解析几何课程内容发展的逻辑与教学实验

2017-05-31 03:57张忠旺王秀丽吕梦雨马銘鑫
魅力中国 2016年28期
关键词:教学实验解析几何

张忠旺++王秀丽++吕梦雨++马銘鑫

摘 要:本文研究了解析几何教学、核心教学内容的发展史以及现代化趋势,认识到了解析几何现代发展的特点。它的核心教学内容的发展对教学模式的创新是新的驱动力。要求教学必须达到学生能够利用计算机及相关软件分析复杂曲线、曲面。有效的融合代数方程、计算机与几何成为解析几何教学这三个方面内容的教学模式一定程度上能够达到解析几何的现代化教学要求。

关键词:解析几何 代数方程 计算机绘图 人機交互 教学实验

一、解析几何与线性代数课程教学内容的现状和历史

解析几何主要内容是用向量代数方法研究二、三维空间内曲线、曲面的几何问题。向量代数方法主要是一、二次的代数方程与线性方程组。从现在一些高校使用的教材可也看到,解析几何与线性代数课程[1][2]的合并(或集成)为一门课占有不小的比例。下面相关教材的信息统计,可以获知这些变化。工科与理科专业使用教材的情况:工科专业使用的教材《线性代数与解析几何》 (网络检索结果约500,000个)或 《线性代数与空间解析几何》(网络检索结果约562,000个)的主要章节为:行列式及其计算,向量代数,平面与直线,平面与直线,矩阵及其运算,n维向量与线性方程组,特征值与特征向量,二次型与二次曲面,线性代数与空间解析几何的应用模型。工科专业使用的教材《线性代数》(网络检索结果约686,000个)。使用这两类教材的比例约为562﹕686。理科专业使用的教材《高等代数与解析几何》(网络检索结果约19,400个)的主要章节为:多项式,行列式,矩阵,线性空间,线性变换, Euclid 空间,双线性函数与二次型。理科专业使用的教材《空间解析几何》(网络检索结果约49,200个)。使用这两类教材的比例约为194:492。从教材和课程内容,我们看到二次曲面与线性代数在其中扮演重要角色。把高等代数与解析几何合并成一门课具有其内在的合理性,但是,解析几何范围内的几何问题包括除了圆锥曲线(Conic Sections)和二次曲面性质与图形之外,还有其他的曲线、曲面。这些曲线和曲面大量地出现不同的科学、工程领域中。例如螺旋线、环面。对于这些曲线和曲面,线性代数方法很难处理。同时,按目前的信息与计算科学的解析几何课程教学计划学时,学生系统地学习解析几何比较困难。我们希望了解和认识一门课程的内涵,也就必须认识它的发展史。解析几何的创立得益于代数学的飞速发展,17世纪笛卡尔[3]引进坐标系后,一大类几何图形和代数方程成为等价的事物。把图形转换为代数方程描述的数与数的关系来研究的方法就称为解析几何。1874年,美国翻译出版的法国学者J.B.BIOT的解析几何教材:《AN ELEMENTARY TREATISE ON ANALYTICAL GEOMETRY》[4],其中没有出现行列式与矩阵等线性代数的主要方法。1902年,David Hilbert 的几何基础[5]出版了。100多年后,北京师范大学出版社在1984年出版了朱鼎勋与陈绍菱的解析几何教材《空间解析几何学》[6]。这是一本解析几何课程的典型教材。其中主要的方法是向量代数、坐标变换与二次型。传统的数学课程体系中(包括工学数学课程体系),将解析几何单独列为一门课程(或一些独立的章节),主要讲述空间图形(包括空间直线、平面和二次曲面)的代数处理方法。其实,解析几何本身与线性代数有着深刻的内在联系,例如,空间直线和平面都是由线性方程组来表示的,二次曲面的分类其实就是二次形的标准形问题。所以将这些内容加入到高等代数中来,不但节省了大量的时间,而且对学生加深两门课程的理解也是非常有益的[1]。

二、解析几何的现代化与应用前沿以及课程的教学实验

1963年,伊凡·苏泽兰(Ivan Sutherland)在麻省理工学院发表了名为《画板》的博士论文[7],它标志着计算机图形学的正式诞生。至今已有五十多年的历史。使用计算机处理三维空间的曲线与曲面的显示与人机关系。它可以研究大量的复杂方程的曲线与曲面的性质以及它们之间的关系。在解析几何课程教学方面,计算机作图确实可以增加学生的对非二次曲面几何的直观理解,极大地提高了教学的效率,以及学生直观地理解复杂曲线、曲面。例如用某种计算机语言,计算、绘制一个旋转的椭圆抛物面。如果用z=x^2+y^2形式的方程,编写程序:

x=[-10:0.1:10];y=[-10:0.1:10];[X,Y]=meshgrid(x,y);Z=X.^2+Y.^2 ;

plot3(X,Y,Z)

画出来的立体图上的网格是分别按x、y的参数值的变化生成的图(1)。同样的方法,编写程序:

x=[-10:0.2:10];y=[-10:0.2:10];[X,Y]=meshgrid(x,y);Z=X.^2-Y.^2;

plot3(X,Y,Z)

画出的方程为z=x^2-y^2的双曲抛物面上的网格是分别按x、y的参数值的变化生成的图(2)。

不仅仅如此,计算机作图是对解析几何的传统教学方法、手段的重大改进,还克服了复杂曲面曲线无法绘制的囧境。如果仅仅认识到利用计算软件绘制曲线与曲面,可以比较直观的看到曲面的一些基本性质,例如:对称性,有界性,边界等,那实质上还是辅助教学,教学的内容没有进化与更新,也就是给定了曲面的方程,然后计算、绘制该曲面的3维图像,那是远远不够的。一方面计算机绘图渗透到了解析几何课程的教学中,另一方面更重要的发展是三维空间中的曲面、曲线已深入到了可以直观展示不同学科领域的现象、性质与规律。例如,近二、三十年,计算机计算速度的大幅提高,曲线、曲面的计算已经有了相当的发展。最初的3D动画、3D电影,现在的3D打印、3D重构已经深入到科学研究、工程设计以及日常生活中,这些新应用、新技术、新理论还在不断地进化。这些都依赖曲线、曲面的计算与测量。一般情形是曲面并不都是教材中的二次曲面。测量方法有无线电、激光等电学、光学设备,例如:照相机、摄像机、雷达等。特别是在计算机视觉[8]方面, 3D重构[9]的发展对三维空间的曲面、曲线的计算提出更高的要求,计算机视觉是计算机图形学的反向计算。计算机图形学是从3维对象测量计算获得图像数据,而计算机视觉通常是从图像数据通过计算获得观测对象的3维图形,也有这两种方法的结合趋势,例如:在增强现实技术中,就是在屏幕上把虚拟世界套在现实世界并进行互动。

1.解析几何中,n次曲线、曲面在笛卡尔坐标系下的3维计算的手段是n次代数方程,笛卡尔坐标系与代数方程构成了这类3维计算的基础。 笛卡尔坐标系与代数方程帮助我们充分认识了二次曲线与曲面。例如:图(1)与图(2)就是使用了笛卡尔坐标系与椭圆抛物面方程x2+y2-z=0、双曲抛物面方程x2-y2-z=0,通过计算给出的这两类曲面的视图。

2.在工程与其他科技领域,等高线图可以表示观测对象特定数据的3维图。这一类曲面一般不能由代数方程来表示。例如:陆地的海拔等高线地图,规则物体或流体的温度分布图,某区域的大气的水汽分布图,运动物体的GPS轨迹图。等高线图实质上是一张关于某种特定数据的照片,形式上等同于图(1)与图(2)。这类图都是通过对观测对象进行测量而获得的某种特定数据对应的三维空间的曲线与曲面图。这些曲线与曲面没有对应的方程,都用离散的二维数据来表示,并存储为一张数字照片。

3.观测对象的3D重构是从一些二维数据照片通过计算得到其他若干个笛卡尔坐标系下的二维数据照片。

1)如果已知曲线、曲面在一个笛卡尔坐标系内的代数方程,那么通过不同笛卡尔坐标系之间的坐标变换,能够确定地计算曲线与曲面的新代数方程。

2)如果已知曲线、曲面在一个笛卡尔坐标系内的等高线图,同样的方法可以得到新笛卡尔坐标系下的二维数据照片。

3)如果已知曲线、曲面在一个笛卡尔坐标系内的其他类型的二维数据照片(例如:一般的相机照片),如何得到新笛卡尔坐标系下的二维数据照片?这部分内容正是计算机视觉研究的核心内容之一。我们指导学生在这个方面做了一些试验与计算。下面简单介绍一下实验的基本方法与实验的结果。在对物体进行拍摄后得到的相片中,由于物体表面几何形态、点光源位置、光强等因数的改变会导致物体表面反射光路的改变与反射光光强的变化,照片中拍摄对象的明暗关系都会发生变化。我们可以根据光源与物体表面的关系(包括理想反射面与一般反射面的成像理论,点光源与反射面亮度的关系),得到点光源下理想表面反射成像的规律。控制其中一个或多个影响物体表面成像的重要参数,改变点光源位置等,拍摄观测对象,利用软件读取照片,用给定的光反射模型进行计算,可以得到观测对象的一个完整的表面的三维数值图像。下图(6)(7)是试验中拍摄的倾斜纸板照片与计算得到的三维数值图像。

三、解析几何教学实验的一些体会

解析几何课程本着联系实际科技应用与科学前沿[10],拓展教学内容,开阔视野的目标,把计算机图形学与“3D计算”的思想、方法与实践引入。我们可以在教学过程使用计算机与显示设备,一方面,在三维空间中,把复杂代数方程对应的图像的基本性质比较直观地显示出来。另一方面,认识到三维数值图像在计算机视觉等高新科技领域的重要应用。通过这一方面的教学与实践,让学生认识到不仅仅方程的计算与推理可以分析曲线、曲面的性质,还可以通过适当的计算也可以分析曲线、曲面的性质。进一步,认识到计算机的计算能力与显示同样能够证实曲线、曲面的特征。即基于适度的基本编程的人机交互[7]来学习曲线、曲面的基本规律。上文列举了的解析几何与计算机相结合的例子,通过使用这种更简洁易懂,同时更加现代化的解题办法,真正实现数学与计算机的结合,使得解析几何这门学科具有新的生命力。

参考文献:

[1] 孟道骥. 一门“国家精品课程”的建设-南开大学“高等代数与解析几何”课程[J]. 高等数学研究, 2005,8(3).

[2] 冯良贵,戴清平,谢瑞强,李超,陈挚. 国防科技大学“线性代数与解析幾何”课程建设的特色[J]. 大学数学,2009,(6)25.

[3] R.Descartes.The Geometry of René Descartes [M].Translated by David Eugene Smith and L. MaricaLatham,Dover Publications, Inc. 1954.

[4] D.Hilbert. Foundations of Geometry[M]. Authorized by translation by E.J.Townsend, 1902.

[5] J.B.Biot. An Elementary Treatise on Analytical Geometry[M]. Cadets of the Virginia Military Institute at Lexington VA, 1874.

[6] 朱鼎勋,陈绍菱.空间解析几何学[M].北京师范大学出版社,1984.

[7] I.Sutherland.Sketchpad:A Man-Machine Graphical Communication System[D].Mass-

achusetts Institute of Technology, 1963.

[8] O.Faugeras. Three-Dimensional Computer Vision : A Geometric Viewpoint[M]. MIT Press, 1993.

[9] U. C. Pati. 3-D Surface Geometry and Reconstruction:Developing Concepts and Ap-

plications[C].Information Science Reference, 2012.

[10] 何援军. 几何计算及其理论研究[J]. 上海交通大学学报, 2010, (3)44.

猜你喜欢
教学实验解析几何
用几何的观点解释线性代数问题
虚拟机技术在计算机组装课堂中的应用
基于“互动教学”理论的高职篮球教学实验研究
高校体育教学应用心理健康影响的实证研究
探究数学软件在解析几何教学中的应用价值
具身教学应用于小学绘本故事课堂的研究
能否用斐林试剂鉴定“温度对酶活性的影响”实验
用联系发展的观点看解析几何
例谈平面向量在解析几何中的应用
《微分几何》教学的教改实践感受