壤全氮质量分数Fig.2 Content of total nitrogen in the soil of different vegetation types along QTEC

由对比图1和图2可知,沿线土壤有机质质量分数与全氮质量分数动态变化规律非常相似;因而,沿线土壤全氮质量分数与植被类型相关性也比较高,即高山嵩草草甸样带土壤全氮质量分数较高,而高山草原样带质量分数则相对较低,荒漠样带质量分数则更低。同有机质质量分数类似,沿线表层土壤全氮质量分数多数大于下层。相关分析(图3)表明,沿线土壤有机质和全氮质量分数呈明显的线性相关,可用如下线性模型拟合: 1)y=0.031x+0.133,R2=0.827;2)y=0.035x,R2=0.802。

3.3土壤全磷质量分数变化特征

我国土壤全磷质量分数变动在0.17~1.1 g/kg之间,最高可达1.8 g/kg[10],当土壤全磷质量分数低于0.3 g/kg时,土壤往往缺磷。从图4可知,沿线表层和下层土壤全磷质量分数在0.3~0.8 g/kg之间,多数样带处于0.3~0.6 g/kg之间,处于全国土壤磷素质量分数的中低水平。随着高寒草场退化面积的急剧增加,以及磷素在生产中表现出显著提高草地生产力、延缓退化过程的独特作用,人们开始认识到磷素贫乏,是限制高寒草甸生产力的重要因子[11 16]。

图3 沿线不同植被类型带土壤全氮质量分数与有机质质量分数相关性分析Fig.3 Correlation analysis between the content of soil total nitrogen and the content of organic matter at different vegetation types along QTEC

此外,土壤全磷质量分数与有机质、全氮质量分数变化规律有所不同,沿线由北至南呈现“两端高,中间低”的变化规律,即北端荒漠样带和南端西藏乌玛塘以南各样带质量分数,要明显高于中间不冻泉至乌玛塘之间的样带。“两端”样带质量分数多在0.5~0.8 g/kg之间,而“中间”样带则多在0.3~0.5 g/kg之间。另外,沿线土壤表层和下层全磷质量分数多数比较接近。

图4 沿线不同植被类型带土壤全磷质量分数Fig.4 Content of total phosphorus in the soil of different vegetation types along QTEC

3.4土壤全钾质量分数变化特征

土壤钾素全部以无机形态存在,而且其数量远远高于氮磷。由图5可知:沿线那曲以北样带,土壤全钾质量分数多在13.0~22.0 g/kg之间,而那曲以南各样带质量分数则多介于22.0~30.0 g/ kg;由北至南,沿线土壤全钾质量分数呈现非常明显的增高趋势。与全磷质量分数类似,各样带表层土壤和下层全钾质量分数也多比较接近。有关学者对青海、西藏部分地区进行抽样调查,结果显示,区域土壤全钾质量分数介于17.7~27.5 g/kg之间,属全钾比较丰富的区域[16 18]。青藏地区土壤全钾含量丰富,主要是由于母质中钾素含量丰富所致;另外,与土壤有机质积累和碳酸钙质量分数也存在一定的关系。

图5 沿线不同植被类型带土壤全钾质量分数Fig.5 Content of total potassium in the soil of different vegetation types along QTEC

3.5土壤pH值变化特征

沿线土壤pH值多为青海境内样带高于西藏境内样带(图6),其中,南山口、纳赤台、西大滩样带pH值在7.2~7.8之间。而自不冻泉至嘎恰之间各样带土壤pH值在7.8~8.6之间,而嘎恰以南各样带土壤 pH值多在7.0~8.0之间,只有宁中样带(沼泽草甸)pH值偏高,为8.6。青海境内各样带土壤pH值偏高,与该地区土壤碳酸钙质量分数较高有关系。

万运帆等对那曲地区土壤分析表明,该地区土壤pH值多在7.5~8.3之间[19]。青海沙珠玉地区的研究结果表明,土壤 pH值在8.5~9.0之间[20]。这些研究结果与本研究比较接近。

3.6土壤阳离子交换量变化特征

沿线各样带土壤阳离子交换量在6.0~24.0 cmol(+)/kg之间(图7),表层土壤阳离子交换量多变动在10.0~15.0 cmol(+)/kg之间,下层土壤的变化波动幅度要大一些。各样带下层土壤阳离子交换量与表层多比较接近。有关研究认为,高寒草原带的土壤阳离交换量与土壤有机质密切相关[20];本文大尺度范围内的研究结果,并未显示出明显的相关性。

图6 沿线不同植被类型带土壤pH值Fig.6 pH value of soil in different vegetation types along QTEC

图7 沿线不同植被类型带土壤阳离子交换量Fig.7 Exchange capacity of soil cation in different vegetation types along QTEC

3.7土壤碳酸钙质量分数变化特征

沿线由北至南,土壤碳酸钙质量分数呈现非常有规律的变化(图8);北部南山口至扎加藏布之间各样带,其质量分数多在8.0% ~15.0%之间,而安多以南各样带质量分数多数只有1.0%左右,宁中和拉萨东嘎样带略高,也只有2.0%左右。西藏那曲以北多数样带,下层土壤碳酸钙质量分数高于表层,而那曲以南各样带上下层质量分数则差异不明显。沿线北部土壤碳酸钙质量分数较高,一方面与母质有一定关系,另一方面主要受土壤钙积作用的影响。

4 结论与讨论

1)沿线土壤有机质和全氮质量分数,由北至南呈逐渐增高趋势;土壤有机质质量分数多在10.0~40.0 g/kg范围内变动,全氮质量分数则多介于0.4~2.0 g/kg,沿线土壤有机质和全氮质量分数,均与沿线植被类型密切相关,线性模型拟合表明,两者呈现明显的线性相关。

图8 沿线不同植被类型带土壤碳酸钙质量分数Fig.8 Content of soil calcium carbonate in different vegetation types along QTEC

2)沿线土壤全磷质量分数,由北至南呈“两端高,中间低”的变化趋势,质量分数在0.3~0.8 g/kg之间。沿线土壤全钾质量分数,由北至南呈现非常明显的增高趋势,质量分数多在13.0~30.0 g/kg之间。各样带土壤上下两层全磷、全钾质量分数多比较接近。

3)沿线土壤 pH值,多为北部青海境内各样带高于南端西藏境内各样带。沿线各样带土壤阳离子交换量在6.0~24.0 cmol(+)/kg之间。沿线土壤碳酸钙质量分数,由北至南呈现“南北迥异”的特点。西藏那曲以北多数样带,下层土壤碳酸钙质量分数明显要高于表层,而那曲以南各样带,上下层质量分数则差异不明显。

综上所述,沿线各样带土壤典型理化特征表现出非常有规律的变化,今后应及时开展沿线土壤理化特征的长期动态监测研究,为制定区域生态环境保护对策,提供理论依据[21 23]。

5 参考文献

[1]Jin Huijun,Yu Qihao,Wang Shaoling,et al.Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming[J].Cold Regions Science and Technology,2008,53(3):317.

[2]赵会林,鲁新蕊,樊祥船.西藏地区水土流失现状及防治对策[J].中国水土保持科学,2012,10(3):120.Zhao Huilin,Lu Xinrui,Fan Xiangchuan.Current situation of soil erosion and its counter measures in Tibet[J].Science of Soil and Water Conservation,2012,10(3): 120.(in Chinese)

[3]Ren Guohua,Shang Zhanhuan,Long Ruijun,et al.The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai-Tibetan Plateau,China[J].Environmental Earth Sciences,2013,69(1):235.

[4]胡宜刚,李睿,辛玉琴,等.青藏铁路植被恢复和“黑土型”退化草地治理的实践与启示[J].草业科学,2015,32(9):1413.Hu Yigang,Li Rui,Xin Yuqin,et al.Management and restoration of degradation vegetation on the Tibetan Plateau[J].Pratacultural Science,2015,32(9):1413.(in Chinese)

[5]谢胜波,屈建军,刘冰,等.青藏铁路沙害及其防治研究进展[J].中国沙漠,2014,34(1):42.Xie Shengbo,Qu Jianjun,Liu Bing,et al.Advances in research on the sand hazards and its controls along the Qinghai-Tibet Railway[J].Journal of Desert Research,2014,34(1):42.(in Chinese)

[6]Shang Zhanhuan,Long Ruijun.Formation causes and recovery of the“Black Soil Type”degraded alpine grassland in Qinghai-Tibetan Plateau[J].Frontiers of Agriculture in China,2007,1(2):197.

[7]沈渭寿,张慧,邹长新,等.青藏铁路建设对沿线高寒生态系统的影响及恢复预测方法研究[J].科学通报,2004,49(9):909.Shen Weishou,Zhang Hui,Zou Changxin,et al.Ecological impact of Qinghai-Tibet railway to the alpine ecosystem and the prediction method of ecosystem restoration [J].Chinese Science Bulletin,2004,49(9):909.(in Chinese)

[8]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:149 190.Lu Rukun.Analytical methods of soil and agricultural chemistry[M].Beijing:China Agricultural Science and Technology Press,2000:149 190.(in Chinese)

[9]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学出版社,1978:62 72.Institute of Soil Sciences,Chinese Academy of Sciences.Soil physical and chemical analysis[M].Shanghai: Shanghai Science and Technology Press,1978:6272.(in Chinese)

[10]张慎举,卓开荣.土壤肥料[M].北京:化学工业出版社,2009:138 142.Zhang Shenju,Zhuo Kairong.Soil and fertilizer[M].Beijing:Chemical Industry Press,2009:138 142.(in Chinese)

[11]曹广民,张金霞,鲍新奎,等.高寒草甸生态系统磷素循环[J].生态学报,1999,19(4):514.Cao Guangmin,Zhang Jinxia,Bao Xinkui,et al.The phosphorus cycling in an alpine meadow ecosystem[J].Acta Ecologica Sinica,1999,19(4):514.(in Chinese)

[12]张小川,蔡蔚祺,徐琪,等.草原生态系统土壤 植物组分中氮磷钾钙镁的循环[J].土壤学报,1990,27 (2):140.Zhang Xiaochuan,Cai Weiqi,Xu Qi,et al.Cycling of nitrogen,phosphorus,potassium,calcium and magnesium in grassland soil-vegetation systems[J].Acta Pedologica Sinica,1990,27(2):140.(in Chinese)

[13]谭鑫,张宏.我国高寒草甸土壤磷素研究进展[J].草业与畜牧,2009(3):1.Tan Xin,Zhang Hong.Perspectives on the soil phosphorus of alpine meadow in China[J].Prataculture&Animal Husbandry,2009(3):1.(in Chinese)

[14]傅林谦.草原生态系统磷素循环的研究[J].植物学通报,1993,10(4):27.Fu Linqian.Studies on the phosphorus cycling in grassland ecosystem[J].Chinese Bulletin of Botany,1993,10(4):27.(in Chinese)

[15]王长庭,龙瑞军,王启基,等.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J].草业学报,2005,14(4):15.Wang Changting,Long Ruijun,Wang Qiji,et al.Distribution of organic matter、nitrogen and phosphorus along an altitude gradient and productivity change and their relationships with environmental factors in the Alpine meadow[J].Acta Prataculturae Sinica,2005,14 (4):15.(in Chinese)

[16]刘世全,高丽丽,蒲玉琳,等.西藏土壤磷素和钾素养分状况及其影响因素[J].水土保持学报,2005,19 (1):75.Liu Shiquan,Gao Lili,Pu Yulin,et al.Status of soil P and K nutrient and their influencing factors in Tibet[J].Journal of Soil and Water Conservation,2005,19(1): 75.(in Chinese)

[17]高丽丽,刘世全,张世熔.西藏土壤钾素状况及其影响因素分析[J].四川农业大学学报,2004,22(2): 165.Gao Lili,Liu Shiquan,Zhang Shirong.Status of soil potassium and its affecting factors in Tibet[J].Journal of Sichuan Agricultural University,2004,22(2):165.(in Chinese)

[18]庞宁菊,洪世奇.青海耕作土壤不同形态钾素储量及其影响因素[J].青海农林科技,1997,27(2):9.Pang Ningju,Hong Shiqi.The content of different potassium forms in plough layer of Qinghai province[J].Science and Technology of Qinghai Agriculture and Forestry,1997,27(2):9.(in Chinese)

[19]万运帆,高清竹,林而达,等.西藏那曲地区草地植被及土壤养分状况调查[J].草业科学,2006,23(5):7.Wan Yunfan,Gao Qingzhu,Lin Erda,et al.Investigation of grassland growth and soil nutrient situation in Naqu prefecture of Tibet[J].Pratacultural Science,2006,23(5):7.(in Chinese)

[20]齐雁冰,常庆瑞,魏欣.高寒地区人工植被恢复对风沙土区土壤理化性状的影响[J].农业工程科学,2005,21(8):404.Qi Yanbing,Chang Qingrui,Wei Xin.Effect of artificial vegetation restoration on sandy soil characteristics in high frigid regions of China[J].Chinese Agricultural Science Bulletin,2005,21(8):404.(in Chinese)

[21]周金星,董林水,张旭东,等.青藏铁路唐古拉山南段沿线植被多样性及盖度特征分析[J].北京林业大学学报,2008:30(3):24.Zhou Jinxing,Dong Linshui,Zhang Xudong,et al.An analysis of vegetation cover and species diversity of roadsidevegetationinsouthernsectionofTanggula Mountains along the Qinghai-Tibet Railway[J].Journal of Beijing Forestry University,2008:30(3):24.(in Chinese)

[22]周金星,易作明,李冬雪,等.青藏铁路沿线原生植被多样性分布格局研究[J].水土保持学报,2007,21 (3):173.Zhou Jinxing,Yi Zuoming,Li Dongxue,et al.Distribution patterns of species diversity of natural vegetation along Qinghai-Tibetan railway[J].Journal of Soil and Water Conservation,2007,21(3):173.(in Chinese)

[23]董林水,张旭东,周金星,等.青藏铁路沿线北段植被物种丰富度及盖度的动态变化[J].长江流域资源与环境,2008,17(4):551.Dong Linshui,Zhang Xudong,Zhou Jinxing,et al.Species richness and vegetation coverage of transects along the Qinghai-Tibet railway in the Tibet plateau[J].Resources and Environment in the Yangtze Basin,2008,17(4):551.(in Chinese)

Soil physicochemical characteristics of different vegetation types along Qinghai-Tibet Engineering Corridor

Dong Linshui1,Song Aiyun1,Zhou Jinxing2,Jiang Xingui3
(1.Key Laboratory of Eco-environmental Science for Yellow River Delta,Shandong Province,Binzhou University,256603,Binzhou,Shandong,China; 2.School of Soil and Water Conservation,Beijing Forestry University,Key Laboratory of Soil and Water Conservation&Desertification Combating,Ministry of Education,100083,Beijing,China;3.Institute of Desertification Studies,Chinese Academy of Forestry,100091,Beijing,China)

Abstract:[Background]It is necessary to analyze the soil physicochemical characteristics along the Qinghai-Tibet EngineeringCorridor(QTEC)for formulatingscientificandreasonablevegetation restoration measures.[Methods]Soil physicochemical characteristics of different vegetation types along QTEC were surveyed.Altogether 27 transects were set up,8 plots of 20 m×20 m were selected in each transect,randomly sampling 5 times in the soil layer of 0-20 cm and 20-40 cm of each plot,then 5 samples were mixed into 1 soil sample.The soil sample in each transect was tested,the detection indexes of soil samples including the contents of soil organic matter,total nitrogen,total phosphorus,total potassium,pH value,cation exchange capacity,and calcium carbonate content were analyzed.Also the vegetation types,community structure of each transect were investigated.[Results]The results showedthat the contents of soil organic matter and total nitrogen increased gradually from north to south along QTEC,and were closely correlated to vegetation types.The content of soil organic matter changed in the range of 10.0-40.0 g/kg.And the content of total nitrogen distributed within the scope of 0.4-2.0 g/ kg.The contents of soil organic matter and total nitrogen presented a significantly linear correlation with each other.The content of soil total phosphorus mostly was in the range of 0.3-0.8 g/kg.From north to south,there was significant uptrend of the soil total potassium content along QTEC,the total potassium of the transects in south of Nagqu mostly was among 22.0-30.0 g/kg,however,the value in the north transects of Nagqu was in the range of 13.0-22.0 g/kg.The soil pH value of the transects in the northern part of QTEC were mostly higher than the transects in the southern part.The soil cation exchange capacity of the transects along QTEC was in the range of 6.0-24.0 cmol(+)/kg.The content of soil calcium carbonate mostly was among 8.0% -15.0%,but the southern part from Gaqia to Lhasa mostly was only in the range of 1.0% -3.0%,this obvious distinction was mainly concerned with the soil calcium deposition.[Conclusions]In summary,there were very regular dynamic change discipline of soil chemical characteristics along the QTEC.The result showed that some soil indexes were closely correlated to vegetation types,such as organic matter,total nitrogen,et al,while other indexes had no obvious correlation with the vegetation types like exchange capacity of soil cation.In the future,the dynamic monitoring of soil physical and chemical characteristics should be further proceeded.

Keywords:Qinghai-Tibet Engineering Corridor;soil physicochemical characteristics;vegetation type; transect

中图分类号:S151.9

文献标志码:A

文章编号:1672-3007(2016)03-0109-07

DOI:10.16843/j.sswc.2016.03.014

收稿日期:2015 12 03修回日期:2016 03 25

第一作者简介:董林水(1976—),男,博士,副教授。主要研究方向:植物生态学。E-mail:donglinshui@163.com

通信作者†简介:周金星(1972—),男,博士,教授。主要研究方向:水土保持与荒漠化防治,石漠化治理及生态修复工程。E-mail:zjx9277@126.com