中国煤型铀地质–地球化学研究进展

2019-09-03 09:47周贤青
煤田地质与勘探 2019年4期
关键词:泥炭铀矿矿化

周贤青,秦 勇,陆 鹿

中国煤型铀地质–地球化学研究进展

周贤青,秦 勇,陆 鹿

(中国矿业大学资源与地球科学学院,江苏 徐州 221116)

中国铀矿资源缺口巨大,仅靠开发传统铀矿资源无法满足能源和国防建设不断增长对铀资源的需求,煤型铀资源的开发利用可一定程度上缓解对铀资源的需求压力。通过总结近些年煤型铀的研究成果,对我国主要煤型铀矿的含矿点、铀含量范围、含煤地层的形成时代及分布范围进行了归纳,并给出了煤型铀的界定标准(大于或等于40 mg/kg),为划分煤型铀矿提供依据;对煤型铀的赋存状态、成矿机制及影响因素进行了较为全面的阐述。综合分析认为我国对煤型铀研究较不足,其中对于微观地质选择过程着力不够,而查明煤中铀富集的微观地质选择过程对于成矿机制的理解至关重要;煤型铀矿化时间和期次研究有待进一步加深,有利于分析煤型铀的矿化模式、揭示煤型铀与伴生砂岩型铀矿之间的成因联系,进而深化对煤型铀矿化机制的理解。

煤型铀;进展;矿化机制;影响因素;中国

2017年我国铀矿资源对外依存度高达77%左右[1]。煤型铀作为一种重要的非常规铀矿资源[2-3],开发利用对保障我国铀矿资源供给有重要意义。中国煤炭资源储量丰富,2017年探明储量为16 833亿t[4],同时也是世界上最大的煤炭生产和消费国。我国2017年原煤生产总量为35.2亿t,其中近一半用于火力发电[5]。如此大的煤炭资源储量,加之煤炭形成时期和地质背景的多样性,使得我国在发展煤型铀矿资源方面具有良好的物质基础。同时,中国巨大的煤炭资源消费量和能源结构特征使得发展和利用煤型铀矿资源具有紧迫性,如果对煤中铀不加以利用或利用率过低,将会造成巨大的资源浪费,并且未经放射性处理的煤灰抛撒和利用(如用于建材等)将会引发严重的环境污染问题[6-8]。通过对煤型铀矿的合理开发利用,既可避免资源浪费,也可一定程度上缓解对铀资源的需求压力。

1 煤型铀资源的界定标准

早期研究认为,煤中元素铀含量超过200 mg/kg就可作为共伴生矿产进行开采[9-10]。后续研究对此又先后提出过不同的界定标准(表1)。

煤炭燃烧后煤中铀将明显富集于粉煤灰之中,其含量平均可提高至6~8倍[14]。历史上对于煤中铀资源的利用主要是从粉煤灰中提取[15-16]。如果以6~8倍的富集系数进行计算,按照目前常规铀矿资源勘探标准(质量分数大于或等于0.03%),当煤中铀含量达到40~50 mg/kg时,即可认为具有潜在的铀矿资源储备价值。

综上认为,煤型铀的界定标准可初步设定为铀含量大于或等于40 mg/kg。

表1 煤中铀资源的界定标准

2 中国煤型铀矿分布

煤型铀在中国境内很多地区均有分布,包括云南、贵州、广西、新疆、内蒙、重庆等[7](表2,图1)。这些地区煤中元素铀含量为每千克煤中从数十到数千毫克不等,其中部分地区达到甚至远超过常规铀矿资源的最低工业品位[15,17]。中国西部和北部煤型铀矿的空间分布与砂岩型铀矿具有明显耦合关系,共同铀源为晚古生代火山熔岩、火山碎屑岩及花岗岩[18];南部煤型铀的成因主要与高温热液流体相关[19-21]。

表2 中国煤型铀矿分布

注:表中503~5 720/992表示最小值~最大值/平均值;“—”表示煤层编号或地层未知;bdl表示检测限以下。

图1 煤型铀矿的分布

中国煤型铀主要赋存于3个地质时代的煤系中。石炭–二叠纪和新生代煤型铀主要分布在贵州和云南地区,侏罗纪煤型铀以新疆和内蒙古地区为代表。煤型铀的载体煤储层以低阶褐煤和长焰煤为主[7,12],总体上与世界范围内煤型铀的产出规律相同[15,22]。只有少量的高阶烟煤发生铀矿化,如贵州省东南部晚二叠世含碳酸盐岩煤系中的烟煤,平均铀含量为211 mg/kg[23]。

3 煤中铀的赋存状态

煤中铀的赋存态包括无机态和有机态[15],R. B. Finkelman[46]综合分析认为,低阶煤中铀主要以有机态赋存,高阶煤中则主要赋存在无机矿物中。 V. V. Seredin等[15]研究认为,煤中铀主要是与有机质结合,其次才是以无机赋存形式存在,即存在于铀矿物或其他无机矿物中。

目前,煤中发现的铀矿物种类很多,名称及分子式如表3所示。这些铀矿物分别属于含水的硅酸盐、磷酸盐、硫酸盐、砷酸盐、钒酸盐矿物以及氧化物,其中以磷酸盐和氧化物最为常见[15]。此外,锆石、金红石、磷灰石、独居石、磷钇矿、碳酸盐矿物及铝硅酸盐矿物(如,高岭石、伊蒙混层黏土矿物)等也含少量铀。Dai Shifeng等[47-48]在织金煤矿低温硅质热液来源石英脉中检测到显著富集的铀。

有机态是煤中铀的主要赋存状态[49]。I. A. Breger等[50]发现,美国怀俄明红沙漠地区次烟煤中有机结合态铀占总量的98%。J. D. Ilger等[51]发现,美国德克萨斯州南部含铀褐煤中铀含量与腐植质之间呈现出明显的正相关关系。有机质与铀的结合主要出现在泥炭沼泽化晚期和成岩作用早期[52],这是因为此阶段泥炭、褐煤、长焰煤的孔隙较发育,对溶液中的铀酰离子具有一定的物理吸附作用,并使铀酰离子富集在有机质的表面;另外,此阶段煤中富含的腐植质会与铀酰离子(UO22+)在一定地质条件下配位络合(化学吸附),使得铀酰离子以络合物的形式在煤中滞留和富集[52]。杨志远等[53]通过低煤级煤的吸附和脱附实验,认为煤对铀的吸附主要为化学吸附,并且主要是铀酰离子与煤中活性官能团发生化学络合。

铀与腐植酸的结合是煤中元素铀非常重要的赋存状态。低阶煤和泥炭通常含有丰富的大分子腐植酸,其中的活性官能团,尤其是羧基(–COOH),对溶液中的铀具有明显的络合作用,甚至是在铀含量仅为1 mg/kg的情况下[54]。A. Szalay[55]测试发现,固态的腐植酸对铀酰离子表现出非常强的结合倾向,并证实了这种结合是阳离子交换的结果,计算出泥炭腐植酸中铀的地球化学富集系数(有机质中铀含量与溶液中铀含量之比),该系数高达105。E. Koglin等[56]和E. F. Idiz等[57]研究也得出同样结论,即铀以铀酰离子的形式与腐植酸结合,腐殖酸中的羧基起着双齿状配位体的作用。

表3 煤中发现的铀矿物[15,20,47]

4 煤型铀矿化机制和影响因素

4.1 矿化机制

V. V. Seredin等[15]对煤型铀的矿化机制进行了系统总结。按矿化时期,将煤型铀矿化划分为“同生矿化”、“成岩矿化”及“后生矿化”3种类型(图2)。同生矿化发生在泥炭堆积阶段,成岩矿化发生在泥炭埋藏之后的腐植化和凝胶化阶段,后生矿化发生于泥炭固结之后。不同阶段的矿化过程受控于泥炭或煤的基本属性。例如,从泥炭到烟煤,孔隙度和渗透性逐渐降低,对元素铀具有明显富集作用的腐植酸也将明显减少,则对铀的络合作用降低。

图2 煤型铀矿化的典型模式[15,58-59]

图2a为泥炭沼泽中铀的同生矿化,属“同生–渗入”型铀矿化模式;图2b发生了层间水的渗入作用[15],以哈萨克斯坦境内Koldzhatsk大型煤型铀矿床[59]为代表,属“后生–渗入”型铀矿化模式;图2c发生了潜水渗入作用[15],形成哈萨克斯坦境内Nizhneillisk大型煤型铀矿床[59],属“后生–渗入”型铀矿化模式;图2d为流体沿花岗岩基底断裂渗入上覆煤层,使煤层中元素铀发生富集,属“后生–渗出”型铀矿化模式。

目前,世界范围内发现的煤型铀矿资源主要形成于后生矿化阶段,相比而言,无论在规模还是品位上,同生或早成岩期形成的煤型铀均较后生富集型差[12,15]。富铀流体的渗入是煤中元素铀矿化的重要过程,也是目前世界范围内发现的煤型铀的主体矿化方式。根据富铀流体的来源及其运移方式,煤中铀的富集模式大致划分为“渗入型”和“渗出型”两种(图2)。前者为地表大气水在重力作用下以潜水或层间水的形式,沿着粗粒砂岩等透水层由盆地周缘向中心运移;后者为深部流体通过基底断裂或破碎带由深到浅渗出,并进入上覆沉积盖层。无论是“渗入型”还是“渗出型”,在同生、成岩和后生矿化阶段均可发生,甚至可以相互叠加。

4.2 影响因素

综合前人观点,煤型铀矿化的影响因素主要包括以下几种,即煤阶、水文地质特征、铀的来源、沉积环境或沉积相、古气候、煤岩显微组分和矿物及含煤盆地构造背景。

①煤阶

煤阶的影响主要表现为富铀煤多为褐煤和长焰煤,烟煤富铀程度相对有限[15,22]。这主要是因为褐煤和长焰煤的结构较为疏松,孔隙较为发育,有助于吸附作用的发生。更为重要的是,褐煤和长焰煤中的腐植酸对铀酰离子具有明显的络合和还原作用,而在较高变质程度的煤中,腐植酸则发生降解和消失。

②水文地质条件

影响煤中铀矿化的水文地质条件主要包括地表水和地下水的径流以及化学成分。Huang Wenhui等[12]认为,煤中元素铀主要源自于汇入泥炭沼泽的地表水或是后期与煤层相互作用的地下水。因此,地表水和地下水,尤其是在富氧的情况下,可作为流体介质对铀离子进行搬运。另外,富氧地下水可对岩石中原始预富集的铀进行后期迁移和改造,从而促使后生成矿作用的发生,形成高品位的铀矿资源[60-61]。

③铀的来源

铀的来源是煤型铀形成的关键因素和先决条件,主要包括物源区富铀花岗岩或长英质岩浆岩的风化、火山喷发和岩浆侵入、海水侵入以及盆内热液流体的注入。

物源区富铀花岗岩或长英质岩浆岩的风化是煤中铀的主要来源[41,62],一般包括2个过程,即含铀碎屑物质的直接输入和溶解态铀的随水迁入。相比前一过程,后一过程在铀迁移中更为重要[15]。

同沉积的火山喷发作用,尤其是富铀中酸性岩浆的喷发,可导致火山碎屑物质直接混入到泥炭沼泽的物质组成当中,使得元素铀在煤中富集[63-64]。同样,岩浆侵入作用,尤其是富铀酸性花岗质岩浆的侵入,可通过富铀岩浆期后热液流体的注入使元素铀在煤中富集,但其富集样式往往受控于侵入体的形态,不同于火山喷发影响下的(近)层状分布特征[65-66]。

相比淡水,海水中铀的含量相对较高,海水中铀的含量平均约为淡水的80倍[67],因此,侵入泥炭沼泽的海水可起到有效的富铀作用,尤其是与海相碳酸盐岩伴生的煤层[68]。另外,海水侵入影响泥炭沼泽水介质的pH、Eh以及H2S浓度,可形成有利于铀富集的环境[69]。热液流体在铀成矿过程中起到重要作用[19,37]。一方面,深部来源或岩浆期后热液流体自身往往含有丰富的铀;另一方面,热液流体穿过围岩时,尤其是富铀花岗岩,可浸出其中的元素铀,然后将其迁入并富集在煤层中。

④沉积环境

沉积环境和沉积相对于煤型铀矿化的影响目前研究程度非常有限,值得深入探索。一方面,沉积环境直接影响元素铀在同沉积阶段的汇聚和沉淀,另一方面,沉积环境影响煤系岩性组合及沉积序列,进而影响铀的后生矿化作用。

例如,滨湖三角洲沉积体系为河水汇入的场所,来自物源区的元素铀将通过富氧河水汇聚于此,为富铀煤的形成提供重要的物质基础,同时也是煤型铀同生矿化的有利相带[70]。另外,整个三角洲体系涵盖水上氧化条件与水下较还原条件以及两者之间的地球化学过渡环境,这种过渡部位有利于发生大量的胶体絮凝作用,有利于铀的还原与沉淀,发生较高程度的铀同生矿化。

再如,在河流沉积体系中,由于河流改道和河道冲刷作用,往往可形成典型的砂–煤–泥沉积序列,这一岩性组合非常有利于煤型铀的后生矿化[47]。除了河流体系,三角洲体系也同样可形成类似的岩性组合。

⑤古气候

古气候主要通过影响源区母岩风化作用、地表与地下水的径流和化学成分特征、植物生长与泥炭沼泽的演化、铀元素活化迁移等来影响煤型铀的矿化[7]。

例如,源区母岩风化产物要在特定的古气候环境下才能形成,古气候条件不同,形成的产物也就不同;在干旱、半干旱条件下,地表富氧水的搬运使得母岩中的铀元素发生充分迁移,因而对径流末端的成矿作用较为有利;在潮湿条件下,源区各种有机质、黏土矿物等吸附剂和还原剂增多,铀元素容易被吸附和还原,并且被固定在源区。

又如,对于后生改造成矿作用,炎热干旱的古气候条件更有利于地表和浅部铀的氧化和活化迁移,为在一定深度的氧化还原过渡部位富集成矿提供足够的成矿物质[17]。值得注意的是,古气候特征还可通过影响植物生长和水源补给特征来影响泥炭沼泽的类型和演化,进一步影响煤岩特征。

⑥煤岩显微组分和矿物

不同类型泥炭沼泽形成的煤,其显微煤岩组成明显不同,低位沼泽煤富含镜质组。不同显微煤岩组分富铀能力存在差异,因此不同类型泥炭沼泽形成的煤,其富铀能力也自然不同。

另外,由地下水补给的低位富营养型沼泽含矿物质较多,而由大气降水补给的高位贫营养型沼泽含矿物质则较少,后者由植物组织分解合成的腐植酸不易转化成腐殖酸盐而沉淀,相反则是大量积累在泥炭沼泽之中并使其介质的酸度逐渐增加,而腐植酸在铀的富集中起到非常重要的作用。

⑦构造背景

构造背景作为一个综合性因素,控制盆地的形成演化、盆地或区域范围内的沉积作用和岩浆作用。此外,煤质煤阶、铀的来源、水文地质特征同样受控于含煤盆地的构造背景。

构造作用可以从不同尺度对煤型铀矿化产生影响,大到壳–幔相互作用和板块运动,小到含煤盆地内的地形起伏和断裂作用。大尺度的壳–幔相互作用对于煤型铀形成的影响主要体现在中国西南地区,煤型铀的分布主体受控于二叠纪的地幔柱作用[71]。

与砂岩型铀矿相似,煤型铀矿资源在中国北方诸多陆相沉积盆地中均有分布,并且产出于同一时期(侏罗纪)的煤系中,整体呈近东西向带状分布,例如南天山褶皱带(萨瓦布其)、伊犁盆地、吐哈盆地、准格尔盆地、鄂尔多斯盆地北部、二连盆地、松辽盆地[7,72]。此外,伊犁地区西邻的哈萨克斯坦、吉尔吉斯斯坦、乌兹别克斯坦等中亚国家境内也有大型高品位煤型铀矿床分布。可见,整个中亚地区如此大范围分布的煤型铀矿资源受控于统一的大地构造背景。

小尺度的构造作用通常可通过形成含矿流体的运移通道对煤型铀矿化产生影响。例如,安徽淮北煤田海子矿煤中铀含量随着构造作用的活跃程度增加而增加[73],南天山褶皱带萨瓦布其地区煤型铀的分布与断裂密切相关[21]。

5 结语

煤型铀矿资源作为新的铀矿资源,正越来越受到人们的关注。煤型铀的界定近年有多位学者提出了自己的观点,结合铀元素一定程度上富集于煤灰中,本文提出将煤型铀矿资源的界定标准可初步设定为铀含量大于或等于40 mg/kg。根据这个标准,发现煤型铀矿在我国多地均有分布,并通过进一步归纳总结我国主要煤型铀矿分布与砂岩型铀矿分布范围,发现中国北部和西部的煤型铀矿空间分布与砂岩型铀矿具有明显的耦合关系。煤中铀多以有机态形式赋存,其中铀与腐植酸的结合是煤中元素铀非常重要的赋存状态。已知大型煤型铀矿主要形成于后生矿化阶段,结合富铀流体运移方式,认为“后生–渗入”型是有利于形成大型煤型铀的成矿机制。

近些年,我国对外铀矿资源的依存度居高不下,主要是因为我国对铀资源需求量大,但铀矿资源量有限。虽然煤中铀的异常富集为解决铀资源短缺提供了新的思路,且煤炭燃烧后其中的铀会很大程度富集于煤灰中,但对于加工利用过程中,如何更合理有效地利用还需要继续深入研究。而进一步完善煤型铀矿化时间和期次研究,对于揭示煤型铀与伴生砂岩型铀矿之间的成因联系有重要的意义。

[1] World Nuclear Association. World nuclear power reactors and uranium requirements[EB/OL]. (2019-03) [2019-04-25]. http:// www.world-nuclear.org/information-library/facts-and-figures/uranium-production-figures.aspx

[2] OECD/NEA-IAEA. Uranium 2007:Resources,production and demand[M]. Paris:OECD Publishing,2008.

[3] OECD/NEA-IAEA. Uranium 2009:Resources,production and demand[M]. Paris:OECD Publishing,2010.

[4] 焦思颖. 2017中国土地矿产海洋资源统计公报发布[N]. 中国自然资源报. 2018-05-18.

[5] 佚名. 中华人民共和国2017年国民经济和社会发展统计公报[N]. 人民日报. 2018-03-01.

[6] DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94(3):3–21.

[7] CHEN Jian,CHEN Ping,YAO Duoxi,et al. Geochemistry of uranium in Chinese coals and the emission inventory of coal-fired power plants in China[J]. International Geology Review,2018,60.

[8] LAUER N,VENGOSH A,DAI Shifeng. Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China[J]. Environmental Science & Technology,2017,51(22):13487–13493.

[9] 袁三畏. 中国煤质论评[M]. 北京:煤炭工业出版社,1999.

[10] 代世峰,任德贻,孙玉壮,等. 鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取[J]. 煤炭学报,2004(增刊0):56–60. DAI Shifeng,REN Deyi,SUN Yuzhuang,et al. Concentration and the sequential chemical extraction procedures of U and Th in the Paleozoic coals from the Ordos basin[J]. Journal of China Coal Science,2004(S0):56–60.

[11] 漆富成,张字龙,李治兴,等. 中国非常规铀资源[J]. 铀矿地质,2011,27(4):193–199. QI Fucheng,ZHANG Zilong,LI Zhixing,et al. Unconventional uranium resources in China[J]. Uranium Geology,2011,27(4):193–199.

[12] HUANG Wenhui,WAN Huan,FINKELMAN R B,et al. Distribution of uranium in the main coalfields of China[J]. Energy Exploration and Exploitation,2012,30(5):819–836.

[13] 孙玉壮,赵存良,李彦恒,等. 煤中某些伴生金属元素的综合利用指标探讨[J]. 煤炭学报,2014,39(4):744–748. SUN Yuzhuang,ZHAO Cunliang,LI Yanheng,et al. Minimum mining grade of the selected trace elements in Chinese coal[J]. Journal of China Coal Society,2014,39(4):744–748.

[14] KETRIS M P,YUDOVICH Y E. Estimations of clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135–148.

[15] SEREDIN V V,FINKELMAN R B. Metalliferous coals:A review of the main genetic and geochemical types[J]. International Journal of Coal Geology,2008,76(4):253–289.

[16] SEREDIN V V. From coal science to metal production and environmental protection:A new story of success[J]. International Journal of Coal Geology,2012,90–91:1–3.

[17] 王毛毛,李华,邱余波. 新疆伊犁盆地洪海沟地区煤岩型铀成矿分析[J]. 中国煤炭地质,2015,27(12):12–16. WANG Maomao,LI Hua,QIU Yubo. Coal-type uranium metallogenic analysis in Honghaigou area,Ili basin,Xinjiang[J]. Coal Geology of China,2015,27(12):12–16.

[18] BONNETTI C,CUNEY M,BOURLANGE S,et al. Primary uranium sources for sedimentary-hosted uranium deposits in NE China:Insight from basement igneous rocks of the Erlian basin[J]. Mineralium Deposita,2016,52(3):1–19.

[19] DAI Shifeng,XIE Panpan,WARD C R,et al. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan coalfield,Guangxi,China[J]. Ore Geology Reviews,2017,88:235–250.

[20] DAI Shifeng,ZHANG Weiguo,SEREDIN V V,et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions:A case study from the Heshan coalfield,southern China[J]. International Journal of Coal Geology,2013,109–110:77–100.

[21] DAI Shifeng,WANG Peipei,WARD C R,et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang,Yunnan,southwestern China:Key role of N2-CO2- mixed hydrothermal solutions[J]. International Journal of Coal Geology,2015,152:19–46.

[22] BREGER I A. Geochemistry of coal[J]. Economic Geology,1958,53:823–841.

[23] DAI Shifeng,SEREDIN V V,WARD C R,et al. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions:Geochemical and mineralogical data from the Late Permian Guiding coalfield,Guizhou,China[J]. Mineralium Deposita,2015,50(2):159–186.

[24] 付东叶,陈志强,高明波,等. 新疆伊南煤田察布查尔县脱维勒克井田勘探报告[R]. 新泰:新汶矿业集团有限责任公司,2006.

[25] 杨建业,狄永强,张卫国,等. 伊犁盆地ZK0161井褐煤中铀及其它元素的地球化学研究[J]. 煤炭学报,2011,36(6):945–952. YANG Jianye,DI Yongqiang,ZHANG Weiguo,et al. Geochemistry study of its uranium and other element of brown coal of ZK0161 well in Yili basin[J]. Journal of China Coal Society,2011,36(6):945–952.

[26] DAI Shifeng,YANG Jianye,WARD C R,et al. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili basin,Xinjiang,northwestern China[J]. Ore Geology Reviews,2015,70:1–30.

[27] 刘章月,董文明,刘红旭. 新疆萨瓦布其地区含铀煤成因分析[J].铀矿地质,2011,27(6):345–351. LIU Zhangyue,DONG Wenming,LIU Hongxu. Analysis on gensis of uranium-bearing coal in Sawabuqi area,Xinjiang[J]. Uranium Geology,2011,27(6):345–351.

[28] QI Huawen,HU Ruizhong,ZHANG Qi. Concentration and distribution of trace elements in lignite from the Shengli coalfield,Inner Mongolia,China:Implications on origin of the associated Wulantuga germanium deposit[J]. International Journal of Coal Geology,2007,71(2/3):129–152.

[29] ZHUANG Xinguo,QUEROL X,ALASTUEY A,et al. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field,Inner Mongolia,northeastern China[J]. International Journal of Coal Geology,2006,66(1/2):119–136.

[30] 杨仁超,韩作振,柳益群,等. 鄂尔多斯盆地东胜地区侏罗系煤与铀矿关系[J]. 地球科学与环境学报,2006,28(4):31–37. YANG Renchao,HAN Zuozhen,LIU Yiqun,et al. Relationship between Jurassic coal measures and uranium deposits in Dongsheng area,Ordos basin[J]. Journal of Earth Sciences and Environment,2006,28(4):31–37.

[31] 王钧漪,王文峰,李健,等. 元素锗镓铀在大同煤田北部煤中的赋存特征[J]. 煤炭科学技术,2010,38(2):117–121. WANG Junyi,WANG Wenfeng,LI Jian,et al. Deposit features of Ge,Ga and U elements in northern part of Datong coalfield[J]. Coal Science and Technology,2010,38(2):117–121.

[32] 刘贝,黄文辉,敖卫华,等. 沁水盆地晚古生代煤中硫的地球化学特征及其对有害微量元素富集的影响[J]. 地学前缘,2016,23(3):59–67. LIU Bei,HUANG Wenhui,AO Weihua,et al. Geochemistry characteristics of sulfur and its effect on hazardous elements in the Late Paleozoic coal from the Qinshui basin[J]. Earth Science Frontiers,2016,23(3):59–67.

[33] 杨磊,刘池洋,李洪英. 陈家山矿煤中微量元素和稀土元素地球化学特征[J]. 煤田地质与勘探,2008,36(2):10–14.YANG Lei,LIU Chiyang,LI Hongying. Geochemistry of trace elements and rare earth elements of coal in Chenjiashan coal mine[J]. Coal Geology & Exploration,2008,36(2):10–14.

[34] DAI Shifeng,LIU Jingjing,WARD C R,et al. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu coalfield,Sichuan Province,China,with emphasis on enrichment of rare metals[J]. International Journal of Coal Geology,2016,166:71–95.

[35] LUO Yangbing,ZHENG Mianping. Origin of minerals and elements in the Late Permian coal seams of the Shiping mine,Sichuan,southwestern China[J]. Minerals,2016,6(3):74.

[36] DAI Sshifeng,XIE Panan,JIA Shaohui,et al. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo coalfield,Chongqing,China:Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews,2017,80:1–17.

[37] ZENG Rongshu,ZHUANG Xinguo,KOUKOUZAS N,et al. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field,Guangxi,south China[J]. International Journal of Coal Geology,2005,61(1):87–95.

[38] 邵龙义,鲁静,JONES Tim,等. 桂中晚二叠世碳酸盐岩型煤系高有机硫煤的矿物学和地球化学研究[J]. 煤炭学报,2006,31(6):770–775. SHAO Longyi,LU Jing,JONES Tim,et al. Mineralogy and geochemistry of the high-organic sulphur coals from the carbonate coal measures of the Late Permian in central Guangxi[J]. Journal of China Coal Society,2006,31(6):770–775.

[39] 席维实. 云南部分地区煤中铀含量概况[J]. 中国煤炭地质,1992(3):30. XI Weishi. Survey of uranium content in coal in part of Yunnan[J]. Coal Geology of China,1992(3):30.

[40] LIU Jingjing,YANG Zong,YAN Xiaoyun,et al. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals[J]. Fuel,2015,156(4):190–197.

[41] DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Mineralogy and geochemistry of a superhigh-organic-sulfur coal,Yanshan coalfield,Yunnan,China:Evidence for a volcanic ash component and influence by submarine exhalation[J]. Chemical Geology,2008,255(1):182–194.

[42] HU Ruizhong,QI Huawen,ZHOU Meifu,et al. Geological and geochemical constraints on the origin of the giant Lincang coal seam-hosted germanium deposit,Yunnan,SW China:A review[J]. Ore Geology Reviews,2009,36(1/2/3):221–234.

[43] YANG Jianye. Concentrations and modes of occurrence of trace elements in the Late Permian coals from the Pu’an coalfield,southwestern Guizhou,China[J]. Environmental Geochemistry & Health,2006,28(6):567–576.

[44] LI Baoqing,ZHUANG Xinguo,LI Jing,et al. Enrichment and distribution of elements in the Late Permian coals from the Zhina coalfield,Guizhou Province,southwest China[J]. International Journal of Coal Geology,2017,171:111–129.

[45] DAI Shifeng,REN Deyi,TANG Yuegang,et al. Concentration and distribution of elements in Late Permian coals from western Guizhou province,China[J]. International Journal of Coal Geology,2005,61(1):119–137.

[46] FINKELMAN R B. Modes of occurrence of environmentally-sensitive trace elements in coal[M]//SWAINE D J,GOODARZI F. Environmental aspects of trace elements in coal. Netherlands:Springer Netherlands,1995:24–50.

[47] DAI Shifeng,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155–164.

[48] DAI Shifeng,LI Dahua,REN Deyi,et al. Geochemistry of the Late Permian No.30 coal seam,Zhijin coalfield of southwest China:influence of a siliceous low-temperature hydrothermal fluid[J]. Applied Geochemistry,2004,19(8):1315–1330.

[49] 张淑苓,陈功,唐玉衡. 我国含铀煤矿床的某些地球化学特征[J]. 沉积学报,1984(4):77–87. ZHANG Shuling,CHEN Gong,TANG Yuheng. Some Geochemical characteristics of uranium-bearing coal deposits in China[J]. Acta Sedimentologica Sinica,1984(4):77–87.

[50] BREGER I A,DEUL M,MEYROWITZ R,et al. Mineralogy and geochemistry of an uraniferous coal from the Red Desert Area,Sweetwater County,Wyoming[R]. Wyoming:U.S. Geology Survey,1953.

[51] ILGER J D,ILGER W A,ZINGARO R A,et al. Modes of occurrence of uranium in carbonaceous uranium deposits:Characterization of uranium in a south Texas(U S A) lignite[J]. Chemical Geology,1987,63(3):197–216.

[52] ARBUZOV S I,MASLOV S G,VOLOSTNOV A V,et al. Modes of occurrence of uranium and thorium in coals and peats of northern Asia[J]. Solid Fuel Chemistry,2012,46(1):52–66.

[53] 杨志远,张泓,张群,等. 低煤级煤与UO22+的吸附络合及亲煤型铀矿成矿过程[J]. 煤田地质与勘探,2009,37(5):1–5. YANG Zhiyuan,ZHANG Hong,ZHANG Qun,et al. Mechanism of uranyl ion adsorbing and complexing onto low-rank coal andore-forming process of uranium associated coal measures[J]. Coal Geology & Exploration,2009,37(5):1–5.

[54] LANDAIS P. Organic geochemistry of sedimentary uranium ore deposits[J]. Ore Geology Reviews,1996,11(1/2/3):33–51.

[55] SZALAY A. Cation exchange properties of humic acids and their importance in the geochemical enrichment of UO22 +,and other cations[J]. Geochimica et Cosmochimica Acta,1964,28(10):1605–1614.

[56] KOGLIN E,SCHENK H J,SCHWOCHAU K. Spectroscopic studies on the binding of uranium by brown coal[J]. Applied Spectroscopy,1978,32(5):486–489.

[57] IDIZ E F,CARLISLE D,KAPLAN I R. Interaction between organic matter and trace metals in a uranium rich bog,Kern County,California,U.S.A[J]. Applied Geochemistry,1986,1(5):573–590.

[58] KOCHENOV A,ZINEV'YEV V,LOVALEVA S. Some features of the accumulation of uranium in peat bogs[J]. Geochemistry International,1965.

[59] KISLYAKOV Y M,SHCHETOCHKIN V N. Hydrogenic ore-forming systems[J]. Geology of Ore Deposits,2000,42(5):369–396.

[60] MIN Maozhong,XU Huifang,CHEN Jian,et al. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits,northwestern China[J]. Ore Geology Reviews,2005,26(3):198–206.

[61] MIN Maozhong,CHEN Jian,WANG Jinpeng,et al. Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits,NW China[J]. Ore Geology Reviews,2005,26(1):51–69.

[62] 陈健,陈萍,姚多喜,等. 云南省临沧市勐托新近系褐煤的微量元素地球化学特征[J]. 地学前缘,2016,23(3):83–89. CHEN Jian,CHEN Ping,YAO Duoxi,et al. Geochemistry of trace elements in the Mengtuo Neogene lignite of Lincang,western Yunnan[J]. Earth Science Frontiers,2016,23(3):83–89.

[63] DAI Shifeng,WANG Xibo,CHEN Wenmei,et al. A high-pyrite semianthracite of Late Permian age in the Songzao coalfield,southwestern China:Mineralogical and geochemical relations with underlying mafic tuffs[J]. International Journal of Coal Geology,2010,83(4):430–445.

[64] ZHUANG Xinguo,SU Sicai,XIAO Mingguo,et al. Mineralogy and geochemistry of the Late Permian coals in the Huayingshan coal-bearing area,Sichuan Province,China[J]. International Journal of Coal Geology,2012,94(94):271–282.

[65] DAI Shifeng,REN Deyi. Effects of Magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan coalfield,Hebei,China[J]. Energy & Fuels,2007,21(3):1663–1673.

[66] WANG Xibo,JIANG Yaofa,ZHOU Guoqing,et al. Behavior of minerals and trace elements during natural coking:A case study of an intruded bituminous coal in the Shuoli mine,Anhui Province,China[J]. Energy & Fuels,2015,29(7):4100−4113.

[67] REIMANN C,CARITAT P D. Chemical elements in the environment[M]. Berlin:Springer Verlag,1998.

[68] SHAO Longyi,JONES T,GAYER R,et al. Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan coalfield,southern China[J]. International Journal of Coal Geology,2003,55(1):1–26.

[69] WANG Wenfeng,QIN Yong,SANG Shuxun,et al. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district,Shanxi,China[J]. International Journal of Coal Geology,2008,76(4):309–317.

[70] 李胜祥,陈戴生. 伊犁盆地含煤系地层沉积相特征及其与层间氧化带砂岩型铀矿成矿关系[J]. 铀矿地质,1996(3):129–134. LI Shengxiang,CHEN Daisheng. Characteristics of sedimentary facies of coal-bearing series in Yili basin and their relation to sandstone uranium deposit of interlayered oxidation zone type[J]. Uranium Geology,1996(3):129–134.

[71] DAI Shifeng,CHEKRYZHOV I Y,SEREDIN V V,et al. Metalliferous coal deposits in East Asia(Primorye of Russia and south China):A review of geodynamic controls and styles of mineralization[J]. Gondwana Research,2016,29(1):60–82.

[72] ZHANG Yongsheng,SHI Minglei,WANG Jiawei,et al. Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants[J]. Fuel,2016,166:404–409.

[73] LI Yunbo,JIANG Bo,QU Zhenghui. Controls on migration and aggregation for tectonically sensitive elements in tectonically deformed coal:An example from the Haizi mine,Huaibei coalfield,China[J]. Science China-Earth Sciences,2014,57(6):1180–1191.

Advances on geological-geochemical research of coal-type uranium in China

ZHOU Xianqing, QIN Yong, LU Lu

(Institute of Earth Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China)

There is a huge gap in uranium resources in China. Only developing traditional uranium resources is unable to meet the increasing demand in energy and national defense construction. The exploitation and utilization of coal-type uranium resources can relieve the pressure of demand for uranium resources to a certain extent. By summarizing the research results of coal-type uranium in recent years, the ore location, uranium content range, formation time and distribution range of coal-bearing strata of major coal-type uranium deposits in China, and the definition criteria of coal-type uranium are given, which provides a basis for the classification of coal-type uranium deposits. The occurrence, metallogenic mechanism and influencing factors of coal-type uranium deposits are comprehensively expounded. Generally speaking, the research on coal-type uranium is insufficient, among which the micro-geological selection process is insufficient, and the identification of the micro-geological selection process of uranium enrichment in coal is very important for understanding the metallogenic mechanism; the study on the time and stage of coal-type uranium mineralization needs to be further deepened, which is conducive to analyzing the mineralization model of coal-type uranium and revealing the genetic association between coal-type uranium and associated sandstone-type uranium deposits. It will further deepen the understanding of the mechanism of coal-type uranium mineralization.

coal-type uranium; advance; mineralization mechanism; influence factor; China

P618.11;P619.14

A

10.3969/j.issn.1001-1986.2019.04.008

1001-1986(2019)04-045-09

2019-01-12

深部岩土力学与地下工程国家重点实验室开放基金项目(1UGJ1812)

State Key Laboratory for Geomechanics and Deep Underground Engineering Fund Project(1UGJ1812)

周贤青,1993年生,男,安徽芜湖人,硕士,从事煤系矿产资源地质研究工作. E-mail:zhouxqcumt@163.com

周贤青,秦勇,陆鹿. 中国煤型铀地质–地球化学研究进展[J]. 煤田地质与勘探,2019,47(4):45–53.

ZHOU Xianqing,QIN Yong,LU Lu. Advances on geological-geochemical research of coal-type uranium in China[J]. Coal Geology & Exploration,2019,47(4):45–53.

(责任编辑 范章群)

猜你喜欢
泥炭铀矿矿化
添加木本泥炭和膨润土对侵蚀退化黑土理化性质的影响*
好氧混菌矿化能力与增强再生粗骨料性能研究
以负碳排放为目标的生物质灰矿化CO2路径研究
基于复合胶凝材料的CO2矿化养护实验研究
预处理对泥炭孔结构的影响*
北山地区中口子盆地地球化学异常特征及其对铀矿勘查指示作用
泥炭地的碳盈余
第15届国际泥炭大会回眸
不同浓度锌的含氟矿化液对人恒前磨牙釉质脱矿影响的体外研究