肽聚糖对肉制品中产气荚膜梭菌芽孢萌发率影响及预测

2020-04-10 07:50朱瑶迪张佳烨李苗云赵莉君赵改名马阳阳任宏荣王文涛
农业工程学报 2020年4期
关键词:芽孢光谱诱导

朱瑶迪,张佳烨,李苗云,赵莉君,赵改名,马阳阳,任宏荣,王文涛

肽聚糖对肉制品中产气荚膜梭菌芽孢萌发率影响及预测

朱瑶迪,张佳烨,李苗云※,赵莉君,赵改名,马阳阳,任宏荣,王文涛

(河南农业大学食品科学与技术学院,郑州 450000)

该研究利用产气荚膜梭菌(,)营养体及其芽孢肽聚糖以芽孢萌发率、浑浊度OD600%、Ca2+-DPA%变化率等为指标比较不同肽聚糖对芽孢萌发的影响;并针对芽孢萌发率检测耗时、费力等问题,提出一种基于近红外光谱技术(near infrared spectroscopy, NIR)定量预测不同浓度肽聚糖诱导芽孢萌发率研究。首先原始光谱经不同方式预处理,获得最佳方法为标准正态变换,然后使用主成分分析和遗传-联合区间偏最小二乘法进行光谱数据降维及特征变量筛选,分别对不同浓度肽聚糖诱导芽孢、OD600%、Ca2+-DPA%进行快速预测。结果表明:营养体肽聚糖可有效诱导芽孢萌发,而芽孢肽聚糖效果不明显。利用GA-siPLS筛选芽孢萌发特征变量的最佳特征区间分别是[3, 9, 11, 14]、[1, 7, 12, 15]和[7, 8, 12, 17],其预测集和RMSEP分别为0.872 6,0.861 1,0.884 1和0.769,0.218%,42.34%。研究结果表明,利用NIR结合GA-siPLS可定量预测肽聚糖诱导芽孢的萌发率,实现芽孢萌发的快速预测,为保证肉制品安全提供有效手段。

菌;近红外光谱;肉;肽聚糖;芽孢萌发; GA-siPLS;

0 引 言

产气荚膜菌(,)是一种广泛存在于环境中的革兰氏阳性厌氧芽孢菌,可在空气、土壤、水及人和动物肠道中发现[1]。其芽孢对高温、高压、干燥、辐射以及强酸强碱等条件均具有极强的抗逆性,使其能在食品杀菌过程中存活,很难被杀死,并可长时间保持休眠状态[1]。然而其一旦萌发就可快速繁殖,且开始产生毒素,不仅可引起人急性腹部绞痛和腹泻,而且造成胀袋及腐败。因此,不但致病性强,而且给肉品产业带来很大的经济损失,被称为美国第三大食源性致病菌,每年与食物中毒相关的经济损失达3.43亿美元[2]。“先萌发,后杀灭”是芽孢研究的热点[3-4],目前,通过添加萌发剂可使芽孢快速、高效萌发,同时失去抗逆性,便于使用常规方法杀灭,保证肉制品食用安全。

肽聚糖是由细菌代谢过程中自身分泌的物质,是其细胞壁的主要成分,可作为一系列宿主-微生物相互作用的信号,尤其是对芽孢萌发有促进作用[5]。然而不同肽聚糖的组成和功能有显著差别,张津瑜等[6]通过红外光谱鉴定发现枯草芽孢杆菌(,.)芽孢皮层肽聚糖与营养体细胞壁肽聚糖特征氨基酸种类和含量大不相同。Shah等[7]和著名芽孢萌发专家Setlow[8]在2008年均提出了肽聚糖可诱导.芽孢萌发的新途径,并认为在nmol/L为单位浓度即可高效诱导芽孢萌发。目前,芽孢萌发率的检测主要是利用常规的化学指标判断如热抗性损失平板计数、芽孢浑浊度(OD600)、芽孢折光性测定等化学方法,不仅耗时费力,而且检测结果往往延迟于生产、销售,因此寻找一种快速、无损的方法来预测肽聚糖对芽孢萌发的影响是非常迫切的。

近红外光谱分析技术是一种通过光谱信息反映物质内部成分的物理测试技术,具有分析速度快、操作便捷、无损等优点[9]。已被广泛用于食品[10]、农产品[11]、药品[12]等的定性分类和定量分析。目前,在食源性致病菌检测方面的应用也越来越广泛,如陈全胜等[13]运用近红外光谱技术结合反向传播人工神经网络(BP-ANN)可以快速识别鸡肉中的假单胞菌;魏颖琪[14]运用近红外光谱技术结合主成分分析(PCA)、判别分析(LDA)和偏最小二乘回归(PLSR)方法预测稻谷中有害霉菌的数量;谷芳等[15]运用近红外光谱技术结合PCA算法预测猪肉中菌落总数;Bai等[16]运用近红外(NIR)光谱和支持向量机(SVM)鉴定大肠杆菌O157:H7,单核细胞增生李斯特菌和金黄色葡萄球菌三种常见的食源菌。这些研究表明,近红外光谱技术可以实现对食源性致病菌的定性和定量预测且模型精度高;但是目前关于近红外光谱技术预测肉制品中芽孢萌发率的内容鲜有报道。

本研究以芽孢为研究对象,利用不同浓度营养体及其芽孢皮层肽聚糖分别诱导其芽孢萌发,并通过芽孢热抗性损失()、浑浊度(OD600%)、2,6-吡啶二羧酸(Ca2+-DPA%)释放率等指标进行比较。另外采用NIR结合GA-siPLS算法,对营养体肽聚糖诱导芽孢萌发率进行定量分析,不仅可以对肉制品安全实现在线实时检测,而且为快速预测不同萌发剂对芽孢萌发效果提供有效的技术手段。

1 材料与方法

1.1 材料与试剂

1.1.1 菌种与原料

菌种:产气荚膜梭菌C1芽孢是由河南农业大学肉品加工与安全重点实验室自行提取并鉴定(主要是从真空包装的盐焗鸡中自行分离培养所得)产气荚膜梭菌芽孢及其营养体肽聚糖是由河南农业大学肉品加工与安全重点实验室自行提取,并鉴定。

1.1.2 试剂与培养基

胰胨-亚硫酸盐-环丝氨酸琼脂(TSC)、液体硫乙醇酸盐培养基(FTG)、0.1%无菌蛋白胨水(BP均购自青岛高科技工业园海博生物科技有限公司;胰蛋白酶Trypsin(1∶250)购自赛默飞世尔科技(中国)有限公司;溶菌酶Lysozyme from chicken white购自Sigma公司;三氯化忒、2,6-吡啶二羧酸(DPA)(购买自Sigma公司),其他化学试剂均为国产分析纯。

1.2 试验方法

1.2.1 芽孢热抗性()测定

在80 ℃、10 min的热处理通常被称作芽孢热抗性损失[17]。通过平板计数法确定芽孢萌发的数量。将107mg/mL芽孢样品与无菌水中的肽聚糖在37 ℃下孵育10 min,然后进行湿热处理,梯度稀释后用TSC培养基在37℃厌氧培养24 h计数,通过公式(1)计算。

式中为芽孢热抗性损失,total热激前芽孢总数,lgCFU/mL,survival热处理后残存活菌数, lgCFU/mL。

1.2.2 芽孢浑浊度(OD600%)和折光性测定

参照孙静等[18]的方法检测,取200L芽孢悬浮液在600 nm下测定OD600%(见公式2)。测定前后将其摇匀,每隔20 min取芽孢悬浮液滴于载玻片上,盖上盖玻片,放置于相差显微镜下观察其折光性。

式中OD600%是OD600变化率,D是OD600下降值;D是初始OD600值。

1.2.3 Ca2+-2,6-吡啶二羧酸释放率(Ca2+-DPA%)测定

参考Alistair等[19-20]的方法,采用荧光法测量Ca2+-DPA%。将肽聚糖诱导处理过的芽孢在7 000×和4 ℃下离心10 min,并测定Ca2+-DPA上清液,于96孔板中加入100L芽孢悬液与100L的20mol/ L氯化铽(III)六水合物(TbCl3.6H2O)混合,用1 mol/L乙酸调pH值至5.6,酶标仪(Molecular Devices)测定。在激发波长为270 nm,发射波长为545 nm处测定荧光值。未经肽聚糖诱导处理的芽孢作为阴性对照。将1 mL培养的芽孢煮沸60 min为芽孢中总Ca2+-DPA量,Ca2+-DPA%通过公式(3)计算。

式中Ca2+-DPA%是初始Ca2+-DPA的百分比,F是芽孢释放Ca2+-DPA量,F是初始Ca2+-DPA量。

1.2.4 营养体及其芽孢肽聚糖的提取

肽聚糖是细菌细胞壁的主要成分,关于产气荚膜梭菌营养体及其芽孢肽聚糖具体提取方法如下:首先将及其芽孢扩大培养后,利用超声波物理破碎(条件:功率200 W,磁力50次超声脉冲,每次5 s,间隔5 s),不溶性细胞壁组分再通过离心收集,并采用4%SDS重新悬浮,煮沸15 min,再采用热无菌水(60℃)清洗数次直至除去残留的SDS,进一步采用0.5 mg/mL的胰蛋白酶处理(10 mmol/L Tri-Hcl,pH值8),并加入10 mmol/L CaCl2,酶解16 h以除去共价结合的蛋白质,将酶解液加入SDS(终浓度1%)煮沸钝化胰蛋白酶,并清洗除去SDS。将细胞壁重新悬浮于氢氟酸(5 mg细胞壁悬浮于2 mL 48% HF)中,4 ℃处理48 h。HF可以除去肽聚糖上磷酸二酯键共价连接的次生细胞壁多糖,包括磷壁酸、poly-(,GlcNAc)等。细胞壁组分再分别采用8 mol/L LiCl和0.1METDA清洗,无菌水清洗2次,最后采用丙酮除去脂磷壁酸和脂多糖。将样品冻干,得到肽聚糖。并所得样品进行纯化,具体参照文献[17]:将冻干后的肽聚糖在磷酸盐缓冲液悬浮,加入变溶菌素酶解生成胞壁肽,同时利用硼氢化钠还原后采用HPLC分离,ODS色谱柱,胞壁肽组分检测采用紫外检测器,波长206 nm,最后在检测器出口单峰收集胞壁肽组分,并利用HPLC法脱盐,冻干得到胞壁肽组分。

1.3 近红外光谱采集和预处理

1.3.1 近红外光谱数据采集

为保证仪器稳定性,先打开近红外光谱仪预热30 min,然后将样品装入液体样品池中,设置扫描参数:仪器分辨率8 cm-1,扫描次数32次,光谱范围为波数4 000~10 000 cm-1,每个样品10 min/次,跟踪采集60 min,获得6条光谱,取平均;数据采集过程中,室内湿度基本保持不变,温度控制在(20±5)℃。采集光谱时,每个浓度35个样品,3个浓度共105条光谱,将预处理的光谱和实测值随机划分为训练集70和预测集35个样本,进行建模分析。

1.3.2 近红外光谱数据预处理

由于外界因素(如基线漂移,光的散射以及环境等)会对光谱产生影响,需采用一定的预处理方法进行消除[21],常采用的方法包括标准归一化(standard normal variable,SNV)、多元散射校正(multiple scattering correction,MSC)、中心化(Centralization)等。本研究对采集得到的105条光谱进行预处理,然后利用指标与偏最小二乘(PLS)建立预测模型,依据模型相关系数()和交互验证均方根误差(RMSECV)等指标选择最佳预处理方法,经比较,采用SNV对光谱进行预处理效果最佳,结果如表1和图1所示。

表1 不同预处理方法对S指标预测模型的结果分析

图1 不同肽聚糖诱导芽孢萌发的原始光谱和预处理后光谱示意图

1.4 建模方法及模型评价

本试验尝试采用遗传算法(GA)-联合区间偏最小二乘(si-PLS)筛选变量建立模型。先利用GA进行全光谱变量筛选,然后进一步将所选光谱划分为10,11,12,...,20个子区间,并划分不同子区间时分别联合2、3、4个子区间建立预测模型。同时依据RMSECV,以及来选择肽聚糖诱导芽孢萌发的最佳预测模型,值越接近1,RMSECV值越小,模型的精度越高,表明模型的预测性能越好[21]。

1.5 数据处理及分析

采用MATLAB2016b处理近红外光谱数据,SPSS16.0对数据结果进行单因素方差分析,Origin 8.5软件进行绘图。

2 结果与分析

2.1 产气荚膜梭菌芽孢萌发的变化情况

2.1.1 芽孢热抗性损失

肽聚糖诱导芽孢萌发时失去热抗性[22],结果如表2所示,随着时间的增加,经10-1、10-3、10-5mg/mL不同浓度营养体肽聚糖诱导后芽孢值分别为95.28%、88.83%和83.69%,能显著诱导芽孢萌发(<0.05);而芽孢皮层肽聚糖诱导后值分别为10.00%、9.85%和1.32%,对芽孢萌发基本无影响。结果表明,营养体肽聚糖可有效诱导芽孢萌发,且随着浓度增加,诱导芽孢萌发率越大,最高能使95.28%的芽孢萌发,而皮层肽聚糖则对芽孢萌发无影响。

表2 不同浓度C. Perfringens营养体肽聚糖对产气荚膜梭菌数量的影响

注:表中字母表示差异性显著水平,其中A, B, C代表组间差异性,a, b, c代表组内差异性。

Note: The letters in the table represent significant levels of variability, where A, B, and C represent inter group variability, and a, b, and c represent intra group variability.

2.1.2 芽孢浑浊度OD600

芽孢萌发时折光性降低且导致芽孢悬浮液OD600值下降,芽孢完全萌发时OD600下降约60%[23]。OD600结果如图2所示,经10-1、10-3、10-5mg/mL浓度的营养体肽聚糖孵育60 min后,芽孢萌发显著(<0.05),OD600%值分别为59.41%、8.88%、1.80%;而芽孢皮层肽聚糖则对芽孢萌发无显著影响(>0.05),OD600%仅有轻微下降,萌发不明显。利用相差显微镜进行验证发现,随着时间的增加,芽孢皮层肽聚糖诱导的芽孢则始终为“光亮”,芽孢未萌发(图2c),而营养体肽聚糖诱导的芽孢折光性降低,芽孢中心由“光亮”逐渐变“黑暗”(图2d)。

注:图c、d中从左至右依次为0、20、40、60 min 的结果分析。

Note: Fig. c, d are the result of 0、20、40、60 min, from left to right.

图2 不同浓度肽聚糖OD600变化示意图

Fig.2 Schematic diagram of change of OD600with different PGd concentrations

2.1.3 Ca2+-2,6-吡啶二羧酸DPA(Ca2+-DPA)释放率

在芽孢萌发过程中Ca2+-DPA为芽孢的特有物质,Ca2+-DPA的释放是芽孢萌发的关键步骤[22-25]。加入不同肽聚糖孵育60 min后,10-1、10-3、10-5mg/mL浓度的营养体肽聚糖中芽孢Ca2+-DPA%分别为58%、13%和10%,其中浓度为10-1mg/mL营养体肽聚糖诱导芽孢萌发效果最佳,而芽孢皮层肽聚糖诱导芽孢萌发时,Ca2+-DPA%分别为7%、6%、5%则表明芽孢无萌发。芽孢萌发过程中Ca2+-DPA释放结果如图3所示。

2.2 主成分分析

本试验采用主成分分析(principal component analysis,PCA)对数据进行分析,可将分散在一组变量上的信息集中到某几个综合指标上,采用较少的特征信息对芽孢萌发率进行有效表征[26-27]。经PCA分析后,前3个主成分的贡献率分别为93.26%、5.23%、1.21%,累计贡献率达到99.7%,营养体肽聚糖诱导芽孢萌发,可将不同浓度营养体肽聚糖诱导萌发芽孢区分开,部分存在交叉,还需进一步模式识别。

2.3 遗传算法-联合区间间隔偏最小二乘法(GA-siPLS)定量预测模型的建立

GA作为一种有效的全局搜索算法,可用于波长选择优化[28-30]。GA变量筛选结果如表3所示,对于指标,利用GA-siPLS预测模型,当特征光谱划分为20个区间,联合区间数为4时,主成分数为4,光谱区间为[3, 9, 11, 14],其训练集的R和RMSEC分别为0.892 4和0.711,预测集R和RMSEP分别为0.8726和0.769。对于OD600%,当联合区间数为4,主成分数为10时,光谱区间为[1, 7, 12, 15]时,获得的模型最佳,其训练集的R和RMSEC分别为0.896 3和0.189%,预测集的R和RMSEP分别为0.8611和0.218%。对Ca2+-DPA%,当联合光谱区间为[7, 8, 12, 17]时,主成分因子数为6时,其训练集的R和RMSEC分别为0.9037和39.53%,其预测集的R和RMSEP分别为0.884 1和42.34%。该模型在所有模型中精度最高,预测性能最佳。经验证集进行模型验证,结果如表3所示。不同指标预测集散点图如图4所示。

表3 芽孢萌发指标S、OD600%值和Ca2+-DPA%的GA-siPLS 预测结果

图4 最佳营养体肽聚糖浓度条件下对芽孢S,OD600%值和Ca2+-DPA%预测集的散点图

3 结论与讨论

本研究首先探究了不同肽聚糖对芽孢萌发的影响,确定了营养体肽聚糖可有效诱导其芽孢萌发,这表明虽同是肽聚糖,但在芽孢形成过程中,肽聚糖结构应发生了变化,结构决定功能,芽孢皮层肽聚糖不能与萌发受体结合,从而无法诱导芽孢萌发,这与之前的研究一致,关于两者之间的结构差异需要进一步研究。然后本研究利用、OD600%和Ca2+-DPA%等指标比较了不同浓度营养体肽聚糖对芽孢萌发效果,结果表明在10-1mg/mL时诱导芽孢萌发效果最佳。同时利用NIR技术结合GA-siPLS模型定量预测了不同浓度肽聚糖对芽孢萌发率,结果为:对于指标、OD600%和Ca2+-DPA%训练集模型的相关系数R分别为0.892 4,0.896 3, 0.903 7;RMSEC分别为0.711,0.189%,39.53%;预测集模型的相关系数R分别为0.872 6,0.861 1和0.884 1;RMSEP分别为0.769,0.218%和42.34%,验证集R分别为0.864 2,0.821 7和0.895 3,RMSECV分别为0.734,0.206%和41.27%,且利用Ca2+-DPA%指标,预测精度最高,可有效预测芽孢萌发率。综上所述,利用近红外光谱技术结合化学计量学方法预测食源性致病菌芽孢萌发率是可行的,为保证肉制品的食用安全性提供了理论依据和新的技术手段。

[1]Komatsu H, Inui A, Sogo T, et al.of Nihon rinsho Japanese[J]. Journal of Clinical Medicine, 2012, 70(8): 1357-1361.

[2]Freedman J C, Shrestha A, Mcclane B A, et al.enterotoxin: Action, genetics, and translational applications[J]. Toxins, 2016, 8(3): 73-75.

[3]Rahayu W P, Fardiaz D, Kartika G D, et al. Estimation of economic loss due to food poisoning outbreaks[J]. Food Science & Biotechnology, 2016, 25(1): 157-161.

[4]Alanazi S, Alnoman M, Banawas S, et al. The inhibitory effects of essential oil constituents against germination, outgrowth and vegetative growth of spores oftype A in laboratory medium and chicken meat[J]. Food Microbiology, 2018, 73: 311-318.

[5]Talukdar P K, Dompijitkul P U, Hossain A, et al, Inactivation strategies forperfringens spores and vegetative cells, Appl[J]. Environ. Microbiol, 2017, 83: 2731-2736.

[6]张津瑜,孙静,郭洪伟,等. 枯草杆菌芽孢皮层肽聚糖的提取与结构分析[J]. 食品科技,2018,43(4):10-14. Zhang Jinyu, Sun Jing, Guo Hongwei, et al. Extraction and structural analysis of peptidoglycan from bacillus subtilis spore[J]. Food Science and Technology, 2018, 43(4): 10-14. (in Chinese with English abstract)

[7]Shah I M, Laaberki M, Popham D L, et al. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments[J]. Cell, 2008, 135 (3): 486-496.

[8]Setlow P. Dormant spores receive an unexpected wake-up call[J]. Cell, 2008, 135(3): 410-412.

[9]Sinelli N, Spinardi A, di Egidio V, et al. Evaluation of quality and nutraceutical content of blueberries () by near and mid-infrared spectroscopy[J]. Postharvest Biol Technol, 2008, 50: 31-36.

[10]Zeng X Y, Zhao W Q, Hu X Z, et al. Determination of polyphenols in oats by near-infrared spectroscopy (NIRS) and two-dimensional correlation spectroscopy[J]. Analytical Letters, 2019, 52(13): 1-10.

[11]Yi X, Kutsanedzie F Y H, Hao S, et al. Rapid pseudomonas species identification from chicken by integrating colorimetric sensors with near-infrared spectroscopy[J]. Food Analytical Methods, 2018, 11(4): 1199-1208.

[12]Boiret M, Chauchard F. Use of near-infrared spectroscopy and multipoint measurements for quality control of pharmaceutical drug products[J]. Analytical & Bioanalytical Chemistry, 2017, 409(3): 683-691.

[13]陈全胜,王名星,郭志明,等. 鸡肉中假单胞菌的近红外光谱快速识别[J]. 农业机械学报,2017,48(8):328-334. Chen Quansheng, Wang Mingxing, Guo Zhiming, et al. Fast identification of pseudomonas in chicken by near infrared spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 328-334. (in Chinese with English abstract)

[14]魏颖琪.基于光谱和气味信息的稻米有害霉菌侵染快速分析方法研究[D]. 南京:南京财经大学,2017.Wei Yingqi. Rapid Detection of Harmful Fungal Infection in Paddy Rice based on Spectral and Volatile Odor Information[D]. Nanjing: Nanjing University of Finance and Economics, 2017.

[15]谷芳,曾智伟,郭康权,等. 基于近红外光谱的猪肉细菌菌落总数的动力学模型[J]. 中国农业大学学报,2013,18(3):152-156. Gu Fang, Ceng Zhiwei, Guo Kangquan, et al. Kinetic model of total bacterial colonies of pork based on near infrared spectroscopy[J]. Journal of China Agricultural University, 2013, 18(3): 152-156. (in Chinese with English abstract)

[16]Bai F N, Liu J X, Han S H, et al. Identification of food-borne bacteria by Near Infrared spectroscopy based on support vector machine[J]. Food Science, 2014, 35(12): 179-182.

[17]张良. 高静压与温度协同杀灭芽孢的效果与机制研究[D]. 北京:中国农业大学,2015. Zhang Liang. Research on Effectiveness and Mechanism of Spore Inactivation by High Hydrostatic Pressure Combined with Heat[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)

[18]孙静,张津瑜,胡小松,等. 超高压导致芽孢亚致死损伤进而提高芽孢热敏感性[J]. 食品科技,2017,42(10):313-317. Sun Jing, Zhang Jinyu, Hu Xiaosong, et al. Ultrahigh pressure leads to sublethal injury of spores and thus increases the thermal sensitivity of spores[J]. Food Science and Technology, 2017, 42(10): 313-317. (in Chinese with English abstract)

[19]Alistair A, Hindle, Elizabeth A, et al. Dipicolinic acid (DPA) assay revisited and appraised for spore detection[J]. The Analyst, 1999, 124: 1599-1604.

[20]Saeed B, Sarker M R. l -lysine (pH 6. 0) induces germination of spores of,, type F isolates carrying chromosomal or plasmid-borne enterotoxin gene[J]. Microbial Pathogenesis, 2018, 123: 227-232.

[21]Xu Y, Kutsanedzie F Y H, Sun H, et al. Rapid pseudomonas species identification from chicken by integrating colorimetric sensors with near-infrared spectroscopy[J]. Food Anal Method, 2018, 11(7): 1199-1208.

[22]Setlow B, Cowan A E, Setlow P. Germination of spores of Bacillus subtilis with dodecylamine[J]. Journal of Applied Microbiology, 2003, 95(3): 234-236.

[23]梁栋,陈芳,胡小松,等. 芽孢萌发研究进展[J]. 中国食品学报,2018,18(6):175-179. Liang Dong, Chen Fang, Hu Xiaosong, et al. Research progress on spore germination[J]. Chinese Journal of Food Science, 2018, 18(6): 175-179. (in Chinese with English abstract)

[24]Setlow P. Dormant spores receive an unexpected wake-up call[J]. Cell, 2008, 135(2): 410-412.

[25]饶雷. 高压二氧化碳结合温度对枯草芽孢杆菌芽孢的杀灭效果与机制[D]. 北京: 中国农业大学,2017. Rao Lei. Effect and Mechanism of High Pressure Carbon Dioxide Binding Temperature on Spores of Bacillus Subtilis[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

[26]ChenJ, Zhou C, Liu Z, et al. Divergent urinary metabolic phenotypes between major depressive disorder and bipolar disorder identified by a combined GC-MS and NMR Spectroscopic Metabonomic Approach[J]. Proteome Res, 2015, 14(8): 3382-3389.

[27]Artos F C, Lopes J A, Ojas R M, et al. Detection and quantification ofand pseudomonas aeruginosa in cow milk by near-infrared spectroscopy[J], Dairy Tecnol, 2015, 68(14): 357-365.

[28]陈全胜,张燕华,万新民,等. 基于高光谱成像技术的猪肉嫩度检测研究[J]. 光学学报,2010,34(9):2602-2607. Chen Quansheng, Zhang Yanhua, Wan Xinmin et al. Study on Pork Tenderness Detection based on Hyperspectral Imaging Technology[J]. Journal of the Optical, 2010, 34(9): 2602-2607. (in Chinese with English abstract)

[29]Akkaya M R. Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy[J]. Food SCI Tech Mys, 2018, 55(21): 2318-2325

[30]Liu W J, Li W J, Li H G, et al, Research on the method of identifying maize haploid based on KPCA and near infrared spectrum[J]. Spectroscopy & Spectral Analysis, 2017, 32(4): 237-241.

Effect of different Peptidoglycan onspore germination and quantitative prediction

Zhu Yaodi, Zhang Jiaye, Li Miaoyun※, Zhao Lijun, Zhao Gaiming, Ma Yangyang, Ren Hongrong, Wang Wentao

(,,450000,)

() is a Gram-positive, anaerobic, spore forming pathogenic bacterium causing gastrointestinal (GI) diseases in humans and animals. The most important type that causes-associated food poisoning (FP) in humans istype A, and this illness is the third most commonly reported food-borne disease in the United States.spores are resistant to many environmental stresses and remain dormant in the environment for a long period of time. Once conditions are favorable, they can break their dormancy and initiate germination in response to a variety of compounds. Bacterial shape and cellular resistance to cytoplasmic turgor pressure are determined by peptidoglycan (PG), a polymer of repeated subunits of an N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) peptide monomer that surrounds the cytoplasmic membrane. PG can be targeted to a single germination receptor to efficiently inducespore germination. In this study,vegetative and its spore cortex peptidoglycan were used for spore germination rate (), turbidity (OD600%) and the release rate of Ca2+-DPA%. Among the existing spectroscopic methods, near-infrared spectroscopy (NIR) has been proven to be one of the most powerful tools for the qualitative and quantitative analysis of constituents in food, agricultural, wood and pharmaceutical products. The, and (OD600%) and Ca2+-DPA% were compared the effect of different peptidoglycans on spore germination, and the time-consuming and laborious shortage of spore germination rate detection, a study based on NIR combined with chemometric methods to quantitatively predict spore germination rates under different PG concentration conditions. Three preprocessed method, including MSC, SNV and centralization, were used to preprocess the original spectral. The optimal preprocessing method is SNV, and then using principal component analysis (PCA) and GA-joint interval Partial least squares (GA-siPLS) for spectral data dimensionality reduction and feature variable screening, and finally using GA-siPLS was used to rapidly predict spore, OD600%, and Ca2+-DPA% in different concentrations of PG. The results showed thatPG could effectively induce spore germination, and the best effect was induced by 10-1mg/mL. The results of were showed that thewas 95.28%, the OD600% was 29.41%, and the Ca2+-DPA release rate was 58%, while the spore PG effect was not obvious. Using GA-siPLS to screen for spore germination characteristic variables, the optimal feature intervals for, OD600%, and Ca2+-DPA% were[3, 9, 11, 14], [1, 7, 12, 15], and [7, 8, 12, 17], respectively. For the, the correlation coefficientsof the calibration set and prediction set are 0.892 4 and 0.872 6, respectively, and the root mean square error are 0.711 and 0.769 respectively. For the OD600%, the R are 0.896 3 and 0.861 1, respectively. The root mean square error are 0.189% and 0.218% respectively. For Ca2+-DPA%, the Rof the most training set and prediction set are 0.9037 and 0.884 1, respectively, and the root mean square error is 39.53% and 42.34%. The results show that the NIR combined with chemometric methods can quickly predict the spore germination rate of. This study can rapidly predict the spore germination rate, which can provide an effective means to ensure the safety of meat products.

bacteria; near-infrared spectroscopy; meat product; Peptidoglycan; spore germination; GA-siPLS;

朱瑶迪,张佳烨,李苗云,赵莉君,赵改名,马阳阳,任宏荣,王文涛. 肽聚糖对肉制品中产气荚膜梭菌芽孢萌发率影响及预测[J]. 农业工程学报,2020,36(4):287-293. doi:10.11975/j.issn.1002-6819.2020.04.034 http://www.tcsae.org

Zhu Yaodi, Zhang Jiaye, Li Miaoyun, Zhao Lijun, Zhao Gaiming, Ma Yangyang, Ren Hongrong, Wang Wentao. Effect of different Peptidoglycan onspore germination and quantitative prediction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 287-293. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.04.034 http://www.tcsae.org

2019-10-22

2020-01-07

国家自然科学基金项目(31571856);省高校创新人才计划(18HASTIT036);河南省科技攻关项目(192102110216);研究生教育改革与质量提升(19JG0703);国家现代农业(肉牛/牦牛)产业技术体系专项(CARS-37)

朱瑶迪,讲师,博士,主要从事肉品加工与安全控制研究。Email:zhu_yaodi@163.com

李苗云,博士,教授,博士生导师,主要从事为肉品加工与安全控制研究。Email:limy7476@126.com

10.11975/j.issn.1002-6819.2020.04.034

TS251.5

A

1002-6819(2020)-04-0287-07

猜你喜欢
芽孢光谱诱导
隧道智能逃生诱导系统
基于三维Saab变换的高光谱图像压缩方法
姜黄素抑制骨肉瘤细胞增殖、迁移和侵袭并诱导凋亡的作用研究
基于3D-CNN的高光谱遥感图像分类算法
rpoB、gyrA、cheA基因在芽孢杆菌鉴定上的应用
同角三角函数关系及诱导公式
Ang Ⅱ诱导大鼠成肌细胞萎缩模型的构建
枯草芽孢杆菌在养鸡生产中的应用
芽孢杆菌在水产养殖中的应用研究进展
薄膜光伏组件在不同光谱分布下的测试差异