红花桑寄生中的化学成分

2017-02-16 12:39刘全裕冯珊张永红倪峰
中国中药杂志 2016年21期
关键词:化学成分

刘全裕+冯珊+张永红+倪峰

[摘要]從红花桑寄生茎叶中分离得到1个新的化合物为7β-羟基-何帕-22(29)-烯-3β-棕榈酸酯(1),以及9个已知化合物,分别鉴定为熊果醇(2)、3-表乌苏酸(3)、3β-羟基-何帕-22(29)-烯(4)、3β, 15α-二羟基-羽扇-20(29)-烯(5)、羽扇-20(29)-烯-3-O-α-D-葡萄糖苷(6)、豆甾醇-3-O-β-D-葡萄糖苷(7)、夹竹桃苷元-3-O-α-D-葡萄糖苷(8)、二十二烷酸(9)、二十八烷醇(10)。化合物结构利用核磁共振谱、高分辨质谱等现代波普技术进行鉴定。化合物1为新化合物,化合物2~10首次从红花桑寄生中分离得到。

[关键词]红花桑寄生; 化学成分; 三萜酯

[Abstract]A new triterpenoid ester, 7β-hydroxyl-hop-22(29)-en-3β-O-palmitate (1), was isolated from the stems and leaves ofScurrula parasitica parasitic onNerium indicum, along with nine known compounds, uvaol (2), 3-epi-ursolic acid (3), 3β-hydroxyl-hop-22(29)-ene (4), 3β, 15α-dihydroxyl-lup-20(29)-ene (5), lup-20(29)-en-3-O-α-D-glucoside (6), stigmasterol-3-O-β-D-glucoside (7), digitoxin-3-O-α-D-glucoside (8), behenic acid (9), octacosyl alcohol (10). Their structures were elucidated using a combination of 1D and 2D NMR techniques (COSY, HMQC, and HMBC) and HR-ESI-MS analyses. Compounds 2-10 were isolated from this plant for the first time.

[Key words]Scurrula parasitica; chemical constituents; triterpenoid ester

doi:10.4268/cjcmm20162112

Scurrula parasitica L. (Loranthaceae) is widely distributed in Southern China, its leaves and stems have been used as cardiotonic, antioxidant, and antineoplastic agents[1]. These activities varied with the host trees and seasons[2]. In previous reports, some triterpenoids and flavonoids have been isolated from this source[3]. In the cause of our search for biologically active substances from this plant, a new triterpenoid ester, 7β-hydroxyl-hop-22(29)-en-3β-O-palmitate (1) (Fig.1), was isolated from the methanol extract, together with five known triterpenoids uvaol (2), 3-epi-ursolic acid (3), 3β-hydroxyl-hop-22(29)-ene (4), 3β, 15α-dihydroxyl-lup-20(29)-ene (5), lup-20(29)-en-3-O-α-D-glucoside (6), one steroid glycoside stigmasterol-3-O-β-D-glucoside (7), one cardiac glycoside digitoxin-3-O-α-D-glucose (8), two fatty acids behenic acid (9),and octacosyl alcohol (10). In this paper, we reported the isolation and structural elucidation of these compounds.

1 Material

1.1 Apparatus and reagents Melting points were determined on a WRS-1B digital melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO-20 polarimeter. The IR spectra were obtained on a Nicolet 170SX FT-IR spectrometer and UV spectra were obtained on an UV-210A spectrometer. 1H-, 13C- and 2D-NMR spectra were recorded using a Bruker AM-400 NMR spectrometer at 400 and 100 MHz, respectively, with TMS as the internal standard. HR-ESI-MS was obtained on a Bruker APEXⅡFT-MS spectrometer. FAB-MS was measured on a VG-ZAB-HS mass spectrometer and EI-MS was obtained on a HP-5988 mass spectrometer. Silica gel (200-300 and 300-400 mesh) and Sephadex LH-20 were used for CC and silica gel GF254 for TLC. Spots were detected on TLC plate under an UV light or by heating after spraying the TLC plate with 5% H2SO4 in C2H5OH.

1.2 Plant material The stems and leaves ofS. parasitica were collected at Fuzhou, Fujian province of China, in July, 2014. The plant material was authenticated by Prof. Yong-hong Zhang, Department of Pharmacy, Fujian Medical University. A voucher specimen (201406) was deposited in the Herbarium of Pharmacy Department, Fujian Health College, Fuzhou, China.

2 Extraction and isolation

Dried and powdered stems and leaves ofS.parasitica (6.5 kg) were extracted three times with MeOH. After evaporation of the solvent under reduced pressure, the residue was suspended in water and extracted with petroleum ether, EtOAc, andn-BuOH, successively. The residue of the petroleum ether layer (178 g) was fractionated by silica gel column chromato graphy (CC) using a stepwise gradient of petroleum ether-EtOAc (10∶1-0∶1) to yield twelve fractions (Fr. 1-12). Fr. 6 was chromatographed on Sephadex LH-20 eluted with CHCl3-MeOH (1∶1) and followed by repeated column chromatography over silica gel eluted with petroleum ether-EtOAc (10∶1-1∶1) to obtain compounds 1 (22 mg), 9 (28 mg), 10 (14 mg). Fr. 10 was purified by chromatography on Sephadex LH-20 to give compound 2 (19 mg), 3 (11 mg). The residue of the EtOAc layer (136 g) was fractionated by silica gel CC using a stepwise gradient of petroleum ether-EtOAc (10∶1-0∶1) to yield ten fractions (Fr. 1-10). Fr. 5 was subjected to repeated column chromatography over silica gel and Sephadex LH-20 and further purification by HPLC (H2O-MeOH 40∶60, 3 mL·min-1) to afford compounds 4 (15 mg), 5(7 mg).The residue of then-BuOH lager (203 mg) was fractionated by silica gel CC using a step-wise gradient of CHCl3-MeOH (10∶1-0∶1) to yield fourteen fractions (Fr. 1-14). Fr. 9 was chromatographed on silica gel and Sephadex LH-20 to obtain compound 6 (13 mg), 7 (12 mg). Fr. 12 was chromatographed on silica gel and Sephadex LH-20 to obtain compound 8 (16 mg).

3 Results and discussion

Compound 1 was obtained as a white amorphous powder. mp 96-97 ℃, [α]+ 46.0 (c 0.50, CHCl3), showed positive Liebermann-Burchard reaction. High-resolution ESI-MS showed the molecular ion atm/z 703.601 1 in agreement with the molecular formula C46H80O3Na+ (Calc. 703.601 1). The IR spectrum of 1 exhibited (-COO-) (1 723 cm-1), (H2C=C<) (1 644 cm-1), (-OH-) (3 140 cm-1), and [-(CH2)n-] (717 cm-1) absorptions, together with 1H-NMR and 13C-NMR spectral data of 1 indicated it to be a triterpenoid ester (Table 1). The presence of a palmitoyloxy group in 1 was supported by the 1H-NMR values atδ 0.88 (3H, t,J=7.0 Hz, H-16′), 1.26 (24H, br s, H-4′ to H-15′), 1.74 (2H, H-3′) and 2.26 (2H, t,J=6.0 Hz, H-2′) and the EI-MS fragment atm/z 409, 396. The 1H-NMR spectrum of 1 showed the presence of seven methyl singlets atδ 0.72, 0.83, 0.85, 0.89, 0.95, 0.99, and 1.76, two oxymethines atδ 4.46 (1H, dd,J=4.8, 11.2 Hz, H-3 ),δ 3.81 (1H, dd,J=10.8, 4.8 Hz, H-7) and an isopropenyl group inferred by the presence of a methyl singlet atδ 1.76 and a broad singlet at δ 4.58 (1H, dd,J=4.4, 8.2 Hz, H-29a), 4.68 (1H, dd,J=4.8, 10.0 Hz, H-29b), together with typical 13C-NMR resonances atδ 80.1(C-3) and 75.3 (C-7) suggested there are two hydroxyl-bearing methines in the nucleus. The 1H-NMR spectra, and especially the presence of an isopropenyl group, suggested that compound 1 is a pentacyclic triterpene of the lup-20(29)-en-3β-ol or hop-22(29)-en-3β-ol type. The basic skeleton of a lup-20(29)-en-3β-ol triterpenoid could be ruled out for compound 1 on the basis of the differences in the 13C-NMR values of 1 with lupeol derivatives[4]. A close comparison of the 1H-NMR and 13C-NMR values of 1 with those of 4 and 5 isolated fromS.parasitica, suggested that compound 1 is a hydroxyl-hop-22(29)-ene terpenoid having a palmitoyloxy group at the C-3 position. The HMBC spectra of 1, which showed the correlations H-3/C-2, C-4, C-23, C-24, C-1′ ; H-7/C-6, C-8, C-9, C-26; H-9/C-8, C-10, C-11, C-12, C-26; H-13/C-12, C-14, C-18, C-27; H-21/C-17, C-20, C-22, C-29, C-30 (Fig.2), supported the basic skeleton of a hopenyl derivative further, respectively, identical to 1. In the NOESY spectrum, H-OH-7 showed NOE correlations with H-24, H-25 and H-26, but has no NOE correlations with H-23 or H-27, H-3 showed NOE correlations with H-23, but has no NOE correlations with H-24 or H-25, H-5 showed NOE correlations with H-9 and H-23, H-13 showed NOE correlations with H-17, H-29 showed NOE correlations with H-27, H-28, and H-30. It was reported that when the allyl was linked to C-21 inα-orientation, H-29 was a single signal[5]. So C-24, C-25, and C-26 were determined to be inβ-oriented while C-23, C-27, C-28, C-29, and C-30 were determined to be inα-oriented. Therefore, the OH-7 was determined to be inβ-oriented. On alkaline hydrolysis, compound 1 yielded 3β, 7β-dihydroxyl-hop-22(29)-ene[6-7] and palmitic acid[8] (m/z 256), confirming the structure completely. Thus, compound 1 was established as 7β-hydroxyl-hop-22(29)-en-3β-O-palmitate.

The known compounds 2-10 were identified by comparison with the literature data.

4 Identification

Compound 1 White amorphous powder. mp 96-97 ℃; [α]+ 46.0 (c 0.50, CHCl3); IR (KBr) νmax 3 140, 1 723, 1 644, 1 266, 1 221, 1 197, 717 cm-1; EI-MSm/z 681 [M + H]+. HR-ESI-MSm/z 703.601 1 [M + Na]+(Calc. 703.601 1); 1H- and 13 C-NMR(Table 1).

Compound 2 White needles. mp 222-224 ℃; EI-MSm/z 442 (M)+·, 411, 234, 203, 175, 149, 119, 69, 43; 1H-NMR (CD3OD, 400 MHz)δ: 1.18 (3H, s), 1.12 (3H, s), 1.03 (3H, s), 0.97 (3H, s), 0.88 (3H, d), 0.83 (3H, s), 0.78 (3H, s), 3.14 (1H, dd,J=4.8, 11.2 Hz,H-3), 5.40 (1H, t,J=4.0 Hz, H-12), 3.54 (1H, d,J=10.4 Hz, H-28a), 3.04 (1H, d,J=10.4 Hz H-28b). The physical and spectral data were in accordance with those reported in the literature[9], and 2 was identified as uvaol.

Compound 3 Amorphous powder. mp 250-252 ℃; EI-MSm/z 456 (M)+·; 1H-NMR (CD3OD, 400 MHz)δ: 1.09 (3H, s), 0.91 (3H, s), 0.89 (3H, s), 0.86 (3H, s), 0.81(3H, d), 0.74 (3H, s), 0.67 (3H, s), 11.95 (1H, s, COOH), 3.01 (1H, m, H-3), 5.12 (1H, br s, H-12). The physical and spectral data were in accordance with those reported in the literature[10], and 3 was identified as 3-epi-ursolic acid.

Compound 4 Amorphous powder. mp 196-197 ℃; IR (KBr) νmax 3 320, 2 867, 1 715, 1 644, 1 266 cm-1; EI-MSm/z 426 (M)+·;1H-NMR (CDCl3,400 MHz)δ:0.82 (3H, s, H-23), 0.85 (3H, s, H-24), 0.98 (3H, s, H-25), 0.74 (3H, s, H-26), 0.95 (3H, s, H-27), 0.99 (3H, s, H-28), 1.73(3H, s, H-30), 4.50 (1H, s, Ha-29), 4.65 (1H, s, Hb-29), 3.16 (1H, dd,J=8.0, 9.2 Hz, H-3); 13C-NMR (CDCl3, 100 MHz)δ: 38.6 (C-1), 25.4 (C-2), 78.9 (C-3), 38.8 (C-4), 55.2 (C-5), 18.3 (C-6), 34.2 (C-7), 41.8 (C-8), 50.4 (C-9), 37.1 (C-10), 20.9 (C-11), 25.1 (C-12), 48.8 (C-13), 40.8 (C-14), 34.4 (C-15), 22.1 (C-16), 52.9 (C-17), 44.2 (C-18), 41.9 (C-19), 27.9 (C-20), 47.6 (C-21), 148.8 (C-22), 27.9 (C-23), 16.3 (C-24), 16.1 (C-25), 15.9 (C-26), 14.5 (C-27), 18.3 (C-28), 109.3 (C-29), 25.2 (C-30). The physical and spectral data were in accordance with those reported in the literature[11], and 4 was identified as 3β-hydroxyl-hop-22(29)-ene.

Compound 5 Amorphous powder. mp 216-217 ℃; IR (KBr) νmax 3 320, 3 167, 2 947, 1 705, 1 646, 1 254 cm-1; EI-MSm/z 443 [M + H]+; 1H-NMR (CDCl3, 400 MHz)δ:0.83 (3H, s, H-23), 0.84 (3H, s, H-24), 0.86 (3H, s, H-25), 0.87 (3H, s, H-26), 0.98 (3H, s, H-27), 1.08 (3H, s, H-28), 1.68 (3H, s, H-30), 3.78 (1H, dd, J=8.0, 9.2 Hz, H-3), 4.45 (1H, br s, H-15);13C-NMR (CDCl3, 100 MHz)δ: 38.3 (C-1), 23.4 (C-2), 78.9 (C-3), 37.8 (C-4), 52.2 (C-5), 28.0 (C-6), 26.7 (C-7), 44.8 (C-8), 50.1 (C-9), 37.0 (C-10), 20.8 (C-11), 25.1 (C-12), 37.4 (C-13), 47.8 (C-14), 67.9 (C-15), 45.6 (C-16), 42.5 (C-17), 48.2 (C-18), 47.1 (C-19), 150.3 (C-20), 31.6 (C-21), 40.8 (C-22), 27.8 (C-23), 16.3 (C-24), 15.7 (C-25), 10.1 (C-26), 8.3 (C-27), 18.8 (C-28), 109.6 (C-29), 19.3 (C-30). The physical and spectral data were in accordance with those reported in the literature[12], and 5 was identified as 3β, 15α-dihydroxyl-lup-20(29)-ene.

Compound 6 Amorphous powder. ESI-MSm/z 611 [M+Na]+; 1H-NMR (DMSO-d6, 400 MHz)δ: 0.86 (3H, s, H-23), 0.86 (3H, s, H-24), 0.83 (3H, s, H-25), 1.08 (3H, s, H-26), 1.41 (3H, s, H-27), 0.80 (3H, s, H-28), 1.74 (3H, s, H-30), 4.68 (1H, dd,J=10.0, 8.4 Hz, H-3), 5.36 (1H, d,J=8.0 Hz, glc-H-1′), 3.62-3.88(1H, m, glc-H-2′-6′); 13C-NMR (CD3OD, 100 MHz)δ: 39.3 (C-1), 25.9 (C-2), 76.9 (C-3), 39.7 (C-4), 49.6 (C-5), 18.4 (C-6), 36.1 (C-7), 48.7 (C-8), 49.6 (C-9), 36.8 (C-10), 20.6 (C-11), 23.8 (C-12), 49.6 (C-13), 48.7 (C-14), 31.3 (C-15), 27.6 (C-16), 55.4 (C-17), 41.8 (C-18), 39.9 (C-19), 27.6 (C-20), 49.6 (C-21), 146.8 (C-22), 29.2 (C-23), 17.5 (C-24), 23.8 (C-25), 20.6 (C-26), 17.5 (C-27), 15..9 (C-28), 111.6 (C-29), 19.8 (C-30), 100.7 (C-1′), 73.4 (C-2′), 76.4 (C-3′), 73.4 (C-4′), 76.8 (C-5′), 61.0 (C-6′). The physical and spectral data were in accordance with those reported in the literature[13], and 6 was identified as lup-20(29)-en-3-O-α-D-glucoside.

Compound 7 Colorless flaky crystal. ESI-MSm/z575[M + H]+; 1H-NMR (CD3OD, 400 MHz)δ: 0.63-2.1 (21 H, m, Me × 7), 4.63 (1H, dd, J=4.9, 12.6 Hz, H-3), 5.35 (1H, d, J=8.0 Hz, glc-H-1′), 3.60-3.88(1H, m, glc-H-2′-6′); 13C-NMR (CD3OD, 100 MHz)δ: 37.3 (C-1), 31.6 (C-2), 76.7 (C-3), 42.2 (C-4), 140.6 (C-5), 121.4 (C-6), 31.8 (C-7), 31.8 (C-8), 50.3 (C-9), 36.4 (C-10), 21.0 (C-11), 39.6 (C-12), 42.2 (C-13), 56.8 (C-14), 24.3 (C-15), 28.6 (C-16), 55.8 (C-17), 12.1 (C-18), 19.3 (C-19), 40.5 (C-20), 21.0 (C-21), 137.1 (C-22), 130.1 (C-23), 51.9 (C-24), 31.6 (C-25), 20.7 (C-26), 19.2 (C-27), 25.6 (C-28), 12.2 (C-29), 95.7 (C-1′), 73.9 (C-2′), 78.3 (C-3′), 71.1 (C-4′), 78.7 (C-5′), 62.4 (C-6′). The physical and spectral data were in accordance with those reported in the literature[14], and 7 was identified as stigmasterol-3-O-β-D-glucoside.

Compound 8 Amorphous powder. ESI-MSm/z592 [M + Na]+; 1H-NMR (CD3OD, 400 MHz)δ: 5.01 (1H, d,J=8.6 Hz, C-3), 5.48 (1H, d,J=12.4 Hz, C-13), 0.88 (3H, s, C-18), 0.91 (3H, s, C-19), 5.93 (1H, br s, C-22), 5.36 (1H, d, J=8.0 Hz, glc-H-1′), 3.61-3.88(1H, m, glc-H-2′-6′); 13C-NMR (CD3OD, 100 MHz)δ: 33.6 (C-1), 28.1 (C-2), 72.0 (C-3), 31.2 (C-4), 38.5 (C-5), 27.7 (C-6), 22.8 (C-7), 41.8 (C-8), 41.3 (C-9), 37.2 (C-10), 36.1 (C-11), 30.0 (C-12), 40.2 (C-13), 51.2 (C-14), 84.7 (C-15), 41.3 (C-16), 72.8 (C-17), 57.5 (C-18), 16.9 (C-19), 24.0 (C-20), 172.2 (C-21), 77.8 (C-22), 121.7 (C-23), 177.2 (C-24), 103.2 (C-1′), 73.0 (C-2′), 75.0 (C-3′), 71.1 (C-4′), 75.9 (C-5′), 61.5 (C-6′). The physical and spectral data were in accordance with those reported in the literature[15], and 7 was identified as digitoxin-3-O-α-D-glucose.

5 Alkaline hydrolysis of 1

Compound 1 (5.0 mg) was refluxed with 5% KOH-MeOH (5.0 mL ) for 4 h at 75 ℃. The reaction product was diluted with H2O (20.0 mL) and adjusted pH to 7.0 with HCl, then extracted with CHCl3 (20.0 mL×2). The CHCl3 solutions were dried (anhydrous Na2SO4 ), and the residue following solvent removed was subjected to silica gel CC (8.0 g, 1 cm×14 cm) using hexane/EtoAc (8∶3) to afford la (1.3 mg), which was found to be identical with 3β, 7β-dihydroxyl-hop-22(29)-ene by 1H-, 13C-NMR and EI-MS comparisons, and palmitic acid (1b 0.8 mg), which was identified by comparison of its EI-MS with a computer reference database [EI-MSm/z 256 (M)+·, 227, 199, 171, 157, 143, 129].

Compound 1a Amorphous powder. mp 205-207 ℃; EI-MSm/z 442 (M)+·; 1H-NMR (CDCl3, 400 MHz)δ:0.83 (3H, s, H-23), 0.84 (3H, s, H-24), 0.96 (3H, s, H-25), 0.74 (3H, s, H-26), 0.95 (3H, s, H-27), 0.98 (3H, s, H-28), 1.73 (3H, s, H-30), 4.59 (1H, s, Ha-29), 4.68 (1H, s, Hb-29), 4.45 (1H, br s, H-3), 3.78 (1H, br s, H-7); 13C-NMR (CDCl3, 100 MHz)δ: 38.3 (C-1), 23.7 (C-2), 80.1 (C-3), 37.5 (C-4), 52.2 (C-5), 28.0 (C-6), 72.4 (C-7), 48.8 (C-8), 50.4 (C-9), 37.1 (C-10), 20.8 (C-11), 25.2 (C-12), 48.8 (C-13), 40.8 (C-14), 34.0 (C-15), 21.9 (C-16), 52.8 (C-17), 44.2 (C-18), 41.9 (C-19), 28.0 (C-20), 47.5 (C-21), 148.8 (C-22), 27.9 (C-23), 16.1 (C-24), 16.0 (C-25), 8.3 (C-26), 14.5 (C-27), 18.3 (C-28), 109.3 (C-29), 25.2 (C-30). The physical and spectral data were in accordance with those reported in the literature[6-7], and 1a was identified as 3β,7β-dihydroxyl-hop-22(29)-ene.

[參考文献]

[1]Xiao Y J, Chen Y Z, Chen B H, et al. Study on cytotoxic activities on human leukemia cell line HL-60 by flavonoids extracts ofScurrula parasitica from four different host trees [J]. Chin Oncol, 2008, 33(4): 427.

[2]Omeje E O, Osadebe P O, Esimone C O, et al. Three hydroxylated lupeol-based triterpenoid esters isolated from the Eastern Nigeria mistletoe parasitic onKola acuminata [J]. Nat Prod Res,2012, 26(19): 1775.

[3]Liu Q Y, Wang F, Zhang L, et al. A hydroxylated lupeol-based triterpenoid ester isolated from theScurrula parasitica Parasitic onNerium indicum[J].Helv Chim Acta, 2015, 98(5): 627.

[4]O′Connell M M, Bentley M D, Campbell C S, et al. Betulin and lupeol in bark from four white-barked birches [J]. Phytochemistry, 1988, 27(7): 2175.

[5]Ageta H, Shiojima K, Suzuki H, et al. NMR spectra of triterpenoids. I. Conformation of the side chain of hopane and isohopane, and their derivatives [J]. Chem Pharm Bull, 1993, 41(11): 1939.

[6]Sousa G F, Duarte L P, Alcantara A F, et al. New triterpenes fromMaytenus robusta: structural elucidation based on NMR experimental data and theoretical calculations [J]. Molecules, 2012, 17(11): 13439.

[7]Fukunaga T, Nishiya K, Kajikawa I, et al. Chemical studies on the constituents ofHyphear tanakae HOSOKAWA from different host trees [J]. Chem Pharm Bull, 1988, 36(3): 1180.

[8]Basu S, Kuhn H M, Neszmelyi A, et al. Chemical characterization of enterobacterial common antigen isolated fromPlesiomonas shigelloides ATCC 14029 [J]. Eur J Biochem, 1987, 162(1): 75.

[9]Mezzetti T, Orzalesi G, Rossi C, et al. A new triterpenoid lactone,α-amyrin and uvaol fromHelichrysum italicum [J]. Planta Med, 1970, 18(4): 326.

[10]Miranda R P, Delgado G, Vivar A R D. New triterpenoids fromSalvia nicolsoniana [J]. J Nat Prod, 1986, 49(2): 225.

[11]Zhang L, Wang F, Jiang Z Y, et al. A new pentacyclic triterpene fromHumata tyermanni Moore with the inhibitory activities against LPS-induced NO production in RAW264.7 macrophages [J]. J Chem, 2013, 2013(2013): 729.

[12]Li S H, Deng Q, Zhu L, et al. Terpenoids and sterols fromRicinus communis and their activities against diabetes [J]. Chin J Chin Mater Med, 2014, 39(3): 448.

[13]Kiem P V, Thu V K, Yen P H, et al. New triterpenoid saponins fromGlochidion eriocarpum and their cytotoxic activity [J]. Chem Pharm Bull, 2009, 57(1): 102.

[14]Yang B Y, Li T, Guo R, et al. Chemical constituents from leaves ofDatura metel (Ⅰ) [J]. Chin Tradit Herbal Drugs, 2013, 44(20): 2803.

[15]Wangteeraprasert R, Lipipun V, Gunaratnam M, et al. Bioactive compounds fromCarissa spinarum [J]. Phytother Res, 2012, 26(10):1496.

[責任编辑 丁广治]

猜你喜欢
化学成分
不同外形、年份六堡茶品质变化分析
羌活的化学成分及药理作用研究进展
壮药积雪草主要化学成分及对神经系统作用的研究进展
金线莲的研究进展
双齿围沙蚕化学成分及其浸膏抗肿瘤活性的研究
真海鞘壳化学成分分离及其浸膏抑制人肝癌细胞HepG2活性的研究