小兴安岭针阔混交林碳汇结构特征的研究

2020-12-14 04:26崔崧肖锐王文帆刘滨凡
森林工程 2020年6期

崔崧 肖锐 王文帆 刘滨凡

摘 要:針阔混交林结构特征对碳汇功能起到直接的影响作用,为明确小兴安岭碳汇结构特征,采用生物量方程计算生物量,并以生物量推算碳储量。结合垂直投影面积、角尺度、混交度及竞争指数等林分结构指标,对小兴安岭主要的针阔混交林碳储量特征进行研究,得到以下研究结果:①小兴安岭针阔混交林碳汇累积倾向于较大冠幅、较高混交度、较小竞争指数和随机分布状态的林木,但个别林型存在差异,原始林碳汇累积倾向于中度混交(混交度0.5)状态的林木,过伐林碳汇累积倾向于团块状分布(角尺度0.75)状态的林木;②针阔混交林内林木的碳汇量与冠幅存在显著的正向相关关系,与竞争指数存在显著的负向相关关系;③成熟林木个体占据较高的资源和空间生态位,碳汇累积处于优势地位,可从垂直空间角度增加林分错层空间的资源利用效率。合理的增加非顶级群落林分的混交比例有利于碳汇累积的增加。过伐林可以通过引入伴生树种等方法加快更新速度,改善团块状碳汇累积结构。

关键词:冠幅;混交度;角尺度;竞争指数;针阔混交林

中图分类号:S718.5    文献标识码:A   文章编号:1006-8023(2020)06-0030-06

The Study on the Structural Characteristics

of the Mixed-wood Carbon Sink in Xiaoxinganling Area

CUI Song1, XIAO Rui1, WANG Wenfan2, LIU Binfan2*

(1.Forestry Scientific Institute of Heilongjiang Province, Harbin 150081, China;

2.Forestry Academy of Heilongjiang Province, Harbin 150081, China)

Abstract:The structural characteristics of coniferous and broad-leaved mixed forests have a direct effect on the carbon sink function. In order to clarify the structural characteristics of the carbon sink in Xiaoxinganling, the biomass equation was used to calculate the biomass, and the biomass was used to calculate the carbon storage. Combined with stand structure indexes such as vertical projection area, angle index, mingling index and competition index, the carbon storage characteristics of main coniferous and broad-leaved mixed forests in Xiaoxinganling were studied, and the following results were obtained. ① The carbon sink of coniferous and broad-leaved mixed forests in Xiaoxinganling tended to be larger crown width, higher mingling index, lower competition index and random distribution, but there were differences among individual forest types. Carbon sink accumulation of vigin forest tended to moderate mixed (mingling index 0.5) state, and overcut forest tended to clump distribution (angle index 0.75) state. ② There was a significant positive correlation between carbon sink and crown width, and a significant negative correlation with competition index in coniferous and broad-leaved mixed forests. ③ Mature trees occupied a higher resource and spatial niche, and carbon sink accumulation was in a dominant position, which can increase the resource utilization efficiency of stand split-layer space from the vertical spatial perspective. A reasonable increase in the mixing ratio of non-top community stands was beneficial to the increase of carbon sink accumulation. Overcutting can accelerate the regeneration rate and improve the accumulation structure of carbon sink by introducing associated tree species.

林木碳含量(kg)=林木生物量(kg)×46.75%。(6)

2.3.2 空间结构计算

(1)垂直投影面积

垂直投影面积采用冠幅垂直投影面积:

Av=W东西×W南北2。 (7)

式中:Av为垂直投影面积,m2;W东西为东西方向的冠幅,m;W南北为南北方向的冠幅,m。

(2)混交度

选定对象木的4株相邻木中与对象木不属于同种的个体所占据的比例,其计算公式为:

Mi=14∑nj=1Vij。 (8)

式中:Mi 为对象木i的混交度;i为对象木;j为邻近木。Vij 为离散性变量,当对象木i与第j株邻近木为不同的树种时,Vij=1;当对象木i与第j株邻近木为同一树种时,Vij=0[16-17]。Mi有5种取值,分别为0(零度混交)、0.25(弱度混交)、0.50(中度混交)、0.75(强度混交)和1(极强度混交)[12]。

(3)角尺度

在两个相邻木的邻接夹角中选择其中的小角α与标准角α0(相邻木均匀分布时的夹角为90°)进行比较。此时角尺度的定义为:α角小于标准角α0的个数占4个邻接夹角的比例[18],公式为:

Wi=14∑4j=1Zij。 (9)

式中:当第j个角的α值小于标准角α0时,Zij=1,大于标准角α0时,Zij=0;Wi在0.475~0.517为随机分布,小于0.475为均匀分布,大于0.517时为团状分布[12]。

(4)竞争指数

对象木与某一相邻木的竞争指数采用单木竞争指数[19-20]:

CIij=djdi×Lij。 (10)

式中:CIij为对象木i与某一相邻木j的竞争指数;Lij为对象木i与竞争木j之间的距离,cm;di为对象木i的胸径,cm;dj为竞争木j的胸径,cm。

3 结果与分析

3.1 垂直投影面积与碳汇结构的关系

将林木垂直投影面积与林木碳含量进行相关性分析发现(表2),针阔混交林的各种林型中垂直投影面积与碳含量均呈现出显著正相关(α=0.01,P<0.01),碳汇积累倾向于较大冠幅的个体。具有较大冠幅的林木多為成熟个体,相同立地条件下,在资源获取与生长空间上更具优势。从不同林型垂直投影面积与碳汇的相关性指数比较由大到小顺序为:原始林、次生林、轻度采伐林、过伐林,由此看来原始林中林木的树冠大小与碳汇的关系最密切,其次是裸地次生林,再次是轻度采伐林和过伐林。次生林虽然是由各种原因形成的裸地自然更新而来,但其更新过程接近于自然状态,没有人为干扰,原始林也是近乎没有人为干扰的林分,而过伐林和轻度采伐林都经历过不同程度的人为干扰,因此可以推测人为干扰是影响林分冠幅和碳汇关系的重要因素。

3.2 混交度与碳汇结构的关系

对各林型单木的碳含量根据单株混交度进行分级发现,碳含量随着混交度的升高呈现增大的趋势。进行混交度与林木碳含量的相关性分析(表3),可以看出针阔混交林整体(所有林型)、红松-云冷杉林、过伐林和次生林表现出显著的正向相关(α=0.01,P<0.01),但落叶松-云冷杉林、原始林未表现出显著相关性。从不同林型的角度来看,混交度与碳汇的相关性系数由大到小为:过伐林、红松-云冷杉林、次生林,也未能表现出明显的规律。

图1是不同林型在各混角度分级下碳含量占各林型碳含量总量的百分比,除原始林外,其余林型的碳含量比例均随混交度的增大而增大,在混交度达到0.75或1(强度混交或极强度混交)时达到最大。原始林表现为随着混交度的增加碳含量上升,在混交度0.5时(中度混交)达到最大,随后出现降低。原始林处于顶级群落的动态平衡状态,其绝对优势地位的树种与其他林型相比比较少,且占据绝对的空间和资源优势,其余树种无法与其形成良好的混交状态,因此碳汇累积倾向于中度混交状态下的个体。

3.3 角尺度与碳汇结构的关系

对各林型单木的碳含量根据角尺度进行分级发现,随着角尺度的增大,碳含量出现增高的趋势,在角尺度达到0.5时达到最大,随后逐渐减少,将二者进行相关性分析,各林型均未表现出显著的相关性。

图2为不同林型在角尺度分级下碳含量占各林型碳含量总量的百分比,各林型的碳含量比例均随角尺度的增大而增大,各林型均在0.5(随机分布)达到峰值,但过伐林在0.75(团块状分布)达到峰值,达到峰值后出现下降的趋势。红松-云冷杉林在达到峰值下降后在角尺度为1时出现一定的增大。过伐林由于过度采伐,林内更新树种多集中于采伐后剩余林木的周围,因此呈现团块状的碳汇分布结构。

3.4 竞争指数与碳汇结构的关系

将不同林型内单木碳含量与其竞争指数做相关性分析发现(表4),不同林型内单株林木的竞争指数与碳汇量均存在显著的负向相关关系(α=0.01,P<0.01),原因是竞争指数越大,林木的生长空间和资源利用所面临的竞争状态越激烈,碳汇累积的不利因素就越多。相关性由大到小顺序为:过伐林、次生林、轻度采伐林、原始林,由此看来这与各林型林分结构的完整程度的排列顺序是一致的。这表明林分结构越完整,竞争指数对碳汇的影响作用越弱,即完整的林分结构可以降低林木竞争对于碳汇积累的不利影响。

将竞争指数与碳汇量进行方程拟合,二者呈现出幂函数关系,不同林型拟合方程具体参数有所不同(表5)。从整体来看,针阔混交林内林木的碳汇量和竞争指数符合y=98.065x-1.254,R2=0.58。具有较小竞争指数的林木大部分都是成熟个体,相同立地条件下,较低的竞争状态更有利于资源的占有和碳汇的累积。

4 结论

小兴安岭针阔混交林碳汇累积整体来看具有倾向于较大冠幅、较高混交度和较小竞争指数的随机分布状态的个体,但不同林型在碳汇累积结构特征上存在差异,原始林碳汇累积倾向于中度混交(混交度为0.5)状态的个体,过伐林碳汇累积倾向于团块状分布(角尺度0.75)状态。针阔混交林内林木的碳汇量和竞争指数符合y=98.065x-1.254,R2=0.58关系。不同林型林分人为干扰程度及结构完整程度可以影响到冠幅和竞争指数对碳汇累积的影响效果。

笔者建议:成熟的林木个体由于处于生长峰值,占据较高的资源和空间生态位,其碳汇累积也处于相对的优势地位,因此可从垂直空间角度对林分结构进行改善,增加林分错层空间的资源利用效率。原始林由于林分结构的原因,在中度混交状态聚集了更多的碳汇累积,其他林型林木个体呈现趋向于高混交度个体的碳汇累积,因此合理地增加非顶级群落的混交比例有利于碳汇累积的增加。过伐林呈现出团块状碳汇累积结构,可以通过引入伴生树种等方法加快更新速度,达到增汇的目的。

【参 考 文 献】

[1]WU L C, LIU J, TAKASHIMA A, et al. Effect of selective logging on stand structure and tree species diversity in a subtropical evergreen broad-leaved forest[J]. Annals of Forest Science, 2013, 70(5): 535-543.

[2]ALI A. Forest stand structure and functioning: Current knowledge and future challenges[J]. Ecological Indicators, 2019, 98: 665-677.

[3]SONG B,CHEN J,WILLIAMS T. Spatial relationships between canopy structure and understory vegetation of an old-growth Douglas-fir forest[J]. Forest Research,2014,3(2):1-12.

[4]孔雷.金溝岭林场三种林型最优林分结构的研究[D].北京:北京林业大学,2013.

KONG L. Optimal structures for three ecological forests in Jingouling forest[D]. Beijing: Beijing Forestry University, 2013.

[5]HUANG X M, LIU S R, WANG H, et al. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China[J]. Soil Biology and Biochemistry, 2014, 73: 42-48.

[6]WANG H, LIU S, WANG J, et al. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China[J]. Forest Ecology and Management, 2013, 300(4):4-13.

[7]WANG H, LIU S R, MO J M, et al. Soil-atmosphere exchange of greenhouse gases in subtropical plantations of indigenous tree species[J]. Plant and Soil, 2010, 335(1):213-227.

[8]WANG H, LIU S R, MO J M, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China[J]. Ecological Research, 2010, 25(6):1071-1079.

[9]全飞,李君,兰国玉,等.西双版纳热带森林土壤微生物生物量碳与生物功能研究[J].西部林业科学,2019,48(6):133-140.

QUAN F, LI J, LAN G Y, et al. Soil Microbial biomass carbon and biological function of tropical forest in Xishuangbanna[J].Journal of West China Forestry Science,2019,48(6):133-140.

[10]IPCC. Climate change 2007: the scientific basis[M]. Cambridge, UK: Cambridge University Press, 2007.

[11]CULTER M E J, BOYD D S, FOODY G M, et al. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2012, 70(3): 66-77.

[12]羅艳,何朋俊,吕倩,等.目标树经营初期对马尾松人工林碳贮量的影响[J].南京林业大学学报(自然科学版),2020,44(2):206-214.

LUO Y,HE P J,LYU Q,et al.Early effect of target tree management on carbon storage in Pinus massoniana plantations[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(2):206-214.

[13]孙清芳,刘滨凡,马燕娥.山河屯林业局红松阔叶混交林林分空间结构特征[J].森林工程,2019,35(6):1-5.

SUN Q F, LIU B F, MA Y N. Spatial structure characteristics of Pinus koraiensis mixed broad-leaved forest in Shanhetun Forestry Bureau[J]. Forest Engineering, 2019, 35(6): 1-5.

[14]章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社,2007:83-84.

ZHANG J E. Common ecology experimental research methods and techniques[M]. Beijing: Chemical Industry Press, 2007:83-84.

[15]贾炜玮.东北林区各林分类型森林生物量和碳储量[M].哈尔滨:黑龙江科学技术出版社,2014.

JIA W W. Biomass and carbon-sink of different forests in northeast of China[M]. Harbin: Heilongjiang Science and Technology Press, 2014.

[16]汤孟平,唐守正,雷相东,等.两种混交度的比较分析[J].林业资源管理,2004,25(4):25-27.

TANG M P, TANG S Z, LEI X D, et al. Comparison analysis on two minglings[J]. Forest Resources Management, 2004, 25(4): 25-27.

[17]汤孟平,周国模,陈永刚,等.基于Voronoi图的天目山常绿阔叶林混交度[J].林业科学,2009,45(6):1-5.

TANG M P, ZHOU G M, CHEN Y G, et al. Mingling of evergreen broad-leaved forests in Tianmu mountain based on Voronoi diagram[J]. Scientia Silvae Sinicae, 2009, 45(6): 1-5.

[18]赵中华,惠刚盈,胡艳波,等.角尺度判断林木水平分布格局的新方法[J].林业科学,2016,52(2):10-16.

ZHAO Z H, HUI G Y, HU Y B, et al. The new method judged horizontal distribution pattern by uniform angle index[J]. Scientia Silvae Sinicae, 2016, 52(2): 10-16.

[19]BURKHART H E, TOMM. Modeling forest stand development[M]. Dordrecht: Springer Netherlands, 2012.

[20]AMIRI M. Assessment of competition indices of an unlogged oriental beech mixed stand in Hyrcanian forests, Northern Iran[J]. Biodiversitas, Journal of Biological Diversity, 2016, 17(1): 306-314.