基于视觉的并联机械手分拣系统的设计

2017-03-04 01:42史东强张娴
科学与财富 2016年32期

史东强+张娴

摘 要:DELTA并联机械手具有其结构简单、维修方便、运行速度快、精度高等优点,因此广泛的应用在食品、医药、电子等轻工业生产线上作为装配或分拣机构。本文以三菱Q系列PLC为核心控制器,以QD75P2定位模块和三菱伺服驱动单元为运动控制部件,制作了一台DELTA机械手装置,利用SVM等视频智能分析技术,实现不同形状和不同特点物体的识别和分拣,具有很高的实用价值。

关键词:并联机械手 三菱QPLC QD75 视觉分析

1 引 言

机器人可以代替人类进行很多繁重和危险的工作,是过去数千年一贯的梦想。人类进入二十一世纪以后,现代科技飞速发展,让机器人逐渐由梦想变为现实。现在机器人已经成为信息和自动化行业蓬勃发展的一个重要领域。机器人从结构上可以分为串联机器人和并联机器人两类,串联机器人具有工作空间大、操作灵活等优点,虽然在工业生产中得到了应用,但是它也存在承载能力低、动力学性能差和关节误差累积等缺点。在实际应用中需要机器人具有高的承载能力、良好的动力学性能以及高精度等要求时,这就迫切需要有另外一种机械结构形式的机器人可供选择。在这种情况下,并联机器人就应运而生了。并联机器人与传统的串联机器人相比,并联机器人具有运行速度快、承载能力强、高柔性化、精度高以及惯性小等特点,因而在航天、航空、航海、机电工业、医疗器械、微型微动机械等方面得到了广泛的应用。

并联机械手由于其诸多的优点成为现在研究领域的热点,由于其运行速度快、承载能力强、高柔性化、精度高以及惯性小等特点,已在航天、航空、航海、机电工业、医疗器械、微型微动机械等方面得到了广泛的应用。PLC的控制使得并联机械手的运动轨迹和控制更加的科学化、人性化。可自动按程序完成工件的检测、抓取、放置、按照设定的轨迹进行工作,保证了伺服电机、主轴、从动轴等各执行构件的动作相互协调,系统运行可靠。

2硬件方案设计

本文设计的并联机械手主要由三条主动臂、三条从动臂和上下两个平台组成,每条主动臂上由一个伺服电机驱动,一个铝制主动臂和一组碳棒组成的从动臂连接,两个平台也分别是用铝材料打造而成。三个伺服电机固定在主平台上,电机与铝制主动臂是通过键结构连接,该结构使电机与主动臂联为一体,主动臂另一端同从动臂连接,从动臂与动平台框架连接。当机构圆点回归运动时,主动臂末端连接的三个伺服电机同时作用于动平台,这样就可以让动平台位于固定的一点,全部结构由三维建模软件SOLIDWORKS设计并仿真,在完成仿真后进行分零件加工。并联机械手运动机构的三维模型图如下图1所示。

当机构需要对物体进行抓取时,则需要伺服电机同时输出不同的脉冲数,进而带动整个机构到达指定位置。动平台框架上可以根据生产中的实际需要来安装不同形式的抓手。本文为了实现对不同形状镍铁合金物体的抓取,采用了电磁铁,用于拾取工作台内的镍铁金属物件(例如螺丝,螺帽,硬币等),体现机械手整体的灵活性、精确度而选择,为了不影响吸取周围的金属物件,吸盘的周围增加了缓冲套,为了能吸到物件偏离而设计,也可以防止吸到其他的物件,选择吸盘不止可以金属分类,也可以对金属和非金属的杂物进行筛选。在动平台不但可以装电磁铁,也可以和切割、画图、扫描等功能多元化结合,可以拓展的功能多种多样。

为了进行视觉信息的采集,本机构中采用了摄像头模块,其分辨率为320*640像素,视角为75度广角镜頭,主要功能是捕捉工作台上的物件位置外观,可以附件工作录像、实施拍照等功能,增加摄像头可以大大提升了设备的智能化水平,对于不同的器件的分拣,只需要扩展其识别类别即可。摄像头的工作内容为识别工件的位置、形状等信息,将相关信息传输到人机界面,人机界面将数据进一步传输到PLC,等待PLC计算并控制机械手动作并对其监视,确认无误后进行下次识别工作。

PLC可编程控制器作为本装置的控制核心处理器,选择的是三菱Q系列PLC,作为一款中型PLC产品,三菱Q系列PLC具有更高的处理速度和更多的智能模块可以选择。具体的各模块型号如下:Q61P电源、Q30UDCPU、QD75D2N定位模块、QX40输入模块、QY10输出模块、QJ71E71-100以太网模块,伺服运动控制器选择:三个MR J3-10A伺服驱动器、三个HF-KP13伺服电机。

本装置状态的监控采用三维力控监控软件,作为一款主流的控制监控HMI,力控提供了性能优异的实时数据库、多设备接口、专业的HMI等功能,为完成机械手控制系统的设计提供了良好的基础。

3软件方案设计

3.1 PLC控制模块

在PLC程序中采用双精度64位的浮点型传送指令将实物中的主动臂长度,从动臂长度输入到某个指定的位置中,如"EDMOVP E20 D2"。然后,运用PLC程序里的浮点型算法指令"ED*、ED/、ED-、ED+"编写上述计算出夹角的方程,PLC程序中动平台中心点P的坐标是通过外部信号传输给它的,每一次P点的坐标更新都会通过PLC编写的算法重新进行计算,PLC算法最终是计算出主动臂和XY平面的浮点型弧度角,所以需要再通过PLC转化,将算出来的浮点型弧度值转化,如"DINTD D0 D4"。最后对计算出来的弧度进行放大处理转化为三个伺服电机的脉冲数,让三个电机运行到硬币位置,电磁铁得电硬币被吸引实现抓取,抓取后运动到指定区域后电磁铁失电实现硬币放置,完成本次智能识别抓取任务,并进行下一次识别动作准备。

3.2 定位模块参数设置

伺服放大器MR-J3-10A具有更高性能和更高功能,其控制模式有位置控制、速度控制和转矩控制,广泛用于机械工具和工业机械等需要高精度位置控制和平稳速度控制。伺服控制参数的设定是本设计的重点,通过Q系列PLC的参数设置使用编程软件Works2对其自带定位参数进行修改,伺服系统内部参数设定,是根据系统要求对可编程控制器的参数进行相关设置,从而使PLC通过脉冲来控制伺服放大器来对伺服电机控制,通过设置机械设备和相应电机的速度来对系统进行速度控置。

3.3 PLC控制模块

视觉识别模块主要完成对硬币形状、颜色、大小的识别。它是整个装置中的核心信息驱动模块,主要由工业摄像机和相关软件组成。工业摄像机可以清晰的拍摄到物料圆槽中的所有饰品,并形成图像传递给信息处理计算机,为了完成饰品原料的精确抓取,需要完成样本库的创建、图像的抓取、二值化、轮廓识别、子图抠取、子图旋转、矢量化运算、样本比对等环节,最终完成每个饰品的位置、方位、倾角、文字符号的定位和模式识别。得到这些信息后,机械手才能正常的完成工作。因此视觉识别模块为系统核心模块和其他模块的正常运转提供必要条件。

4系统调试

4.1 程序编辑

使用三菱编程软件GX Works2进行程序的编辑,打开GX Works2软件,设置相关PLC参数,进入主程序编辑界面,输入相关程序,编辑QD75P2模块的相关参数。具体操作步骤如下:

(1)新建程序文档,更改程序文件名;

(2)进入软件,更改PLC类型、程序语言;

(3)输入用户程序,在程序编辑框内,逐条输入程序指令;

(4)编辑程序,如果程序中有语法错误,则给出错误的数量。

4.2 模拟调试

通过计算机和PLC连接,使用编程软件GX Works2上的模拟调试功能对系统进行虚拟调试,虚拟调试不需要连接设备减小了系统损耗,也使程序编写更加方便,是系统调试必须要进行的环节,具体操作步骤如下:

(1)在断电情况下,用编程电缆(PC/PPI电缆)将计算机和PLC主机相连;

(2)接通计算机与PLC的工作电源;

(3)在计算机上运行GX Works2软件,并进行正确的通信参数设置;

(4)通过GX Works2软件,将机械手的控制系统程序导入至PLC中,并将相关的定位数据同时写入PLC中;

(5)建立计算机和PLC主机的在线联系;

(6)用户程序监视运行;

(7)用户程序动态调试。

结合程序监视运行的动态显示,分析程序运行的结果,以及影响程序运行的因素,然后在STOP状态下对程序进行修改编辑,重新编译、下载、监视运行,如此反复修改调试,直至得出正确运行结果为止。

4.3联机调试

在断电条件下硬件线路接好,按照电路图要求,将PLC和外部设备通过航空插座相连,同时将PLC和编程计算机,伺服放大器与伺服电机相连。将系统所有设备接通电源后,PLC在计算机的监视下运行用户程序。观察系统运行动态是否符合设计要求。伺服电机执行回原点动作,定位启动按键断开,按下"原点回归"按键,近位开关将回到起始位置。第一步定位完成。 当摄像头成功的识别出物体后,PLC将位置数据传送给各个伺服放大器,伺服放大器驱动X、Y、Z轴同时运动,到达定位点,接着,PLC控制电磁铁得电,将物体吸引实现抓取;最后,当机械手抓到物体后,再将抓取物体先提升到指定高度,平移,最后下移,到达指定高度后,将物体放置下来,并做好对下一物体的抓取准备,完成了一个抓取周期。

5 结 论

并联机械手由于其刚度大、承载能力弱、响应速度快、精度高以及惯性小等特点,在轻工业中得到了广泛的应用,成为了机械代替人力的典型范例。随着机械手应用的普及,机械手向着专用化、机械结构模块化、可重构化的方向发展,机械手的运动更加的灵活准确多样化,其控制方式也在向着多元化的方向发展,其应用将有着更大的发展空间。

参考文献(References)

【1】王成福.黄敏,张小杭.电器及PLC控制技术 [M].浙江大学出版社,2008.(Wang Chengfu, Huang Min, Zhang Xiaohang. [M]. control technology, Zhejiang University press, 2008.)

【2】王海, 李洪奎, 刘晓. 基于PLC的多轴控制研究[J]. 机械工程学报, 2008.(Wang Hai, Li Hongkui, Liu Xiao. Based on the multi axis control of [J]. PLC Journal of mechanical engineering, 2008.)

【3】刘建峰. 基于PLC的多轴运动控制系统的研究[J]. 机械制造与自动化, 2007.(Liu Jianfeng. Research on multi axis motion control system based on [J]. PLC machine manufacturing and automation, 2007.)

【4】张万忠.可编程控制入门与应用实例[M].北京:中国电力出版社, 2005.(Zhang Wanzhong. Introduction and application of programmable control [M]. Beijing: China Electric Power Press, 2005.)

【5】刘洪涛.PLC应用开发从基础到实践[M].北京:电子工业出版社, 2007.(Liu Hongtao.PLC application development from basic to practice [M]. Beijing: Electronics Industry Press, 2007.)

【6】徐国林.PLC控制技术[M] 徐国林.北京:机械工业出版社, 2007.(Xu Guolin.PLC control technology [M] Xu Guolin. Beijing: Mechanical Industry Press, 2007.)

【7】吕景泉.可编程控制器技术教程(第2版).北京:高等教育出版社,2006.( Lv Jingquan. Programmable controller technology tutorial (Second Edition). Beijing: Higher Education Press, 2006.)

【8】三菱電机.伺服驱动器的技术资料[M].上海: 三菱电机自动化上海有限公司, 2004.(MITSUBISHI motor. Technical data of servo drive [M]. Shanghai: MITSUBISHI electric automation Shanghai Co., Ltd., 2004.)