级联式天然气液化过程的分析

2016-10-20 07:32王敏娟何冷徐亦飞
北京石油化工学院学报 2016年3期
关键词:节流阀冷量丙烷

王敏娟,何冷,徐亦飞,3

(1.陕西液化天然气投资发展有限责任公司, 陕西 杨凌 710016;2.浙江大学计算机科学与技术学院,浙江 杭州 310008;3.密歇根州立大学生物信息与农业工程学院,美国密歇根州 48824-13323)



王敏娟1,何冷2,徐亦飞2,3

(1.陕西液化天然气投资发展有限责任公司, 陕西 杨凌 710016;2.浙江大学计算机科学与技术学院,浙江 杭州 310008;3.密歇根州立大学生物信息与农业工程学院,美国密歇根州 48824-13323)

液化天然气(Liquefied Natural Gas, LNG)是天然气的一种贮运方式。近几年液化天然气产业随着环境清洁能源需求的逐步增长而发展迅速[1,2]。LNG使天然气能实现远洋运输,把天然气加工成LNG能有效回收边远天然气。在LNG产业中,级联液化流程因其能耗低、配比简单、技术成熟等优点逐步在行业中应用广泛[3,4]。

1 级联式冷却循环流程

级联式冷却循环流程是利用冷剂常压下沸点不同,逐级降低制冷温度达到天然气液化的目的[5-6],如图1所示。级联式冷却循环流程通常由三级独立的制冷循环组成,制冷剂分别为丙烷、乙烯、甲烷。第1级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第2级乙烯制冷循环为天然气和甲烷提供冷量;第3级甲烷制冷循环为天然气提供冷量;级联循环有4个压缩器、3个蒸发器、4个节流阀和3个冷凝器,通过三级冷却,天然气的温度逐步降低,直至液化。

原料气(40 ℃,400 kPa)经过净化后,使用17 ℃循环水进行预冷却,然后进入E1丙烷换热器(-42 ℃)中冷却。在C1中,由E1蒸发出来的丙烷气体加压到1 000 kPa。丙烷通过冷却,经由节流阀减压到100 kPa,最后返回到E1,至此,丙烷循环完成。经过E1,天然气降温到-37.5 ℃和400 kPa,继而送入E2换热器冷却到-100 ℃。E2蒸发出来的乙烯气体加压到10 ℃,经过E1冷却,并返回到E2,至此,乙烯循环完成。经过E2,天然气冷却到-100 ℃,然后送入E3换热器直接冷却到-162 ℃,通过节流阀降压到100 kPa,输送到LNG存储罐。E3蒸发出来的甲烷气体经过C3增压,在E1中冷却,在E2中液化,回到E3,由此进行循环。

2 火用分析模型

2.1热力学模型

在一个典型的冷却系统性能分析中,性能系数(The cofficient of performance, COP)是一项重要的性能指标[7]。该系数描述了产生一定量冷负荷所必需的输入电源的信息。从热力学第一定律可以得出,COP可以定义为冷负荷与级联冷却循环的电源输入的比率:

(1)

(2)

(3)

(4)

(5)

(6)

表1 级联制冷系统中各个组件的损率、EPC以及效率

(7)

3 结果与分析

表2 制冷剂的热物性

表3 级联冷却循环中各个节点的仿真结果

表4 级联制冷循环中各个组件的性能结果

表5 级联制冷系统中各个循环的热力学和性能结果

4 结论

[1]李静,李志红,华贲.LNG冷能利用现状及发展前景[J].天然气工业,2005,25(5):103-105.

[2]Ji C, Liu X Y, Xu X Y, et al. A Review of LNG Applied and Security[C] Researches; Trans Tech Publ proceedings of the Advanced Materials Research, 2014.

[3]MA M, YU J, WANG X. Performance evaluation and optimal configuration analysis of a CO2/NH3cascade refrigeration system with falling film evaporator-condenser[J]. Energy Conversion and Management, 2014,79(2):24-31.

[4]杨文,曹学文,孙丽,等.天然气液化技术研究现状及进展[J].天然气化工:C1化学与化工,2015,40(3):88-93.

[5]Pereira, Clementino, Domingos Lequisiga. Technical evaluation of C3-MR and cascade cycle on natural gas liquefaction process[J]. International Journal of Chemical Engineering and Applications, 2014,5(6):451-459.

[6]Kikkawa, Yoshitugi, Moritaka Nakamura, et al. Development of liquefaction process for natural gas[J]. Journal of Chemical Engineering of Japan, 1997,30(4):625-630.

[7]Chang, Ho-Myung, et al. An efficient multi-stage Brayton-JT cycle for liquefaction of natural gas[J]. Cryogenics, 2011,51(6):278-286.

[8]Morosuk T, Tsatsaronis G, Schult M. Conventional and advanced exergetic analyses: theory and application[J]. Arabian Journal for Science and Engineering, 2013,38(2):395-404.

[9]贺红明,林文胜.基于LNG冷能的发电技术[J].低温与超导,2007,34(6):432-436.

[10]Ust Y, Akkaya A, Safa A. Analysis of a vapour compression refrigeration system via exergetic performance coefficient criterion[J]. Journal of the Energy Institute, 2011,84(2):66-72.

An Exergetic Analysis of Cascade Natural Gas Liquefaction Processes

WANG Ming-juan, HE Leng2, XU Yi-fei2,3

(1.Shaanxi Provincial Natural Gas co., ltd , Yangling 710016, China;2.College of Computer science, Zhejiang University, Hangzhou 310008,China;3.Department of Biosystems & Agricultural Engineering, Michigan State University, Michigan 48824-13323, USA.)

Liquefied Natural Gas (LNG) is the fastest growing energy carrier in the world dueto its low environmental impact, flexibility in the market and reserves capacity. In the present study, the cascade liquefaction process has achieved great concern because of its low energy consumption, the ratio of simple and mature technology. However, in the whole liquefaction process, some components still produce much energy assumption. Therefore, to reduce the energy consumption rate of natural gas liquefaction process, it is necessary to analyze its energy consumption of the entire cascade cooling process. Compared with the traditional the cofficient of performance (COP), exergetic analysis can find out the potenial section and maximum irreversibilities as much as possible. In this study, the principal aim is to investigate the theoretical performance of thenatural gas liquefaction process that was modeled based on the exergetic performance coefficient (EPC). Through simulation, results show thatno matter each component or the whole system, maximum irreversibilities occurred in propane cycle.

liquefied natural gas; exergetic analysis; cascade refrigeration cycle

2015-06-02

王敏娟(1990—),女,硕士研究生,主要从事液化天然气控制方面的科研工作,E-mail:jenymw@foxmail.com。

TE646

A

猜你喜欢
节流阀冷量丙烷
LW12-550型罐式断路器储气罐黄铜节流阀开裂原因分析
大导流面柱塞型节流阀冲蚀规律研究*
液化天然气冷量综合利用改造
南高丛蓝莓在柳州市近郊的引种试验
预热空气温度对丙烷无焰燃烧特性的影响
探析数据中心机房的冷通道技术
低温甲醇洗系统冷量优化研究及应用的探讨
井控节流阀冲蚀机理及结构优化
Schwan的家庭服务公司年底前部署600辆ROUSH清洁技术丙烷车
特种车辆驾驶室减振器节流阀片开度及阻尼特性研究