波段宽度对利用植被指数估算小麦LAI的影响

2020-04-10 07:27王李娟王树果杨敏华
农业工程学报 2020年4期
关键词:植被指数叶面积波段

黄 婷,梁 亮,耿 笛,李 丽,王李娟,王树果,罗 翔,杨敏华

·农业信息与电气技术·

波段宽度对利用植被指数估算小麦LAI的影响

黄 婷1,梁 亮1※,耿 笛1,李 丽2,王李娟1,王树果1,罗 翔3,杨敏华4

(1. 江苏师范大学地理测绘与城乡规划学院,徐州 221000;2. 遥感科学国家重点实验室,北京 100101;3. 江西省农业科学院农业工程研究所,南昌 330000;4. 中南大学地球科学与信息物理学院,长沙 410083)

为了能够根据遥感数据类型实现指数的优化选择进而提高叶面积指数的反演精度,该研究分析了不同波段宽度(5~80 nm)对植被指数反演叶面积指数精度的影响。通过比较反演模型的决定系数均值,筛选出14个模型精度较高的植被指数,并探讨了不同波段宽度的选取对各指数叶面积指数反演精度的影响。结果表明,波段宽度对不同植被指数的影响可分为3类:1)OSAVI2等指数波宽越窄,反演精度越高,更适合应用于高光谱遥感数据;2)SR[800,680]等指数随着波段宽度的增加,反演精度先升后降,最适波宽为35 nm,适用于中等光谱分辨率的遥感数据;3)SR[675,700]等指数随着波段宽度的增大,反演精度不断提高,在多光谱数据中有更好的应用潜力。

波段宽度;植被指数;叶面积指数;PROSAIL模型

0 引 言

叶面积指数(leaf area index,LAI)可有效反映植被生理生化特性,是植被的重要结构特征参数之一。快速、无损、精准地监测冬小麦关键生育期的叶面积指数对准确掌握长势动态、水肥调控、灾害监测和产量预测等田间生产管理具有重要意义[1-3]。遥感技能以较低的成本获得LAI的时空变化信息,目前已成宏观尺度上获取这一指标最常用的方法[4-6]。

如何更准确地通过遥感数据来估算LAI一直是植被遥感的热点内容之一[1,7-9]。目前,为了提高LAI的反演模型的精度与普适性,研究者一方面不断地优化与改进反演策略与算法以降低模型误差[10-12];另一方面则致力于分析土壤背景[13]、土壤类型[14]、观测几何[15]、热点效应[16]等因素在LAI反演过程的作用,以期找出相应的方法减少或消除干扰因素的影响。有研究表明,植被指数类型的选取及其计算时波段宽度的选择也是影响植被参量反演的重要因素[17-19]。目前,植被指数的选取或仅依靠经验值或需要通过对各种指数进行筛选才能确定,增加了反演过程的不确定性与复杂性。而由于波段宽度的影响,利用同一指数进行LAI反演,其结果也往往存在较大差异。如Twele等[18]利用NDVI(normalized difference vegetation index),SR(simple ratio),RSR(reduced simple ratio index),NDVIc(corrected normalized difference vegetation index),SAVI2(soil adjusted vegetation index 2)估算森林冠层LAI时发现,该类植被指数在窄波段时可获得更高的反演精度;王福民等[20]对水稻LAI的反演研究表明,利用波段宽度为15 nm的光谱所计算的NDVI可取得最佳结果。由于不同卫星数据波段宽度不同,这一影响也导致某一研究通过穷尽法筛选出的最优指数,在实际的遥感应用过程中通常不具备普适性[21-22]。因此,系统地分析LAI反演时波段宽度对各植被指数的影响,探讨不同指数的最适波段宽度,对提高LAI反演精度具有重要意义,是一亟待研究的问题。

本研究将利用地面实测数据集对LAI反演时较常用的植被指数进行分析,研究各不同波段宽度对LAI反演精度的影响,从而为LAI估算时不同光谱分辨率传感器指数的选择以及遥感估算小麦LAI时植被指数的筛选(即针对不同遥感数据源来选择合适的植被指数)提供依据。

1 数据与方法

1.1 地面实测数据

本研究数据来自国家农业信息化工程技术研究中心开展的“作物田间信息获取与基于影像GIS的快速诊断系统”农学遥感实验。试验区(40°10'31"N~40°11'18"N,116°26'10"E~116°27'05"E)占地面积 167 hm2,海拔高度30~100 m,种植作物为冬小麦(图1)。为保证小麦LAI值有较大变化范围以便开展农学遥感分析,在试验基地的24个小区(面积60 m×60 m)内分别进行了氮胁迫与水胁迫试验。2类胁迫各设置6个处理(施氮量:0~375 kg/hm2,级差75 kg;浇水量:0~1 125 m3/hm2,级差225 m3),每一处理包括2个重复(图1)。

利用的FieldSpec Pro FR 地物光谱仪(ASD公司生产,光谱范围350~2 500 nm;350~1 000 nm分辨率为3 nm,采样间隔为1.4 nm;1 000~2 500 nm分辨率为10 nm,采样间隔为2 nm)对生长季(拔节后至孕穗前)的小麦进行光谱采集。光谱采集在风力小于3级,无卷云与浓积云的晴朗天气下进行,时间范围规定为北京时间10:00~15:00,以保证有较高的太阳高度角。传感器探头(25° 视场角)垂直向下,高度保持在冠层上方1.3 m附近,每一样本重复测量10次取均值,且每半小时用参考板对仪器进行一次校正,以消除环境变化所带来的影响。光谱采集的同时进行农学采样,以干重法测定LAI值,即取50~100片叶进行面积测量后,烘干称重,建立干质量与叶面积之间的相关模型,然后再根据被测对象的干质量反推叶面积,并采用激光叶面积仪(Cl-203型)进行矫正。在试验期间,在小麦的水、氮胁迫区内同步采样6次(采样日期分别为4月11日、4月21日、5月4日、5月13日、5月23和6月3日),在大田均布点上同步采样一次(4月11日),共获取有效样本139份。图2为各小麦样本的光谱反射率曲线图。

图1 研究区概况

图2 小麦冠层的光谱曲线

1.2 植被指数选取与反演模型构建

叶面积指数与利用地表反射率计算的植被指数之间有很强的相关性,经验反演方法则通过建立LAI和植被指数之间的某种函数关系能够较好的估算出LAI。但植被指数的选择通常不唯一,目前对于最适合叶面积反演的植被指数还没有一致的结论[1,7]。本研究在前人的研究基础上,选择了28个LAI反演较常用的植被指数[4],用于不同波段宽度下植被指数与叶面积指数的相关关系研究(表1)。在建模时,将植被指数作为自变量,将实测LAI作为因变量,分别利用线性回归、指数回归、对数回归、多项式回归和幂函数回归建立植被指数和LAI的曲线拟合模型,并采用均方根误差(root mean square error,RMSE)和决定系数(coefficient of determination,R)这2个统计量作为模型精度评价指标,从而筛选出R最大,RMSE最小的最优曲线拟合模型,各植被指数的最佳拟合模型如表2所示。

表1 本研究选用的植被指数

注:为光谱反射率,下标为波长。

Note:is the spectral reflectance, the subscript is the wavelength.

表2 植被指数的最佳拟合模型

1.3 波段宽度的扩展方法

为研究不同波段宽度对植被指数反演LAI精度的影响,需获得利用不同波段宽度的冠层反射率计算出的植被指数,由于传感器各通道受元器件特性的制约,每个通道在特定光谱区间对不同光谱辐射的响应能力不同,为了能够更加接近卫星传感器所接收的辐射信号。本研究将地面实测小麦的冠层光谱反射率(350~2 500 nm)根据式(1)和式(2)模拟生成不同波段宽度时的叶片反射率[19,38]。冠层光谱的初始波段宽度设置为5 nm,并以5 nm为步长逐步增至80 nm,逐一计算不同波宽下的植被指数。其中,参与植被指数计算的波长设置为波段宽度拓展时的中心波长,同时,中心波长的反射率为根据式(1)模拟生成的光谱反射率。这样的多波段宽度设置既保证了波段宽度的丰富度和连续性,又模拟了绝大多数传感器的光谱通道宽度,有助于确定不同传感器数据源反演叶面积指数时的最佳植被指数,从而提高LAI反演精度。

1.4 植被指数对LAI和波段宽度的敏感度

为了能定量地比较和评估植被指数对波段宽度的敏感度,本研究将波段宽度为5~80 nm时计算的植被指数值与实测原始波段宽度(1 nm)时计算的植被指数值进行比较,根据式(3)定义敏感度系数Var计算方法如下[19]

同时,定量分析植被反射光谱对理化参数的敏感性是遥感反演理化参数含量的前提[39]。本研究采用灵敏度系数LAI定量描述光谱指数对LAI的敏感性,其计算公式如下[18]

2 结果与分析

2.1 植被指数的建模与筛选

图3 植被指数的最佳拟合模型的精度

2.2 植被指数的敏感度分析

图4为筛选出的14个植被指数对波段宽度的敏感度系数Var变化图。从图中可以发现,植被指数的Var与波段宽度基本呈正相关关系,而Var越大说明植被指数对波段宽度的抗干扰性越差,反之则越好。上述研究表明,波段宽度是影响植被指数的重要因素之一,且随着波段宽度的增加,本研究所筛选的植被指数受波段宽度的干扰越大。

图4 各植被指数对波段宽度的敏感度

根据式(4)计算的敏感度系数LAI结果如图5所示,Carte2指数的敏感度系数与波段宽度呈正相关关系。与之相反的是,OSAVI2、Carte3、NDCI、SR[752,690]、SR[800,680]、NDVI705、SR[750,550]、SR[750,700]、SR[675,700]、Datt3、Carte4、SR[750,710]随着波段宽度的增加敏感度度系数LAI呈下降趋势。而RI1dB的敏感度系数曲线虽总体呈上升趋势,但在30~60 nm之间存在明显的波谷。因此,植被指数在各波段宽度下对LAI的敏感度曲线变化趋势,同样说明了波段宽度也会造成植被指数对LAI的响应程度发生改变。因此,经过对Var和LAI随波段宽度变化的初步分析可以猜测,波段宽度是影响LAI估算精度的重要因素,且波段宽度对不同植被指数估算LAI精度的影响趋势可能是不同的,可能存在以下2种情况:波段宽度越大,效果越好;波段宽度越小,效果越差,但波段宽度对利用植被指数进行LAI估算的具体影响仍需进一步的研究分析。

图5 各波段宽度下植被指数对LAI的敏感度

2.3 LAI的反演精度随波段宽度的变化

图7~图10是不同指数所建LAI反演模型2随波段宽度变化而变化情况。根据2的变化趋势,各指数可分为4类:1)所建反演模型2随着波段宽度增加不断降低,即所用波段宽度越窄越合适,这类指数可称之为窄波段指数;2)2随着波段宽度的增加先升后降,变化曲线存在明显峰值,可称之为中波段指数;3)2随着波段宽度增加而升高,即在本研究的分析范围内(波段宽度≤80 nm),波段越宽越合适,可称之为宽波段指数;4)R随着波段宽度的增加先下降后上升再下降的植被指数。

图6 敏感度系数均值

图7为窄波段植被指数OSAVI2、NDCI、SR[752,690]、SR[750,700]和Carte2所建LAI估算模型的R随波段宽度增加的变化图。由图可知,随着波段宽度的增加,窄波段植被指数所建模型R的变化趋势基本相同,均呈现下降趋势。说明波段宽度越窄,由这类指数所构建模型估算LAI的能力越好。因此,利用高光谱遥感数据进行LAI估算时,可优先考虑窄波段植被指数,以期获得更好的估算结果。从图中可以发现,指数OSAVI2所建LAI反演模型的R始终最高,其次为NDCI、SR[752,690]、Carte2和SR[750,700]。同时,值得注意的是,窄波段植被指数OSAVI2和NDCI随着波段宽度的增加其R的波动较小,因此,当OSAVI2和NDCI在不同的遥感数据源下估算LAI的差异可能较小。但SR[752,690]、Carte2、SR[750,700]随波段宽度的增加,R下降趋势明显,说明这两个指数所构建的LAI反演模型极易受波段宽度的影响,在使用不同传感器数据源估算LAI时,其结果可能差异较大。因此,综合植被指数的敏感度分析及R随波宽变化的结果,可确定OSAVI2和NDCI为LAI高光谱反演时的优选指数。

图7 窄波段植被指数LAI估算模型R2随波宽的变化

图8 中波段植被指数LAI估算模型R2随波宽的变化

图9为宽波段植被指数所建LAI反演模型R随波段宽度的变化图。宽波段植被指数SR[750,550]、SR[675,700]的显著特点是其LAI反演模型R与LAI呈正相关关系,而植被指数SR[750,710]和RI1dB在波段宽度20~60 nm之间有所波动,但总体呈现上升趋势,本研究将这2个指数也划分为宽波段植被指数。随着波段宽度的增大,宽波段植被指数所建模型的估算能力越好(R越大),说明宽波段植被指数在反演LAI时,波段宽度越大越合适。因此当利用多光谱数据进行LAI估算时,宽波段植被指数可能发挥出更好的估算潜力。同时由图可知,当波段宽度小于40 nm时,SR[750,550]所建模型R始终高于SR[675,700],波段宽度大于40 nm时,SR[750,550]的R始终低于SR[675,700],说明利用单一波段宽度比较不同植被指数反演LAI的能力往往存在局限性,且波段宽度对不同植被指数的影响程度也有所差异。同时,对比SR[675,700]、SR[750,550]、SR[750,710]和RI1dB所建模型R的变化曲线,SR[750,550]、SR[750,710]和RI1dB的曲线变化趋势较为平缓,反演LAI的能力较为稳定。值得注意的是,虽然SR[675,700]是作为高光谱指数所提出[30],但本研究分析表明,波段宽度对SR[675,700]具有较大影响,当所采用的遥感数据光谱通道小于20 nm 时(如Hyperion与CHRIS等高光谱数据),该指数并非估算LAI的优选指数;当数据的光谱通道大于50 nm时(如SPOT和Landsat OLI),该指数则具有较高的反演精度,是进行LAI估算的优选指数。

图9 宽波段植被指数LAI估算模型R2随波宽的变化

图10为Carte3与Carte4所建LAI估算模型的R随波段宽度的变化图。Carte3与Carte4的R随波段宽度变化的趋势较为相似,均呈现先下降在上升再下降的变化趋势,但该类植被指数所建模型在波段宽度5~80 nm之间估算能力较为稳定,其最大R与最小R的差值均小于0.003。因此,当利用Carte3与Carte4在不同遥感数据下进行LAI的估算时,LAI估算结果可能差距较小,估算精度较为稳定,可忽略波段宽度的影响。

图10 Carte3和Carte4的LAI估算模型R2随波宽的变化

3 讨 论

本研究结果表明,波段宽度是影响LAI反演精度的重要因素之一,王福民等[20]对水稻的分析表明,当波段宽度取值为15 nm时,NDVI可取得最佳结果,而刘玉琴等[7]的分析则表明窄波段宽度下选用的植被指数能更好地实现草地LAI的反演。目前,大量研究利用高光谱数据下的植被指数进行LAI估算[40-42],但大多研究仅针对一个或少数的几个植被指数,各植被指数受波段宽度的影响尚未得到系统的梳理。本研究选取了28个常用于LAI研究的植被指数,并将波段宽度的设置为5~80 nm之间连续的16种波段宽度,较为全面的探讨了各类植被指数估算LAI能力随波段宽度的变化趋势,可为各指数合适波段宽度的选择提供参考。另,进一步分析表明,由于波段宽度对不同植被指数的影响大小存在差异(如当波段宽度小于45 nm时,SR[750,550]的模型估算精度明显优于SR[675,700],但当波段宽度大于45 nm时,结果却恰恰相反),故在以提高参量反演精度为目标的指数筛选择优过程中,不但要考虑植被指数的种类,还需要综合考虑波段宽度的影响。

本研究植被指数所建模型R随波段宽度的变化趋势主要有以下3种情况:1)OSAVI2和NDCI等所建模型R随着波段宽度增加不断降低,最适波段宽度越窄越好;2)Datt3和SR[800,680]等所建模型R随着波段宽度增加先升后降,最适波段宽度位于R峰值处;3)SR[750,550]和SR[675,700]所建模型R随着波段宽度增加不断增加,最适波段宽度越宽越好。目前,宽波段/窄波段植被指数通常为利用宽波段/窄波段传感器数据可以计算得到的植被指数[43]。其中,NDVI705、SR[800,680]和SR[750,710]等植被指数通常被定义为高光谱/窄波段植被指数[44],但分析表明,NDVI705在波段宽度为35 nm时具有更好的LAI估算能力,SR[750,710]在宽波段处所建模型R更大,说明部分高光谱指数的植被指数在多光谱可能存在很强的应用潜力。这一结果可为不同遥感数据类型下植被指数的优选提供指导。

结合光谱学的知识可知,波段越窄,定位敏感信息的能力越强,波段越宽,则对某一光谱区域的信息利用得更为充分[45]。对OSAVI2与 NDCI等窄波段指数的分析表明,这类指数的反演精度主要取决于能否准确地定位敏感波,因此波段越窄,精度越高;而SR[750,710]和RI1dB等宽波段指数,反演精度的提高更多地取决于是否充分利用了该光谱区域的信息,因此波段越宽,信息利用越充分,反演精度也就越高;Datt3与SR[800,680]等中波段指数,则需要寻找敏感波段与光谱信息充分利用两者之间的平衡点,因此出现先升后降,并在35 nm附近存在峰值的情况。

4 结 论

本研究分析了不同植被指数对LAI与波段宽度的敏感性,研究了利用这些指数进行LAI估算时,波段宽度变化对模型精度的影响,并探讨了各类植被指数所建反演模型R随波段宽度增加的变化趋势,为不同数据源下LAI反演的指数选择提供了参考。文章主要结论如下:

1)波段宽度是影响LAI反演精度的重要因素之一。分析表明,利用植被指数进行小麦LAI估算时,反演模型的精度不仅与选用的植被指数有关,而且与计算该指数的波段宽度有关。在利用植被指数进行LAI反演时,应根据传感器的通道宽度与光谱分辨率选择最佳的植被指数。

2)波段宽度的变化对各植被指数的影响具有明显差异,可分为4种类型:①窄波段指数,所建反演模型精度随着波段宽度增加不断降低,这一类型包括指数OSAVI2、NDCI、SR[752,690]、SR[750,700]和Carte2;②中波段指数所建模型精度随着波段宽度增加先升后降,这一类型主要包括指数Datt3、SR[800,680]与NDVI705,其最适波宽约为35 nm;③宽波段指数所建模型精度随着波段宽度增加而升高,这一类型包括指数SR[750,550]、SR[675,700]、SR[750,710]和RI1dB;④植被指数Carte3与Carte4所建模型的R在波段宽度5~80 nm虽然先下降后上升再下降,但在各波段宽度下其估算精度均较为稳定,因此可忽略波段宽度对该类植被指数的影响。

3)研究结果表明,利用植被指数进行LAI反演时,应根据传感器的通道宽度与光谱分辨率选择最佳的植被指数。其中OSAVI2与NDCI等指数波宽越窄,LAI反演精度越高,更适合应用于高光谱遥感数据;Datt3等指数的最适波宽约为35 nm,更适用于中等/多光谱分辨率的遥感数据;SR[750,710]和RI1dB等指数波宽越宽,LAI反演精度越高,在多光谱遥感数据中有更好的应用潜力。

[1]束美艳,顾晓鹤,孙林,等. 基于新型植被指数的冬小麦LAI高光谱反演[J]. 中国农业科学,2018,51(18):3486-3496. Shu Meiyan, Gu Xiaohe, Sun Lin, et al. High spectral inversion of winter wheat LAI based on new vegetation index[J]. Scientia Agricultura Sinica, 2018, 51(18): 3486-3496. (in Chinese with English abstract)

[2]李卫国,赵春江,王纪华,等. 基于卫星遥感的冬小麦拔节期长势监测[J]. 麦类作物学报,2007,27(3):523-527. Li Weiguo, Zhao Chunjiang, Wang Jihua, et al. Monitoring the growth condition of winter wheat in jointing stage based on Landsat TM image[J]. Journal of Triticeae Crops, 2007, 27(3): 523-527. (in Chinese with English abstract)

[3]Krishnan P, Sharma R K, Dass A, et al. Web-based crop model: Web Info Crop-Wheat to simulate the growth and yield of wheat[J]. Computers and Electronics in Agriculture, 2016, 127: 324-335.

[4]Liang Liang, Di Liping, Zhang Lianpeng, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015, 165(8): 123-134.

[5]Mutanga O, Skidmore A K, Prins H H T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features[J]. Remote Sensing of Environment, 2004, 89(3): 393-408.

[6]Fang Hongliang. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model[J]. Remote Sensing of Environment, 2003, 85(3): 257-270.

[7]刘玉琴,沙晋明,余涛,等. 基于宽波段和窄波段植被指数的草地LAI 反演对比研究[J]. 遥感技术与应用,2014,29(4):587-593. Liu Yuqin, Sha Jinming, Yu Tao, et al. Comparing the performance of broad-band and narrow-band vegetation indices for estimation of grass LAI[J]. Remote Sensing Technology and Application, 2014, 29(4): 587-593. (in Chinese with English abstract)

[8]刘振波,邹娴,葛云健,等. 基于高分一号WFV影像的随机森林算法反演水稻LAI[J]. 遥感技术与应用,2018,33(3):458-464. Liu Zhenbo, Zou Xian, Ge Yunjian, et al. Retrieval rice leaf area index using random forest algorithm based on GF-1 WFV remote sensing data[J]. Remote Sensing Technology & Application, 2018, 33(3): 458-464. (in Chinese with English abstract)

[9]Roosjen P P J, Brede B, Suomalainen J M, et al. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data-potential of unmanned aerial vehicle imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 66: 14-26.

[10]Tang S, Chen J M, Zhu Q, et al. LAI inversion algorithm based on directional reflectance kernels[J]. Journal of Environmental Management, 2007, 85(3): 638-648.

[11]Leonenko G, Lows S O, North P R J. Retrieval of leaf area index from MODIS surface reflectance by model inversion using different minimization criteria[J]. Remote Sensing of Environment, 2013, 139(12): 257-270.

[12]Woodgate W, Disney M, Armston J D, et al. An improved theoretical model of canopy gap probability for Leaf area index estimation in woody ecosystems[J]. Forest Ecology and Management, 2015, 358: 303-320.

[13]Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.

[14]高林,王晓菲,顾行发,等. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报,2017,41(12):1273-1288. Gao Lin, Wang Xiaofei, Gu Xingfa, et al. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating[J]. Chinese Journal Plant Ecology, 2017, 41(12): 1273-1288. (in Chinese with English abstract)

[15]杨贵军,黄文江,王纪华,等. 多源多角度遥感数据反演森林叶面积指数方法[J]. 植物学报,2010,45(5):566-578. Yang Guijun, Huang Wenjiang, Wang Jihua, et al. Inversion of forest leaf area index calculated from multi-source and multi-angle remote sensing data[J]. Bulletin of Botany, 2010, 45(5): 566-578. (in Chinese with English abstract)

[16]赵娟,张耀鸿,黄文江,等. 基于热点效应的不同株型小麦LAI反演[J]. 光谱学与光谱分析,2014,35(1):207-211. Zhao Juan, Zhang Yehong, Huang Wenjiang, et al. Inversion of LAI by considering the hotspot effect for different geometrical wheat[J]. Spectroscopy and Spectral Analysis, 2014, 35(1): 207-211. (in Chinese with English abstract)

[17]Zhao Dehua, Huang Liangmei, Li Jianlong, et al. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(1): 25-33.

[18]Twlele A, Erasmi S, Kappasa M. Spatially explicit estimation of leaf area index using EO-1 Hyperion and Landsat ETM+ data: Implications of spectral bandwidth and shortwave infrared data on prediction accuracy in a tropical montane environment[J]. GIScience & Remote Sensing, 2008, 45(2): 229-248.

[19]Du Huishi, Jiang Hailing, Zhang Lifu, et al. Evaluation of spectral scale effects in estimation of vegetation leaf area index using spectral indices methods[J]. Chinese Geographical Science, 2016, 26(6): 731-744.

[20]王福民,黄敬峰,唐延林,等. 采用不同光谱波段宽度的归一化植被指数估算水稻叶面积指数[J]. 应用生态学报,2007,18(11):2444-2450. Wang Fuming, Huang Jinfeng, Tang Yanlin, et al. Estimation of rice LAI by using NDVI at different spectral bandwidths[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2444-2450. (in Chinese with English abstract)

[21]Liang Liang, Di Liping, Huang Ting, et al. Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm[J]. Remote Sens, 2018, 10(12): 1940-1956.

[22]Liang Liang, Qin Zhihao, Zhao Shuhe, et al. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method[J]. International Journal of Remote Sensing, 2016, 37(13): 2923-2949.

[23]Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2/3): 337-354.

[24]Marshak A, Knyazikhin Y, Davis A B, et al. Cloud-vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness[J]. Geophysical Research Letters, 2000, 27(12): 1695-1698.

[25]McMurtrey III J E, Chappelle E W, Kim M S, et al. Distinguishing nitrogen fertilization levels in field corn (L.) with actively induced fluorescence and passive reflectance measurements[J]. Remote Sensing of Environment, 1994, 47(1): 36-44.

[26]Carter G A. Ratios of leaf reflectance in narrow wavebands as indicators of plant stress[J]. International Journal of Remote Sensing, 1994, 15(3): 697-703.

[27]Gupta R K, Vijayan D, Prasad T S. New hyperspectral vegetation characterization parameters[J]. Advances in Space Research, 2001, 289(1): 201-206.

[28]Main R, Cho M A, Mathieu R, et al. An investigation into robust spectral indices for leaf chlorophyll estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): 751-761.

[29]Wu Chaoyang, Niu Zheng, Tang Quan, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8/9): 1230-1241.

[30]Chappelle E W, Kim M S, McMurtrey III J E. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves[J]. Remote Sensing of Environment, 1992, 39(3): 239-247.

[31]Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90(3): 337-352.

[32]Gitelson A, Merzlyak M N. Quantitative estimation of chlorophyll using reflectance spectra: Experiments with autumn chestnut and maple leaves[J]. Journal of Photochemistry and Photobiology B: Biology, 1994, 22(3): 247-252.

[33]Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red-edge hyperspectral indices[J]. Advances in Space Research, 2003, 32(11): 2217-2222.

[34]Zarco-Tejada P J, Miller J R. Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery[J]. Journal of Geophysical Research, 1999, 104(D22): 27921-27933.

[35]Vogelmann J E, Rock B N, Moss D M. Red edge spectral measurements from sugar maple leaves[J]. International Journal of Remote Sensing, 1993, 14(8): 1563-1575.

[36]Datt B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests usingleaves[J]. Journal of Plant Physiology, 1999, 154(1): 30-36.

[37]Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229-239.

[38]肖艳芳,周德民,宫辉,等. 冠层反射光谱对植被理化参数的全局敏感性分析[J]. 遥感学报,2015,19(3):368-374. Xiao Yanfang, Zhou Deming, Gong Hui, et al. Sensitivity of canopy reflectance to biochemical and biophysical variables[J]. Journal of Remote Sensing, 2015, 19(3): 368 -374. (in Chinese with English abstract)

[39]梁顺林. 定量遥感[M]. 北京:科学出版社,2015.

[40]Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90(3): 337-352.

[41]唐建民,廖钦洪,刘奕清,等. 基于CASI高光谱数据的作物叶面积指数估算[J]. 光谱学与光谱分析,2015,35(5):1351-1356. Tang Jianmin, Liao Qinhong, LiuYiqing, et al. Estimating leaf area index of crops based on hyperspectral compact airborne spectrographic imager (CASI) data[J]. Spectroscopy and Spectral Analysis, 2015, 35(5): 1351-1356. (in Chinese with English abstract)

[42]吴伟斌,李佳雨,张震邦,等. 基于高光谱图像的茶树LAI与氮含量反演[J]. 农业工程学报,2018,34(3):195-201. Wu Weibin, Li Jiayu, Zhang Zhenbang, et al. Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 195-201. (in Chinese with English abstract)

[43]Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics[J]. Remote Sensing of Environment, 2000, 71(2): 158-182.

[44]葛昊,卢珊,赵云升. 叶片茸毛对叶片反射光谱及高光谱植被指数的影响研究[J]. 光谱学与光谱分析,2012,32(2):153-158. Ge Hao, Lu Shan, Zhao Yunsheng. Effects of leaf hair on leaf reflectance and hyperspectral vegetation indices[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 153-158. (in Chinese with English abstract)

[45]普拉萨德,约翰,阿尔弗雷德. 高光谱植被遥感[M]. 北京:中国农业科学技术出版社,2015.

Effects of band width on estimation of wheat LAI using vegetation index

Huang Ting1, Liang Liang1※, Geng Di1, Li Li2, Wang Lijuan1, Wang Shuguo1, Luo Xiang3, Yang Minhua4

(1.,,221000,; 2.,100101,; 3.,,330000,; 4.,,410083,)

To improve the accuracy and universality of the inversion model of the leaf area index, on the one hand, many researchers constantly optimized inversion algorithm, on the other hand, they were committed to analyzing the influence of interference factors such as soil background, soil type, observation geometry and hot spot effected on the inversion process of leaf area index. Band width is generally considered as an important factor affecting the inversion of vegetation parameters. However, there were few studies on the influence of band width on estimating leaf area index. To optimize the selection of vegetation indices based on the type of remote sensing data, the influence of different band widths on the inversion model established by vegetation index was analyzed. Firstly, the spectral reflectance of different band widths was simulated by the measured wheat spectral data set. The initial band width was set to 5 nm and gradually increased to 80 nm in 5 nm steps. On this basis, 28 vegetation indices commonly used for inversion of leaf area indices, such as SR[800680], NDCI and Carte2, were calculated. To select the vegetation index with greater potential to estimate the leaf area index, the mean value of the coefficient of determination was used as a prediction accuracy measure, and 14 vegetation indices such as OSAVI2, Carte3 and SR[800680]were screened out. Then, by analyzing the sensitivity of 14 indices and variation of coefficient of determination to band widths, the influence of band widths on the accuracy of the leaf area index estimated by vegetation indices was discussed. The results indicated that the band width was one of the important factors that affected the accuracy of the inversion of the leaf area index, and the influence of band width on vegetation indices was inconsistent. According to the trend of coefficient determination, the indices were divided into three categories: (1) coefficient of determination of inversion models built by vegetation indices decreased with the increase of band width. This type of indices included OSAVI2, NDVI, SR[752690], SR[750700]and Carte2, which was called narrow-band vegetation index. (2) coefficient of determination rose first and then falls with the increase of band width, and the change curve had an obvious peak value, which was called the mid-band vegetation index. This type of indices included Datt3, SR[800680]and NDVI705. (3) coefficient of determination rose with the increase of band width, which was called broad-band vegetation index. This type of indices included SR[750,550], SR[675,700], SR[750,710]and RI1dB; (4) coefficient of determination of the models built by Carte3 and Carte4 showed a trend of first decreasing, then rising followed by declining, the accuracy of estimating leaf area index was stable at different band widths, and difference between the maximum and minimum of coefficient of determination was less than 0.003, so the influence of the band width on this type of vegetation indices could be ignored. The results of this study indicated that when using vegetation index for inversion of leaf area index, we should also comprehensively consider channel width and spectral resolution of the sensor to select the best vegetation index. Furthermore, when the band width increased from 5 nm to 80 nm, the precision of the leaf area index inversion model of built by narrow-band vegetation index was higher with the narrower band width, and this type of indices was more suitable for hyperspectral remote sensing data. The optimal band width of the mid-band vegetation index was about 35 nm, and this type of indices was more suitable for remote sensing data with medium resolution. The precision of the leaf area index inversion model built by broad-band vegetation index was higher with the wider band width, and this type of indices had better application potential in multispectral remote sensing data. This research provided the basis for the selection of indices using different spectral resolution sensors data during estimation of leaf area index, and screening vegetation indices for wheat leaf area index inversion.

band width; vegetation index; leaf area index; PROSAIL model

黄 婷,梁 亮,耿 笛,李 丽,王李娟,王树果,罗 翔,杨敏华. 波段宽度对利用植被指数估算小麦LAI的影响[J]. 农业工程学报,2020,36(4):168-177. doi:10.11975/j.issn.1002-6819.2020.04.020 http://www.tcsae.org

Huang Ting, Liang Liang, Geng Di, Li Li, Wang Lijuan, Wang Shuguo, Luo Xiang, Yang Minhua. Effects of band width on estimation of wheat LAI using vegetation index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 168-177. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.04.020 http://www.tcsae.org

2019-12-16

2020-01-15

遥感科学国家重点实验室开放基金(OFSLRSS201804);江苏省自然科学基金(BK20181474);国家自然科学基金(41401473);江苏高校优势学科建设工程资助项目(PAPD)资助

黄 婷,主要研究方向为植被定量遥感。Email:lllxwjhht@163.com

梁 亮,副教授,博士,主要研究方向为农业遥感。Email:liangliang198119@163.com

10.11975/j.issn.1002-6819.2020.04.020

TP79

A

1002-6819(2020)-04-0168-10

猜你喜欢
植被指数叶面积波段
水稻叶面积指数与产量关系研究进展
最佳波段组合的典型地物信息提取
基于无人机图像的草地植被盖度估算方法比较
冬小麦SPAD值无人机可见光和多光谱植被指数结合估算
最佳波段选择的迁西县土地利用信息提取研究
作物叶面积测量的研究进展
马奶子葡萄叶面积评估模型的建立
基于PLL的Ku波段频率源设计与测试
小型化Ka波段65W脉冲功放模块
植被指数监测绿洲农区风沙灾害的适宜性分析