聚氨酯后处理对发泡水泥保温板性能的影响*

2016-12-09 02:49林益军王健雁唐爱东潘春跃
功能材料 2016年11期
关键词:水泥板泡孔吸水率

林益军,刘 萍,王健雁,唐爱东,潘春跃

(中南大学 化学化工学院,长沙 410083)



聚氨酯后处理对发泡水泥保温板性能的影响*

林益军,刘 萍,王健雁,唐爱东,潘春跃

(中南大学 化学化工学院,长沙 410083)

采用全水发泡填充和溶液浸泡两种后处理方式考察聚氨酯宏观结构对发泡水泥密度、孔形貌、吸水率、导热性能及强度的影响,并对其作用机制做了进一步探讨。研究发现,聚氨酯全水发泡填充使得发泡水泥容重下降,吸水率增加,抗压强度随着填充孔径减小而增大;经过聚氨酯溶液浸泡后的水泥发泡体系质量吸水率降低37.2%(质量分数),抗压强度提高364%,导热系数下降32.4%。

发泡水泥;聚氨酯;抗压强度;后处理

0 引 言

发泡水泥具有阻燃防火、抗震隔音、环保低价,与墙体粘结性好等优点,在建筑及装饰领域中已得到较广泛应用[1-4]。但普通发泡水泥导热系数偏高,强度低、脆性大[5],抗压、抗折、抗裂及防水性能差,为满足节能保温工程的要求,一般需要降低其脆性和吸水率,提高综合强度[6-8]。常规改性多以掺杂陶粒、聚丙烯纤维、聚乙烯纤维、耐碱玻璃纤维,以及木质纤维等为主[7, 9-12],而聚合物乳液虽能显著改善水泥制品的强度和耐久性[13-15],但对水泥水化有明显的延迟作用,若采用传统的物理共混方式,则在发泡过程中很容易阻碍水泥早期强度的提高,导致严重塌模[6, 16-17]。

本文通过对预制的发泡水泥板以全水发泡填充和溶液浸泡两种聚氨酯后处理工艺,分析其对疏水性及导热系数的影响,并对比了聚氨酯固化物形态差异对发泡水泥板的增强效果。

1 实验部分

1.1 主要原料及仪器

P·O·42.5硅酸盐水泥:比表面积350 m2/kg、密度3.10 g/cm3,化学成分见表1,湖南宁乡南方水泥厂;RSAC 525硫铝酸盐水泥:性能指标见表2,郑州市建文特材科技有限公司;硬脂酸钙:化学纯,CaO含量8.1%~9.8%,汕头市西陇化工厂;聚丙烯短切纤维:长度9 mm,湖南正德建材有限公司;Viscocrete 225P(聚羧酸减水剂):瑞士西卡天津公司;Wannate PM-200(多亚甲基多苯基多异氰酸酯):粘度150~250 cp、—NCO含量30.5%~32%、酸分≤0.05%,万华化学(宁波)容威聚氨酯有限公司;TMN450(聚醚多元醇):羟值440~460 mg KOH/g、粘度200~500 cp、酸值≤0.1 mg KOH/g、水分≤0.1%,天津石化第三厂;环戊烷、乙酸乙酯:化学纯,上海国药集团化学试剂有限公司;27.5%(质量分数)双氧水、甲酸钙及其它原材料均为市售。

万能试验机:DBSL-30t型,Transcell Technology Inc 产;导热系数仪:DRCD-3030型,天津美特斯试验机厂;金相显微镜:BX51WI 型,Olympus产。

表1 P·O·42.5硅酸盐水泥化学成分

表2 RSAC 525硫铝酸盐水泥物理指标

1.2 材料制备

1.2.1 发泡水泥板制备(Sample-0)

将两种水泥、甲酸钙、硬脂酸钙、减水剂、聚丙烯短切纤维和水等原料按一定配比计量,利用高速搅拌机(搅拌速率2 500 r/min)将其搅拌成均匀浆体,搅拌时间控制在80~100 s;然后在浆体中加入适量双氧水,继续搅拌5~10 s后,快速浇注到模具中静置发泡,48 h后脱模,室温养护28 d,最后于65 ℃烘箱中干燥至恒重待用。

1.2.2 全水发泡聚氨酯填充发泡水泥板的制备(Sample-1)

将干燥的发泡水泥板在表面依1.5 cm间距设置直径1.2 cm圆柱形开放孔,孔洞贯穿水泥板的上下表面,而后将PM-200、TMN450、H2O、环戊烷混合均匀的溶液迅速灌注至圆柱形孔洞中,数分钟后聚氨酯溶液即开始起泡膨胀,缓慢填满整个孔腔。

1.2.3 聚氨酯溶液浸泡发泡水泥板的制备(Sample-2)

将PM-200、TMN450、T-12、乙酸乙酯配制成均一溶液,在-0.1 MPa真空度下将干燥后的发泡水泥板完全浸没于该溶液中,30 min后取出置于60 ℃真空干燥箱中隔绝水汽使聚氨酯固化成膜。

1.3 性能测试

试样泡孔形貌利用金相显微镜观察,抗压强度、干密度及吸水率按《无机硬质绝热制品试验方法》(GB/T 5486-2008)测试,试样尺寸100 mm×100 mm×50 mm;导热系数参照《绝热材料稳态热阻及有关特性的测定 防护热板法》(GB/T 10294-2008)标准测定,试样尺寸300 mm×300 mm×50 mm,每组数据取3个测试样的平均值。

2 结果与讨论

2.1 聚氨酯固化与全水发泡

PM-200与TMN450的混合液渗透进入水泥泡孔后,在催化剂作用下,受热固化生成聚氨酯,并紧密粘附在水泥泡孔表面形成致密的韧性防水膜,使得水滴在其上可呈现出近似半圆球状(图1(a)及图2(c));当体系中有水分子存在时,异氰酸酯可与多元醇及水发生加聚反应,同时释放出CO2气体,对生成的聚氨基甲酸酯与聚脲进行发泡,从而使聚合产物成为疏松多孔结构(图1(b)及图2(b))。全水发泡聚氨酯孔隙率高、密度小、导热系数低,目前已广泛应用于汽车、建筑、设备制冷、工业保温等诸多领域[18-20]。

图1 聚氨酯固化与全水发泡机理

Fig 1 Curing and water-blown mechanism of polyurethane

2.2 聚氨酯后处理对发泡水泥密度及外观形貌的影响

发泡水泥由于具有多孔结构,容重一般仅为传统水泥制品的10%(质量分数)左右。未处理前试样干密度为226 kg/m3,泡孔均匀规整,截面呈圆形,泡径约2 mm(图2(a)及表3)。

图2 聚氨酯后处理发泡水泥泡孔形貌

Fig 2 Morphology of foam cement cell proceed by polyurethane

经全水发泡聚氨酯填充后,相对较轻的聚氨酯泡占据了孔洞位置,使得发泡水泥板的密度降至206 kg/m3。有趣的是,在孔洞内壁与发泡水泥的结合部位,因为空间限制,聚氨酯发泡受阻,出现了厚约0.5~1 mm的未发泡聚氨酯界面层,此界面层结构密实,压缩强度高(图2(b)及图4)。而以聚氨酯溶液浸泡的水泥板泡孔表面均被致密的聚氨酯固化膜包覆,密度增重至305 kg/m3(图2(c)、表3)。

2.3 聚氨酯后处理对发泡水泥板导热及吸水率的影响

聚氨酯导热系数仅为0.017~0.023 W/(m·K)[18,21-22],远小于水泥(0.30 W/(m·K))[23]及发泡水泥制品(0.06 W/(m·K))[24],甚至低于干燥的空气(0.024 W/(m·K))[25],因而常作为绝热材料在保温隔热行业应用广泛。从表3可知,经过聚氨酯全水发泡填充和溶液浸泡处理后的发泡水泥板导热系数分别为0.0433、0.0402 W/(m·K),较改性前各降低了27.2%和32.4%,且后者下降更为明显,这主要是由于固化形成的聚氨酯膜包裹在水泥泡孔的表面,封闭了孔道,减少了空气对流传热。聚氨酯经全水发泡后结构疏松多孔,孔隙率高于发泡水泥,因而吸水率较处理前有所增加,分别达到48.6%(质量分数)、10%(体积分数);但未发泡的聚氨酯固化膜结构致密,水分子难以渗入,可在水泥泡孔表面形成防水层,使得质量吸水率仅为改性前的62.8%。

表3 聚氨酯后处理发泡水泥板综合性能

2.4 聚氨酯后处理对发泡水泥板抗压性能的影响

如表3所示,未改性发泡水泥板抗压强度仅为0.343 MPa,经聚氨酯溶液浸泡后,抗压性能显著上升至1.59 MPa,提高了364%(表3、图3),这是因为紧密粘附在水泥泡孔表面的聚氨酯分子链拥有良好的韧性和强度,对发泡水泥基体起到了明显增强。全水发泡聚氨酯泡沫由于宏观形态的疏松多孔性,其强度远低于未发泡聚氨酯,抗压一般不超过200 kPa[18,20,26],因而经其处理后的水泥板强度略有下降,为0.32 MPa。

图3 聚氨酯溶液浸泡发泡水泥板抗压性能

Fig 3 Compressive strength of polyurethane-sinked foam cement board

图4 全水发泡聚氨酯改性发泡水泥板增强模型(截面)

Fig 4 Reinforcement model of foam cement board filled with rigid polyurethane foam(Cross section)

为进一步比较全水发泡聚氨酯填充尺寸对发泡水泥板抗压性能的影响,我们将水泥板表面人为开孔的直径缩小至0.6 cm。实验发现,在聚氨酯泡沫所占发泡水泥的总体积率一定时,导热系数及吸水率基本维持不变,但抗压强度提高至0.476 MPa,涨幅达38.8%。这主要是由于开孔直径越小,空腔内壁处未发泡聚氨酯界面层(图4)所占比例越大,从而对水泥板的增强效果也相对突出。

3 结 论

全水发泡填充和溶液浸泡两种聚氨酯后处理途径对发泡水泥的综合性能存在较大影响。结果表明:

(1) 经聚氨酯溶液浸泡后固化形成的致密韧性膜能够紧密粘附在水泥泡孔的表面,大幅提升水泥板的疏水、保温和抗压性能,其中抗压强度提高了364%,导热系数下降32.4%。

(2) 全水发泡聚氨酯因其形态的疏松多孔性,可有效降低发泡水泥板的密度,对抗压强度的影响则取决于聚氨酯泡沫的填充尺寸,当填充直径为0.6 cm时,改性水泥板强度增长38.8%。

[1] Ramamurthy K, Kunhanandan Nambiar E K, Indu Siva Ranjani G. A classification of studies on properties of foam concrete[J]. Cement & Concrete Composites, 2009,(31):388-396.

[2] Mounanga P, Gbongbon W, Poullain P, et al. Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes[J]. Cement & Concrete Composites, 2008,(30):806-814.

[3] Sayadi Ali A, Tapia J V, Thomas R Neitzert, et al. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete[J]. Construction and Building Materials, 2016,(112):716-724.

[4] Mugahed Amran Y H, Farzadnia Nima, Abang Ali A A. Properties and applications of foamed concrete; a review[J]. Construction and Building Materials, 2015,(101):990-1005.

[5] Xiao Liguang, Liu Gang. The development situation of polymer cement concret[J]. Journal of Jilin Institute of Architecture and Civil Engineerin, 2015, 5(29):7-11.

[6] Xiao Liguang, Liu Gang. The development situation of polymer cement concrete[J]. Journal of Jilin Institute of Architecture and Civil Engineering, 2012, 5(29):7-11.

[7] Dawood E T, Hamad Ali J. Toughness behaviour of high-performance lightweight foamed concrete reinforced with hybrid fibres[J]. Structural concrete, 2015,16(4):496-507.

[8] Bing C, Zhen W, Ning L. Experimental research on properties of high-strength foamed concrete[J]. J Mater Civ Eng, 2011, 24(1):113-118.

[9] Nambiar E K, Ramamurthy K. Influence of filler type on the properties of foam concrete[J]. Cem Concr Compos, 2006, 28(5):475-480.

[10] Panesar D K. Cellular concrete properties and the effect of synthetic and protein foaming agents[J]. Constr Build Mater, 2013, 44(1):575-584.

[11] Akil H, Omar M F, Mazuki A A M, et al. Fiber reinforced composites: a review[J]. Mater Des, 2011, 32(8):4107-4121.

[12] Arvind K. Suryavanshi R, Narayan Swamy. Development of lightweight mixes using ceramic microspheres as fillers[J]. Cement and Concrete Research, 2002,(32):1783-1789.

[13] Ohama Y. Handbook of polymer-modified concrete and mortars[M]. New Jersey: Noyes Publications, 1995:22-45.

[14] Barluenga G, Hemandez F. SBR latex modified mortar rheology and mechanical behavior[J]. Cement and Concrete Research, 2004,(34):527-535.

[15] Bala M, Mohammd I, Ussuf A A, et al. Elastomeric influence of naturnal rubber latex on cement mortar at high temperature using thermal degradation analsis[J]. Constr Build Mater, 2010,(25):7-22.

[16] Wang Luming, Wang Fei. Experiment and research on promoting the setting and hardening of foam concrete[J]. Journal of Functional Materials, 2015,(46):84-87.

王路明, 王 非. 促进水泥泡沫混凝土凝结硬化的试验与研究[J]. 功能材料, 2015,(46):84-87.

[17] Li Zhulong, Liang Naixing. Influence of SBR polymer on cement hydration and hardening[J]. Journal of Building Materials, 1999, 1(2):6-10.

[18] Agne Kairyte, Sigitas Vejelis. Evaluation of forming mixture composition impact on properties of waterblown rigid polyurethane (PUR) foam from rapeseed oil polyol[J]. Industrial Crops and Products, 2015, 66:210-215.

[19] Zhai Tianliang, Li Dongxu, Fei Guoxia, et al. Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam[J]. Composites: Part A, 2015, 72:108-114.

[20] Verdolotti L, Maio E Di, Lavorgna M, et al. Polyurethane-cement-based foams: characterization and potential uses[J]. Journal of Applied Polymer Science, 2008, 107:1-8.

[21] Beltrán A A, Boyacá L A. Production of rigid polyurethane foams from soy-based polyols[J]. Lat Am Appl Res, 2011, 41:75-80.

[22] Yang C, Zhuang Z H, Yang Z G. Pulverized polyurethane foam particles reinforced rigid polyurethane foam and phenolic foam[J]. J Appl Sci, 2013, 131(1):1-7.

[23] Juergen Blumm. Thermal conductivity of engineering materials[M]. Handbook of Measurement in Science and Engineering(DOI: 10.1002/9781118436707.hmse035), 2013.

[24] She Wei, Zhang Yunsheng, Jones M R. Three-dimensional numerical modeling and simulation of the thermal properties of foamed concrete[J]. Construction and Building Materials, 2014, 50:421-431.

[25] Kown Y G, Chol S Y, Kang E S, et al. Ambient-dried silica aerogel doped with TiO2powder for thermal insulation [J]. Mater Science, 2000, 35:6075-6079.

[26] Michele Modesti,Alessandra Lorenzetti.Improvement on fire behaviour of water blown PIR-PUR foams: use of an halogen-free flame retardant[J]. European Polymer Journal, 2003, 39:263-268.

Effect of polyurethane-processing on the properties of foam cement

LIN Yijun, LIU Ping, WANG Jianyan, TANG Aidong, PAN Chunyue

(College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China)

The effect of macro morphology of polyurethane on density, porous structure, water absorption, thermal conductivity and strength of the foam cement was studied by means of polyurethane solvent sinking and water-blown foam filling. And the interaction mechanism was furtherly investigated as well. The results showed that the density and water absorption of water-blown polyurethane filled foam cement was reduced and enhanced, respectively. The compression of the proceed was increased and then decreased with the increasing of the diameter of filled hole. However, the water absorption of weight and coefficient of thermal conductivity of foam cement board with polyurethane sinked was decreased 37.2wt% and 32.4%, respectively, and the compressive strength of that product was increased by 364%.

foam cement; polyurethane; compressive strength; processing

1001-9731(2016)11-11068-04

中南大学博士后基金资助项目(140050292)

2016-01-07

2016-03-09 通讯作者:潘春跃,E-mail: panchunyue@csu.edu.cn

林益军 (1981-),男,博士后,中南大学化学化工学院博士后科研流动站,目前从事新型建筑材料研究。

TU528

A

10.3969/j.issn.1001-9731.2016.11.013

猜你喜欢
水泥板泡孔吸水率
玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响
刚柔复合式路面水泥混凝土板接缝传荷能力研究
植物纤维多孔材料泡孔分布影响因素
热固复合聚苯板吸水率快速测试方法及其影响因素分析
工艺参数与注塑微发泡制品泡孔形态的关系
浅谈外加剂和配合比对泡沫混凝土降低吸水率的影响
微孔发泡注塑成型工艺泡孔尺寸影响因素分析
聚合物乳液对发泡水泥板的改性研究
植物纤维水泥板抗折性能研究
GRC水泥板代替砖胎模施工