镁合金表面碳纳米管/硅烷复合膜的耐蚀性能*

2016-12-16 01:09吴海江杨飞英彭成章郭文敏王小明
关键词:点滴耐蚀性硅烷

吴海江,杨飞英,彭成章,郭文敏,王小明

(1.邵阳学院 机械与能源工程系,湖南 邵阳,422000;2.湖南科技大学 机械设备健康维护湖南省重点实验室,湖南 湘潭,411201)



镁合金表面碳纳米管/硅烷复合膜的耐蚀性能*

吴海江1,杨飞英1,彭成章2,郭文敏1,王小明1

(1.邵阳学院 机械与能源工程系,湖南 邵阳,422000;2.湖南科技大学 机械设备健康维护湖南省重点实验室,湖南 湘潭,411201)

为了进一步改善AZ91D镁合金表面单一硅烷膜的耐蚀性能,将不同含量碳纳米管添加到γ-氨丙基三乙氧基硅烷(KH-550)溶液中,借助简单浸渍法在其表面制备了碳纳米管/硅烷复合膜。通过点滴试验、中性盐雾试验、全浸腐蚀试验和E-t曲线测试评价了复合膜的耐蚀性能。结果表明:与单一硅烷膜相比,碳纳米管/硅烷复合膜的致密性较高,有效地阻挡了侵蚀性介质向基体的渗透,显著提高了AZ91D镁合金的耐蚀能力;随着碳纳米管含量的增加,碳纳米管/硅烷复合膜的耐蚀性能先上升后下降,当碳纳米管含量为0.3 g/L时复合膜的耐蚀性能最佳。

AZ91D镁合金;γ-氨丙基三乙氧基硅烷膜;碳纳米管;耐蚀性能

作为最轻的金属结构材料,镁合金因其密度低、比强度高、生物相容性好、电子屏蔽能力强和可回收性而广泛应用于航空航天、汽车、3C产品、生物医学等领域[1-3]。但由于镁合金化学性质非常活泼,极易与氧、水汽等发生作用,耐蚀性较差[4,5],成为镁合金发展的瓶颈,大大限制了其实际应用。传统上采用工艺简单、经济效益高的铬酸盐钝化膜为镁合金提供保护,但由于六价铬毒性高且致癌而受到严格限制使用[6,7]。因此,镁合金无铬钝化技术日益成为科研人员的关注热点。

国内外研究者先后研发了钼酸盐[8-11]、锡酸盐[12-14]、稀土金属盐[14-17]、高锰酸盐[18-20]等主要转化处理工艺,但是此类无铬钝化工艺的腐蚀防护效果很大程度上依赖于转化膜层的厚度,而它们达到一定厚度后就容易出现开裂脱落现象[21]。于是研究者们把目光转向有机物处理,其中硅烷化处理以其工艺简单、对环境友好而受到越来越多的重视。自美国Cincinnati大学van Ooij教授带领的团队于上世纪90年代率先尝试以来,应用于钢铁[22-24]、铝合金[25-27]、镀锌钢[27-29]、镁合金[30,31]基体取得了令人惊喜的研究成果。然而,传统意义上的硅烷膜耐蚀性能还不能令人非常满意,其中的重要原因是硅烷膜自身的厚度很小,所起的阻挡作用有限,同时机械强度不够,最终限制了防护性能的发挥[32]。碳纳米管具有独特的线状结构、大的比表面积和良好的导电性能,能够在复合涂层内部形成良好的导电网络,有助于消除金属基体各部位间的电位差异,从而抑制金属的电化学腐蚀[33,34],同时利用其优良的力学特性改善硅烷膜的机械强度,发挥其防护性能。

本文将AZ91D镁合金简单浸渍在不同含量碳纳米管的γ-氨丙基三乙氧基硅烷(KH-550)溶液中,取出后经过固化处理,获得了碳纳米管/硅烷复合膜,应用点滴试验、中性盐雾试验、全浸腐蚀试验和电化学测试等手段评价了膜层的耐蚀性能。

1 试验

1.1 基体前处理

选取AZ91D镁合金作为基体材料,加工成50mm×40mm×2mm大小,其化学成分见表1。试样依次采用360~1500号水砂纸逐级打磨→水洗→在丙酮溶液中超声波清洗5min→去离子水洗→碱洗(60g/L NaOH+10g/L Na3PO4,70℃,10min)→去离子水洗,然后用吹风机吹干后置于干燥器中备用。

表1 AZ91D镁合金的化学成分(质量分数,%)

1.2 碳纳米管/硅烷复合膜制备

在室温条件下,γ-氨丙基三乙氧基硅烷(KH-550)体积分数为5%,无水乙醇去离子水体积比85∶15,pH值9,水解时间2h;随之将0g/L、0.1g/L、0.3g/L、0.5g/L、0.7g/L碳纳米管加入到适量无水乙醇溶液中磁力搅拌30min分散,然后取分散溶液添加到水解好的硅烷溶液中,接着磁力搅拌5~10min;最后将预处理好的AZ91D镁合金试样浸入配制好的碳纳米管掺杂改性KH-550硅烷溶液中90s,缓慢提拉出液面后用压缩空气吹掉镁合金表面残留的溶液,马上置于ZK-82BB型电热真空干燥箱(上海市实验仪器总厂)中加热固化,固化温度为120℃,固化时间为60min[35]。

1.3 性能检测

(1)点滴试验 依据HB5061277标准,点滴溶液由1mL HNO3+0.05g KMnO4+100mL H2O配制而成,滴至试样表面适当的位置,观察点滴溶液由红色转变为无色的时间,以变色时间的长短来评价试样的耐蚀性能好坏。每个试样测试5次,取其平均值。

(2)中性盐雾试验 按照ASTMB117-2003进行,溶液为5%NaCl水溶液,箱内温度为35±2℃,盐雾沉降速度为1~2mL/(h·80cm2),氯化钠收集溶液浓度50g/L±5g/L,pH值6.5~7.2。将试样放入盐雾箱中,表面与垂直方向成30°角,每天连续喷8h停16h作为一个试验周期,记录试样的腐蚀面积随喷雾周期的变化情况。试验时采用5片平行试样,取其平均值。

(3)全浸腐蚀试验 按照JB/T6073-1992进行,浸渍液为5%NaCl水溶液,浸泡168h。先称量浸泡前的试样质量m1,并测定其表面积S。浸泡试验结束后取出试样并清除腐蚀产物,烘干称重,质量为m2,精确至0.1mg,则其失重△m=m1-m2,腐蚀速率v=△m/(St),t为浸泡时间。同时用数码相机观察试样宏观腐蚀形貌。试验时采用5片平行试样,取其平均值。

(4)E-t曲线测量 测试采用常规的三电极体系,以饱和甘汞电极(SCE)作为参比电极、铂电极作为辅助电极、待测试样作为工作电极,在CHI660E电化学工作站(上海辰华仪器公司)上进行。试样用环氧树脂涂封后暴露10mm×10mm大小区域,腐蚀介质为5%NaCl水溶液,在室温、不除气的条件下测量试样开路电位随浸泡时间的变化曲线。

2 结果与讨论

2.1 点滴试验

图1所示为经不同含量碳纳米管硅烷溶液处理的镁合金试样抗点滴变色时间。空白镁合金试样几乎是瞬间就变色了,抗点滴腐蚀的时间极短。从图1中可以看出,经纯KH-550溶液处理镁合金试样的抗点滴变色时间显著延长;而添加碳纳米管后,所制备的碳纳米管/硅烷复合膜抗点滴变色时间又迈上了一个新台阶,且随着碳纳米管含量的增加,复合膜的抗点滴变色时间呈现先升后降的变化规律,其中在含0.3g/L碳纳米管硅烷溶液中制备的复合膜抗点滴变色时间最长。说明此时碳纳米管/硅烷复合膜对AZ91D有最佳的防护性能,它有效地阻遏了腐蚀介质向基体的渗入。

图1 经不同含量碳纳米管硅烷溶液处理镁合金试样点滴试验时间

2.2 中性盐雾试验

图2所示为经不同含量碳纳米管硅烷溶液处理的镁合金试样在中性盐雾中腐蚀面积随喷雾周期的变化曲线。空白AZ91D镁合金试样喷雾2h就有40%左右的表面被腐蚀,8h后腐蚀斑点几乎布满整个表面[35]。由图2可见,碳纳米管的加入显著地增强了硅烷膜对AZ91D镁合金基体的防护能力。随着碳纳米管含量的增加,硅烷复合膜的腐蚀面积减小,耐蚀性能提高;当硅烷溶液中碳纳米管含量超过0.3g/L后,所得硅烷复合膜的腐蚀面积逐渐增大,耐蚀性能反而下降。原因可能是当加入过量的碳纳米管时,破坏了硅烷水解产物Si-OH之间的脱水缩合反应,削弱了所形成的化学键键合力[26,34],使得硅烷分子与AZ91D镁合金基体之间的吸附能力变差,最终获得致密性下降的复合膜,导致降低了其对AZ91D镁合金基体的腐蚀防护能力。试验结果进一步印证了点滴试验结果。

图2 经不同含量碳纳米管硅烷溶液处理镁合金试样中性盐雾试验后的腐蚀面积

2.3 全浸腐蚀试验

图3所示为空白镁合金、硅烷膜、最佳碳纳米管/硅烷复合膜试样浸泡在5%NaCl溶液中168h后的表面宏观腐蚀形貌。对于空白镁合金(图3(a)),自浸泡开始就反应剧烈,在试样表面聚集生成许多气泡,很快就出现了明显的腐蚀斑点,168h后表面已严重腐蚀,布满了大大小小的腐蚀坑,几乎看不到完好区域,平均腐蚀速率达到了125.8g/(m2·h);硅烷膜试样(图3(b))点蚀萌生时间约为30h,且扩展较快,168h后表面也被严重腐蚀,但仍存在部分完好区域,平均腐蚀速率达71.2g/(m2·h);而碳纳米管/硅烷复合膜试样(图3(c))浸泡约50h后才出现第一个腐蚀点,但扩展较慢,168h后表面仅有少量的腐蚀斑点,仍保留有大量完好完整区域,平均腐蚀速率仅有26.6g/(m2·h),说明碳纳米管/硅烷复合膜显著提高了AZ91D镁合金的耐蚀能力,它很好地阻挡了侵蚀性介质向基体的渗透。

(a)空白镁合金 (b)硅烷膜(c)碳纳米管/硅烷复合膜

2.4 E-t曲线

图4给出了空白镁合金、硅烷膜、最佳碳纳米管/硅烷复合膜试样烷膜试样浸泡在5%NaCl溶液中7天开路电位随浸泡时间的变化曲线。一般来说,防护膜层的开路电位越高,说明膜层在腐蚀介质中越稳定,反映了膜层的致密性越高,越能更好地阻止侵蚀性介质对金属基体的入侵[20]。从图4中可以看出,浸泡在5%NaCl溶液中后,随着浸泡时间的增加,空白镁合金试样的开路电位在较短时间内就稳定在-1.66V附近;而硅烷膜和碳纳米管/硅烷复合膜则经历了较长的时间才稳定下来,分别稳定在-1.52V和-1.29V左右的较高水平,明显高于空白镁合金的开路电位。这是因为对于未经任何处理的空白镁合金来说,腐蚀性介质较容易渗透到基体表面,腐蚀反应易于达到稳态;而对于硅烷膜和碳纳米管/硅烷复合膜,溶液很难穿透它而到达镁合金基体表面,腐蚀反应很难在短时间内达到稳态。这就意味着碳纳米管的加入导致硅烷膜层变得更加致密,同时碳纳米管独特的长链结构使得腐蚀介质向镁合金基体的渗透路径更为复杂[34,36],有效地阻碍了侵蚀性介质向基体的渗透,从而大大提高了对镁合金的腐蚀防护作用。

浸泡时间/h

3 结论

(1)点滴试验、中性盐雾试验、全浸腐蚀试验和E-t曲线测试结果表明,AZ91D镁合金经不同含量碳纳米管的γ-氨丙基三乙氧基硅烷溶液处理后,获得的碳纳米管/硅烷复合膜耐蚀性能优异。

(2)随着碳纳米管含量的增加,AZ91D镁合金表面碳纳米管/硅烷复合膜的耐蚀性能呈现先升后降的变化规律,其中含0.3g/L碳纳米管硅烷溶液中制备的复合膜耐蚀性能最佳。

[1]Y.Wu,Y.P.Zong,J.F.Jin.Grain growth in a nanostructured AZ31 Mg alloy containing second phase particles studied by phase field simulations [J].Science China Materials,2016,59(5):355-362.

[2]A.B.Ikhe,A.B.Kale,J.Jeong,et al.Perfluorinated polysiloxane hybridized with graphene oxide for corrosion inhibition of AZ31 magnesium alloy [J].Corrosion Science,2016,109:238-245.

[3]R.C.Zeng,Y.Hu,F.Zhang,et al.Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy [J].Transactions of Nonferrous Metals Society of China,2016,26(2):472-483.

[4]S.Feliu,I.Llorente.Corrosion product layers on magnesium alloys AZ31 and AZ61:Surface chemistry and protective ability [J].Applied Surface Science,2015,347:736-746.

[5]R.Kotoka,N.K.Yamoah,K.Mensah-Darkwa,et al.Electrochemical corrosion behavior of silver doped tricalcium phosphate coatings on magnesium for biomedical application [J].Surface and Coatings Technology,2016,292:99-109.

[6]A.S.Hamdy,M Farahat.Chrome-free zirconia-based protective coatings for magnesium alloys [J].Surface and Coatings Technology,2010,204(16-17):2834-2840.

[7]E.Zuriaga-Agusti,M.V.Galiana-Aleixandre,A.Bes-Pia,et al.Pollution reduction in an eco-friendly chrome-free tanning and evaluation of the biodegradation by composting of the tanned leather wastes [J].Journal of Cleaner Production,2015,87:874-881.

[8]T.Ishizaki,Y.Masuda,K.Teshima.Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection [J].Surface and Coatings Technology,2013,217:76-83.

[9]Z.Y.Yong,J.Zhu,C.Qiu,et al.Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection [J].Applied Surface Science,2008,255(5):1672-1680.

[10]Y.W.Song,D.Y.Shan,R.S.Chen,et al.An environmentally friendlymolybdate/phosphate black film on Mg-Zn-Y-Zr alloy [J].Surface and Coatings Technology,2010,204(20):3182-3187.

[11]刘俊瑶,李锟,雷霆.AZ31镁合金表面钼酸盐转化膜的制备与耐蚀性能 [J].粉末冶金材料科学与工程,2016,21(1):137-145.

[12]X.L.Liu,T.Zhang,Y.W.Shao,et al.In-situ study of the formation process of stannate conversion coatings on AZ91D magnesium alloy using electrochemical noise [J].Corrosion Science,2010,52(3):892-900.

[13]邵忠财,王明,张庆芳.有机添加剂对AZ91D镁合金锡酸盐转化膜性能的影响 [J].稀有金属材料与工程,2015,44(6):1541-1545.

[14]Y.L.Lee,Y.R.Chu,F.J.Chen,et al.Mechanism of the formation of stannate and cerium conversion coatings on AZ91D magnesium alloys [J].Applied Surface Science,2013,276:578-585.

[15]雷黎,王昕,徐海港.镁合金铈转化膜在NaCl溶液中的腐蚀行为及腐蚀机理 [J].中国有色金属学报,2015,25(1):125-132.

[16]J.Sun,G.Wang.Preparation and corrosion resistance of cerium conversion coatings on AZ91D magnesium alloy by acathodic electrochemical treatment [J].Surface and Coatings Technology,2014,254:42-48.

[17]L.Chen,C.G.Chen,N.N.Wang,et al.Study of Cerium and Lanthanum Conversion Coatings on AZ63 Magnesium Alloy Surface [J].Rare Metal Materials and Engineering,2015,44(2):333-338.

[18]H.Zhang,G.C.Yao,S.L.Wang,et al.A chrome-free conversion coating for magnesium-lithium alloy by a phosphate-permanganate solution [J].Surface and Coatings Technology,2008,202(9):1825-1830.

[19]S.Y.Jian,Y.R.Chu,C.S.Lin.Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance [J].Corrosion Science,2015,93:301-309.

[20]Y.L.Lee,Y.R.Chu,W.C.Li,et al.Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy [J].Corrosion Science,2013,70:74-81.

[21]J.T.Lu,H.J.Wu,G.Kong,et al.Growth and corrosion behavior of rare earth film on hot-dip galvanized steel [J].Transactions of Nonferrous Metals Society of China,2006,16(6):1397-1401.

[22]V.Subramanian,W.J.vanOoij.Effect of the amine functional group on corrosion rate of iron coated with films of organofunctional silanes [J].Corrosion,1998,54(3):204-215.

[23]T.van Schaftinghen,C.Le Pen,H.Terryn,et al.Investigation of the barrier properties of silanes on cold rolled steel [J].Electrochimica Acta,2004,49(17-18):2997-3004.

[24]S.M.Hanetho,I.Kaus,A.Bouzga,et al.Synthesis and characterization of hybrid aminopropyl silane-based coatings on stainless steel substrates [J].Surface and Coatings Technology,2014,238:1-8.

[25]A.Seth,W.J.vanOoij,P.Puomi,et al.Novel,one-step,chromate-free coatings containing anticorrosion pigments for metals—An overview and mechanistic study [J].Progress in Organic Coatings,2007,58(2-3):136-145.

[26]A.Batan,N.Mine,B.Douhard,et al.Evidence of covalent bond formation at the silane-metal interface during plasma polymerization of bis-1,2-(triethoxysilyl)ethane (BTSE) on aluminium [J].Chemical Physics Letters,2010,493(1-3):107-112.

[27]D.Q.Zhu,W.J.vanOoij.Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine [J].Electrochimica acta,2004,49(7):1113-1125.

[28]U.Bexell,T.M.Grehk.A corrosion study of hot-dip galvanized steel sheet pre-treated with γ-mercaptopropyltrimethoxysilane [J].Surface and Coatings Technology,2007,201(8):4734-4742.

[29]P.R.Sere,M.Banera,W.A.Egli,et al.Effect on temporary protection and adhesion promoter of silane nanofilms applied on electro-galvanized steel [J].International Journal of Adhesion and Adhesives,2016,65:88-95.

[30]F.Zucchi,A.Frignani,V.Grassi,et al.Organo-silane coatings for AZ31 magnesium alloy corrosion protection [J].Materials Chemistry and Physics,2008,110(2-3):263-268.

[31]R.L.Zhu,J.Zhang,W.Gao.Effect of silane on galvanic corrosion between EW75 magnesium alloy and TC4 alloy [J].Rare Metal Materials and Engineering,2015,44(8):1838-1844.

[32]胡吉明,王晓梅,季卫刚,等.防护性硅烷膜的掺杂改性研究进展 [J].材料科学与工程学报,2008,26(5):794-797.

[33]李恒,李澄,王加余.含碳纳米管有机-无机复合涂层的制备与防护性能 [J].复合材料学报,2010,27(6):38-44.

[34]B.Zeybek,E.Aksun,A.Uge.Investigation of corrosion protection performance of poly(N-methylpyrrole)-dodecylsulfate/multi-walledcarbon nanotubes composite coatings on the stainless steel [J].Materials Chemistry and Physics,2015,163:11-23.

[35]吴海江,杨飞英,彭成章,等.AZ91D压铸镁合金表面硅烷膜固化工艺的优化 [J].材料保护,2015,48(8):41-43.

[36]M.F.Montemor,M.G.S.Ferreira.Analytical characterisation and corrosion behaviour of bis-aminosilane coatings modified with carbon nanotubes activated with rare-earth salts applied on AZ31 Magnesium alloy [J].Surface and Coatings Technology,2008,202(19):4766-4774.

Corrosion resistance of carbon nanotubes/silane composite coatings on AZ91D magnesium alloy

WU Haijiang1,YANG Feiying1,PENG Chengzhang2,GUO Wenmin1,WANG Xiaoming1

(1.Department of Mechanical and Energy Engineering,Shaoyang University,Shaoyang 422000,China;2.Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment,Hunan University of Science and Technology,Xiangtan 411201,China)

In order to further improve the corrosion resistance of the single silane coating on AZ91D magnesium alloy,which was treated in γ-APS solution with different concentrations of the carbon nanotubes,the carbon nanotubes/silane composite coatings were prepared.The corrosion resistance of the composite coatings were evaluated by drop test,neutral salt spray test,immersion corrosion test and potential-time curve test.The results revealed that the compactness of the carbon nanotubes/silane coatings were higher than the single silane coating,which significantly improved the corrosion resistance of AZ91D magnesium alloy by effectively blocking the infiltration of corrosive medium to the substrate.With the increase of the concentrations of the carbon nanotubes,the corrosion resistance of the carbon nanotubes/silane composite coatings first increased and then decreased.The carbon nanotubes/silane composite coatings had the optimum corrosion resistance when the concentration of the carbon nanotubes was 0.3g/L.

AZ91D magnesium alloy; γ-APS coating; carbon nanotubes; corrosion resistance

1672-7010(2016)03-0069-07

2016-06-30

湖南省自然科学基金资助项目(2015JJ2064);湖南省教育厅青年项目(15B213);邵阳市科技计划项目(2015JH36)

吴海江(1975-),男,安徽淮南人,博士,副教授,从事金属材料腐蚀与防护研究;E-mail: haijiang_wu@126.com

TG174.4

A

猜你喜欢
点滴耐蚀性硅烷
点滴小事,从我做起
超支化聚碳硅烷结构、交联方法及其应用研究进展
硅烷包覆膨胀型阻燃剂共混改性粘胶纤维的研究
詹红丹:点滴感动在心间
砚边点滴
AZ31B镁合金复合镀镍层的制备及其耐蚀性研究
超级奥氏体不锈钢254SMo焊接接头耐蚀性能
喵夭家的环保点滴
Ni-ZrO2纳米复合涂层的制备及其耐磨耐蚀性能研究
硅烷交联聚乙烯催化剂的研究进展