机载计算机电源系统稳定性研究

2017-06-23 16:14冯非王超艾铁柱
物联网技术 2017年6期
关键词:开关电源阻抗匹配

冯非+王超+艾铁柱

摘 要:文中从机载计算机实际应用出发,针对机载计算机EMI电源滤波器的输出阻抗、开关电源的输入阻抗进行分析,探讨滤波器输出阻抗和开关电源输入阻抗匹配的原因,并提出机载计算机电源模块及组成系统的稳定性判定标准。

关键词:电源系统;稳定性标准;阻抗匹配;开关电源

中图分类号:TP302 文献标识码:A 文章编号:2095-1302(2017)06-0-03

0 引 言

随着数字技术的发展,航空电子领域机载计算机已得到广泛应用,为航空器带来便利。机载计算机通常使用开关电源模块产品为CPU、接口、总线等负载模块供电,并使用EMI电源滤波器降低电磁干扰,但在机载计算机设计中,开关电源模块及组成系统的稳定性问题经常被忽视,稳定性严重影响机载计算机系统的性能和安全。

在机载计算机中,开关电源模块往往可以单独通过稳定性评估及试验验证,例如小信号稳定要求、所用元器件的离散性、高低环境下电特性等方法进行分析。而机载计算机在使用电源模块组成电源系统时,却可能出现电源系统不稳定等故障,此类故障经常发生在EMI电源滤波器和电源串联使用的模式中。

本文基于EMI電源滤波器和电源串联使用模式,通过对电源系统进行建模,针对机载计算机EMI电源滤波器的输出阻抗、开关电源的输入阻抗进行分析,确定EMI电源滤波器输出阻抗对滤波器及电源系统稳定性的影响,并提出机载计算机电源模块及组成系统的稳定性判定标准。

1 稳定性分析

为了直观分析机载计算机的稳定性,将机载计算机的滤波器、电源模块简化为串联使用的电源系统模型进行阻抗分析。模型A为EMI电源滤波器,模型B为开关电源模块,系统模型如图1所示。

Ta、Tb分别为A、B的传递函数,Zo为A的输出阻抗,Zi为B的输入阻抗。那么该系统的传递函数为T:

该系统的传递函数T分母中的Zo/Zi决定了该系统传递函数的稳定性,即EMI电源滤波器的输出阻抗、开关电源的输入阻抗决定了该电源系统的稳定性。

使用Middlebrook判定方法可有效准确地判断系统工作的稳定性。该法则可用于电源系统级联稳定性分析,主要采用阻抗分析方法,由加州理工学院的Middlebrook教授提出,其原理是运用电源输出阻抗与负载输入阻抗之比来分析开关电源间的阻抗稳定性。Middlebrook判定方法指出,独立的功率变换器模块在级联运行时,其系统的稳定性应使级联处前级模块的输出阻抗小于后级模块的输入阻抗。

EMI电源滤波器的输出阻抗、开关电源的输入阻抗应遵循阻抗失配原则。为保证该电源系统的稳定性,在全输入范围、全频段范围内EMI电源滤波器的输出阻抗应小于开关电源的输入阻抗。

2 阻抗分析

2.1 EMI电源滤波器输出阻抗

机载计算机广泛使用EMI电源滤波器进行电磁干扰的抑制。EMI电源滤波器最主要的性能参数就是插入损耗,插入损耗分为共模和差模插入损耗。插入损耗越大,表明该滤波器对干扰的抑制能力越强。内部电路通常采用如图2所示的滤波器电路图。

等效EMI电源滤波器的参数,简化为LC滤波电路。电路模型如图3所示。经计算,输出阻抗如公式(2)所示:

Lf为滤波器模型中两个差模电感量之和,即LD1+LD2;Cf为EMI电源滤波器内Cx电容与电源模块输入端滤波电容之和;Rind为滤波器内共模电感及两个差模电感直流电阻之和,在设计、计算EMI电源滤波器输出阻抗时,应考虑滤波器的阻尼特性,它决定了LC滤波电路谐振峰的大小。

利用Matlab对该表达式进行仿真,得到EMI电源滤波器输出阻抗的典型曲线图,如图4所示。

2.2 开关电源输入阻抗

开关电源的输入阻抗体现了输入电流变化时输入电压的变化。通常来说,机载计算机常用的降压DC/DC变换电路在中低频段表现为电阻特性。DC/DC变换器反馈环路调节输出特性时,相对于输入端口,DC/DC变换器表现为额定功率负载,输入端口等效电阻为负阻抗。

在设计应用中,可以使用仪器测量法对电源电路进行输入阻抗测试。仪器测量法使用噪声分离设备分离共模、差模噪声并计算阻抗值,但数学表达式较复杂,该差模阻抗测量计算方法很难实现。

对电源电路建立模型,推导该电路的传递函数,并根据传递函数得出该电路的输入阻抗。以机载计算机中常用的BUCK型降压DC/DC变换器为例,其简化模型如图5所示。

根据图中电路拓扑形式,该型降压DC/DC变换器的输入阻抗为:

利用Matlab对该表达式进行仿真,得到降压DC/DC变换器输入阻抗的典型曲线图,如图6所示。

将EMI电源滤波器的输出阻抗、开关电源的输入阻抗放置在同一幅频特性图中就可以直观判断在全频段范围内,前级模块输出阻抗与后级模块输入阻抗的关系,并由此得出电源系统的稳定性。

若EMI电源滤波器的输出阻抗小于开关电源的输入阻抗,并留有6 dB的安全裕量,则电源模块及组成系统处于稳定状态,如图7所示。反之,若EMI电源滤波器的输出阻抗大于开关电源的输入阻抗,则电源模块及组成系统处于不稳定状态。此外,还应考虑开关电源在不同工作状态下,输入电压、输入负载变换时的输出阻抗变化。

3 试验结果及分析

为验证上文阻抗分析,根据机载计算机工作模式,利用EMI电源滤波器和电源的串联接法,通过设置EMI电源滤波器的输出阻抗和电源的输入阻抗搭建系统故障模型,实现该系统的不稳定工作状态。

按照图2设置某机载计算机EMI滤波器参数,Lf=LD1+LD2=400 μH,Cf=70 μF,Rind=RL+RLD1+RLD2=0.14 Ω,并根据该机载计算机的实际工作状态得出电源的输入阻抗为27 dBΩ。endprint

将Lf=400 μH,Cf=70 μF,Rind=0.14 Ω代入公式,经计算,滤波器输出阻抗峰值为33 dBΩ,截止频率为0.96 kHz,后级输入阻抗为27 dBΩ。在0.96 kHz频率处,存在前级输出阻抗大于后级输入阻抗的情况,不满足Middlebrook判定方法,则该系统为不稳定系统。滤波器的输出阻抗、电源模块的输入阻抗如图8所示。

在实验室中,为该机载计算机提供28 V直流电压,通过示波器检测计算机上电过程中滤波器输出的28 V电源信號,发现此时该处电压发生震荡,且震荡最大电压值为32.1 V,震荡最小电压值为24.5 V,振荡频率为1.18 kHz,与分析结果一致。

再次改变EMI电源滤波器参数,验证系统稳定状态。将Lf更改为50 μH,其他参数不变。从图9中可以看出,此时系统处于稳定状态。通过示波器检测计算机滤波器输出,振荡现象消失,与分析结果一致。

由分析和实验结果可知,要保证机载计算机电源系统的稳定性,就要对组成串联级联模式电源系统的EMI电源滤波器、开关电源产品的输入输出阻抗进行分析,按照在全频段范围内,前级模块的输出阻抗须小于后级模块输入阻抗的判定准则,评估判定机载计算机电源系统的稳定性。

4 结 语

文中探讨了滤波器输出阻抗和开关电源输入阻抗匹配的原因,并提出机载计算机电源模块及组成系统的稳定性判定标准,有助于提升开关电源模块及组成系统的稳定性。

参考文献

[1]杨继深.电磁兼容技术之产品研发与认证[M].北京:电子工业出版社,2004.

[2]谢金明.高速数字电路设计与噪声控制技术[M].北京:电子工业出版社,2003.

[3]杨旭,裴云庆,王兆安.开关电源技术[M].北京:机械工业出版社,2004.

[4]杨雷,林开伟,张俊涛.电源系统阻抗对电路板ESD测试的影响[J].物联网技术,2014,4(11):43-45.

[5]田育新,孙立萌,孟颖悟,等.热插拔技术在机载计算机电源系统中的研究[J].航空计算技术,2009,39(5):104-106.

[6]卢杰,邝小飞.频率抖动技术在开关电源振荡器中的实现[J].物联网技术,2014,4(12):39-40.

[7]郭创,刘华伟,樊蓉,等.小型机载计算机电源的设计与研究[J].电子技术应用,2003,29(5):27-29.

[8]孟颖悟.新型机载计算机电源架构的研究[J].航空计算技术,2007,37(5):63-65.endprint

猜你喜欢
开关电源阻抗匹配
基于LCC-S补偿拓朴MCR-WPT系统的宽范围阻抗匹配研究
微波无线传能系统中直流阻抗匹配器设计①
多阶阻抗匹配与宽频带天线的设计分析
继电保护用开关电源的故障分析及改进研究
基于开关电源的OLED显示驱动板的设计
电磁超声检测系统阻抗匹配电路优化设计