冷弯中厚壁轴压方矩形钢管柱抗震可靠度分析

2018-09-11 08:45李功文李元齐
关键词:厚壁抗力定性

李功文, 李元齐, 2

(1. 同济大学 土木工程学院, 上海 200092; 2. 同济大学 土木工程防灾国家重点实验室, 上海 200092)

近年来,随着冷弯型钢生产状况的改善及设备生产能力的日益发展,我国已能生产壁厚20 mm的冷弯型钢.受冷弯效应的影响,冷弯厚壁型钢表现出与冷弯薄壁型钢及普通热轧、焊接型钢不同的特性,主要体现在材料特性、残余应力、承载力特性以及抗震性能等有较大的差异.因此,不少学者[1-9]针对冷弯厚壁型钢的材料特性、残余应力、承载力特性以及抗震性能等进行了理论及试验研究,得到了冷弯厚壁型钢考虑冷弯效应的强度计算公式、残余应力分布模型、强度及稳定承载力特性、滞回曲线及恢复力模型等一系列成果.在此基础上,在编的《冷弯型钢结构技术规范》GB50018-201X引入了冷弯厚壁型钢的相关内容,将适用厚度调整为0.6~20 mm.这对推动冷弯厚壁型钢在我国的应用与发展具有重要意义.

我国《建筑抗震设计规范》(GB50011-2010)[10]规定了普通钢结构的强度及稳定设计承载力抗震调整系数,但是缺少冷弯厚壁型钢的相应内容.因此,对冷弯厚壁型钢轴压构件进行抗震可靠度分析从而得到其承载力抗震调整系数具有重要意义.文献[3-4]对Q235和Q345冷弯厚壁方矩管进行了材性及短柱试验研究,得到了各短柱的极限承载力数据.文献[9]总结了Q235和Q345冷弯厚壁方矩管的材料不定性、几何不定性及稳定设计计算模式不定性,并在此基础上进行设计可靠度分析,提出了冷弯厚壁方矩管稳定设计抗力分项系数.本文将在此基础上对Q235和Q345冷弯厚壁型钢轴压构件进行抗震及非抗震设计可靠度分析,最终给出Q235和Q345冷弯厚壁型钢构件强度和稳定设计抗力分项系数以及承载力抗震调整系数建议值.

1 抗力不定性分析

结构构件抗力R可表示为

R=RKKMKAKP

(1)

式中:RK为结构构件抗力标准值;KM为结构构件材料性能不定性系数;KA为结构构件几何特性不定性系数;KP为结构构件计算模式不定性系数.

考虑KM、KA和KP相互独立,由概率理论可以确定结构抗力的平均值和标准差,即

μR=RKμKMμKAμKP

(2)

(3)

结构构件的抗力不定性系数KR为构件抗力R与抗力标准值RK之比,即

KR=R/RK

(4)

则KR的平均值可表示为

μKR=μR/RK=μKMμKAμKP

(5)

1.1 强度设计抗力不定性

1.1.1材料性能不定性

《钢结构设计标准》[11]编制组于2012年对国内主要钢构件生产厂家的钢材进行统计分析,得到Q235和Q345钢材材料性能不定性相关参数见表1.这一统计结果与1985年陈国兴等[12]得到数据(Q235和Q345钢材材料性能不定性的均值和变异系数分别为1.140、0.073,1.040、0.066)相比,均值和变异系数均有所提高.

表1 材料性能不定性统计结果

1.1.2几何不定性

文献[9]以从武钢、宝钢等钢结构加工厂家收集到的冷弯厚壁方、矩形钢管的实测截面数据为样本进行统计分析,并运用Kolmogorov-Smirnov检验法进行正态分布性检验.结果表明,在95%的置信水平下,样本服从正态分布.文献[9]得到的几何参数不定性统计参数见表2.

表2 几何参数不定性统计结果

1.1.3计算模式不定性

文献[3-4]对截面宽度为108~350 mm、厚度为8~16 mm的Q235和Q345冷弯厚壁方、矩形钢管短柱进行了轴压试验研究,得到各短柱的极限承载力.表3列出了各短柱的实测截面尺寸及极限承载力(Fu)[3-4],表中S代表方形管,R代表矩形管,D、W、r、t的定义见图1.

表3 短柱实测截面尺寸和极限承载力

图1 截面尺寸定义

我国《钢结构设计规范》(GB50017—2003)[13]定义轴心受压构件的强度计算公式为

F=fAn

(6)

式中:F为轴心压力;An为净截面面积;f为构件抗压强度设计值.本文在计算时,An取构件全截面面积A,f取试件的全截面屈服强度加权平均值fa.fa计算如下:

(7)

式中:fyf、fyc分别为平板、弯角部位的实测屈服强度;Af、Ac分别为平板、弯角部位的截面面积.则计算模式不定性的计算公式为

(8)

表4和表5分别列出了Q235和Q345构件的计算模式不定性计算结果,相应的计算模式不定性统计参数见表6.

表4 Q235构件计算模式不定性

表5 Q345构件计算模式不定性

表6 计算模式不定性统计参数

假定计算模式不定性服从正态分布,则抗力R是若干正态随机变量的乘积.根据概率论中心极限定理,可以近似认为抗力R服从对数正态分布.按式(3)和式(5)计算Q235和Q345冷弯厚壁型钢轴压构件的强度设计抗力不定性的平均值和变异系数,计算结果如表7所示.

1.2 稳定设计抗力不定性

文献[9]根据陈国兴等[13]提出的材料不定性统计结果给出了冷弯厚壁型钢稳定设计抗力不定性的统计结果.这里根据表1所列最新材料不定性统计结果对文献[9]中的抗力不定性统计结果进行更新,更新后的统计结果见表8.

2 荷载不定性及荷载组合

2.1 荷载不定性

工程中常见荷载的不定性基本统计参数如表9所示[14].文献[15]指出50年设计基准期内随机地震作用的概率分布符合极值I型分布,在此基础上文献[16]给出了50年设计基准期内随机地震作用的均值与变异系数,见表9.

表7 强度设计抗力不定性分析结果

表8 稳定设计抗力不定性分析结果

2.2 荷载组合

2.2.1非抗震设计荷载组合

工程中最为常见的可变荷载为活荷载(包括住宅活荷载和办公楼活荷载)和风荷载.根据上述规定,在确定非抗震抗力分项系数γR时,选取G+L(住宅)、G+L(办公楼)、G+W和G+L(住宅)+W4种荷载组合情况进行计算.由于住宅活荷载比办公楼活荷载更为不利,因此不考虑办公楼活荷载和风荷载同时参与的组合.本文选取的荷载组合如表10所示.

表9 荷载及荷载效应的统计参数和分布类型

考虑到恒载在荷载组合中所占的比例对结构可靠指标的影响,引入参数如下:

ρ=最大可变荷载标准值/恒载标准值

(9)

由于ρ值的变化对结构可靠指标的影响很大,因此在确定最优抗力分项系数时,分别考虑了ρ=0.25、0.50、1.0和2.0这4种情况.

表10 研究选用的荷载组合

2.2.2抗震设计荷载组合

《建筑抗震设计规范》(GB 50011-2010)[10]规定了结构构件的地震效应和其他荷载效应的基本组合,即

S=γGSGE+γESEk+ψwγwSwk

(10)

表11 不考虑风荷载的抗震设计荷载组合选用

表12 考虑风荷载的抗震设计荷载组合选用

式中:S为结构构件内力组合设计值;γG为重力荷载分项系数,一般情况采用1.2;γE为地震作用分项系数,取1.3;SGE为重力荷载代表值的效应;Swk为风荷载标准值的效用;ψw为风荷载组合值系数,一般结构取0,风荷载起控制作用的建筑应采用0.2.因此,将抗震设计荷载组合分为不考虑风荷载及考虑风荷载两组,分别见表11和表12.同样,由于住宅活荷载比办公楼活荷载更为不利,因此没有考虑办公楼活荷载和风荷载同时参与的组合.文献[16]指出,对于钢结构轴心受压构件,常用的地震作用标准值与恒荷载标准值的比值(ρE)可取为0.75和1.50.对于考虑风荷载效应的荷载组合,定义ρwE为风荷载标准值与地震作用标准值的比值,分别取ρwE为0.75、1.00和1.25以考虑不同大小的风荷载对可靠度指标的影响.同样,考虑到恒载在荷载组合中所占的比例对结构可靠指标的影响,引入参数ρ,即

ρ=活荷载标准值/恒载标准值

(11)

分别考虑ρ=0.25、0.50、1.0和2.0这4种情况.

3 可靠指标选取

我国工程建设国家标准GB 50068-2001《建筑结构可靠度设计统一标准》[17]中规定了我国现行结构设计规范规定的结构构件承载力极限状态设计采用的可靠指标值,见表13.文献[16]给出了结构构件众值烈度下承载力极限状态设计时采用的可靠指标值,见表14.

冷弯厚壁型钢结构构件的破坏大多属于延性破坏,故可以按照安全等级为二级的延性结构将冷弯厚壁型钢结构构件的抗震及非抗震可靠指标分别取为1.5和3.2.

表13 结构构件承载力极限状态设计时采用的可靠指标值

表14 结构构件众值烈度下承载力极限状态设计时采用的可靠指标值

4 设计可靠度分析

运用一次二阶矩法,可以得到最优的抗力分项系数.具体方法如下:首先假定某一抗力分项系数,采用一次二阶矩法求得根据该抗力分项系数所对应的可靠度;然后和目标可靠度对比,不断调整抗力分项系数,直到所求得的可靠度等于目标可靠度为止.

4.1 非抗震设计可靠度分析

4.1.1强度设计可靠度分析

根据表7确定的抗力不定性统计结果,采用表10所列的荷载组合,运用一次二阶矩法得到Q235和Q345冷弯厚壁型钢轴心受力构件的强度设计最优抗力分项系数γR分别为:0.915、0.859.表15和表16分别列出了Q235和Q345冷弯厚壁型钢在该最优抗力分项系数下各荷载组合所对应的可靠指标.

表15 Q235钢可靠指标(γR=0.915)

4.1.2稳定设计可靠度分析

根据表8确定的抗力不定性统计结果,运用一次二阶矩法得到Q235和Q345冷弯厚壁型钢轴心受力构件的稳定设计最优抗力分项系数γR分别为:1.084、1.196.表17和表18分别列出了Q235和Q345冷弯厚壁型钢在该最优抗力分项系数下各荷载组合所对应的可靠指标.

表16 Q345钢可靠指标(γR=0.859)

表17 Q235钢可靠指标(γR=1.084)

表18 Q345钢可靠指标(γR=1.196)

4.2 抗震设计可靠度分析

4.2.1强度设计可靠度分析

根据表7确定的抗力不定性统计结果,分别采用表11和表12所列的荷载组合,运用一次二阶矩法分别得到Q235和Q345冷弯厚壁型钢轴心受力构件在考虑和不考虑风荷载作用下的强度设计最优抗力分项系数γE分别为:0.887、0.734和0.886、0.740.表19和表20分别列出了Q235冷弯厚壁型钢在最优抗力分项系数下各荷载组合所对应的可靠指标,表21和表22分别列出了Q345冷弯厚壁型钢在最优抗力分项系数下各荷载组合所对应的可靠指标.

表19 Q235钢抗震可靠指标(γE=0.887)(考虑风荷载)

表20 Q235钢抗震可靠指标(γE=0.734)(不考虑风荷载)

表21 Q345钢抗震可靠指标(γE=0.886)(考虑风荷载)

表22 Q345钢抗震可靠指标(γE=0.740)(不考虑风荷载)

4.2.2稳定设计可靠度分析

根据表8确定的抗力不定性统计结果,分别采用表11和表12所列的荷载组合,运用一次二阶矩法分别得到Q235和Q345冷弯厚壁型钢轴心受力构件在考虑和不考虑风荷载作用下的稳定设计最优抗力分项系数γE分别为:1.024、0.840和1.155、0.950.表23和表24分别列出了Q235冷弯厚壁型钢在最优抗力分项系数下各荷载组合所对应的可靠指标,表25和表26分别列出了Q345冷弯厚壁型钢在最优抗力分项系数下各荷载组合所对应的可靠指标.

表23 Q235钢抗震可靠指标(γE=1.024)(考虑风荷载)

表24 Q235钢抗震可靠指标(γE=0.840)(不考虑风荷载)

表25 Q345钢抗震可靠指标(γE=1.155)(考虑风荷载)

表26 Q345钢抗震可靠指标(γE=0.950)(不考虑风荷载)

5 承载力抗震调整系数

我国《建筑抗震设计规范》(GB50011-2010)[10]指出,现阶段大部分结构构件截面抗震验算时采用了各有关规范的承载力设计值Rd,因此,抗震设计的抗力分项系数就相应地变为非抗震设计的构件承载力设计值的抗震调整系数γRE,即γRE=Rd/RdE或RdE=Rd/γRE,RdE为抗震承载力设计值.因此,γRE=Rd/RdE=γE/γR.

根据前文的分析结果,Q235冷弯厚壁型钢不考虑风荷载的强度设计承载力抗震调整系数γRE=0.734/0.915=0.80,考虑风荷载的强度设计承载力抗震调整系数γRE=0.887/0.915=0.97;Q345冷弯厚壁型钢不考虑风荷载的强度设计承载力抗震调整系数γRE=0.740/0.859=0.86,考虑风荷载的强度设计承载力抗震调整系数γRE=0.886/0.859=1.03;Q235冷弯厚壁型钢不考虑风荷载的稳定设计承载力抗震调整系数γRE=0.840/1.084=0.77,考虑风荷载的稳定设计承载力抗震调整系数γRE=1.024/1.084=0.94;Q345冷弯厚壁型钢不考虑风荷载的稳定设计承载力抗震调整系数γRE=0.950/1.196=0.79,考虑风荷载的稳定设计承载力抗震调整系数γRE=1.155/1.196=0.97.可见,Q235和Q345冷弯厚壁型钢不考虑风荷载的强度和稳定设计承载力抗震调整系数在0.77~0.86之间;Q235和Q345冷弯厚壁型钢考虑风荷载的强度和稳定设计承载力抗震调整系数均在1.00附近.

考虑到我国规范[13,18]中强度和稳定设计的抗力分项系数均取为稳定设计的抗力分项系数,这里偏保守地将Q235和Q345冷弯厚壁型钢强度和稳定设计的抗力分项系数统一取为1.190,则Q235冷弯厚壁型钢不考虑风荷载的强度设计承载力抗震调整系数γRE=0.734/1.190=0.62,考虑风荷载的强度设计承载力抗震调整系数γRE=0.887/1.190=0.75;Q345冷弯厚壁型钢不考虑风荷载的强度设计承载力抗震调整系数γRE=0.74/1.190=0.62,考虑风荷载的强度设计承载力抗震调整系数γRE=0.886/1.190=0.74;Q235冷弯厚壁型钢不考虑风荷载的稳定设计承载力抗震调整系数γRE=0.840/1.190=0.71,考虑风荷载的稳定设计承载力抗震调整系数γRE=1.024/1.190=0.86;Q345冷弯厚壁型钢不考虑风荷载的稳定设计承载力抗震调整系数γRE=0.950/1.190=0.80,考虑风荷载的稳定设计承载力抗震调整系数γRE=1.155/1.190=0.97.

值得注意的是,冷弯厚壁型钢多用在低多层建筑,即规范[10]规定的一般结构,可以不考虑风荷载.因此,建议Q235和Q345冷弯厚壁型钢的强度设计承载力抗震调整系数取0.65,稳定设计承载力抗震调整系数取0.80.对于风荷载起控制作用的情况,本文只考虑了ρwE=0.75、1.00、1.25这3种情况.从表19、表21、表23、表25可以看到,随着ρwE的增大可靠度指标逐渐减小.因此,当ρwE不大于1.25时可取强度设计承载力抗震调整系数为0.75,稳定设计承载力抗震调整系数为1.00;当ρwE大于1.25时应做进一步分析.

6 结论

对Q235和Q345冷弯厚壁型钢轴压构件进行抗震及非抗震设计可靠度分析,最终给出了Q235和Q345冷弯厚壁型钢构件的强度和稳定设计抗力分项系数及承载力抗震调整系数建议值:

(1) Q235和Q345冷弯厚壁型钢的强度和稳定设计抗力分项系数建议取为1.190,相应的屈服强度设计值分别为195 MPa和290 MPa;

(2) 对于一般结构,Q235和Q345冷弯厚壁型钢的强度和稳定设计承载力抗震调整系数建议分别取为0.65和0.80;

(3) 对于风荷载起控制的结构,Q235和Q345冷弯厚壁型钢的强度和稳定设计承载力抗震调整系数建议分别取为0.75和1.00,当风荷载作用标准值与地震作用标准值的比值大于1.25时应做进一步分析.

猜你喜欢
厚壁抗力定性
近红外光谱分析技术在纺织品定性定量分析上的应用
P92厚壁焊缝相控阵超声检测实验研究
碾压砼重力坝深层抗滑稳定问题探讨
大厚壁对接环焊缝坡口设计及焊接参数分析
分裂平衡问题的Levitin-Polyak适定性
现代主义与20世纪上半叶中国画“进步”之定性
当归和欧当归的定性与定量鉴别
高压容器设计及制造要点概述
引信圆柱螺旋压缩弹簧制造误差对抗力的影响
浅析厚壁复合板设备焊接工艺规程制订