酸碱双功能水滑石催化剂及其烷基化反应性能

2021-03-15 09:27杜晓倩冉真真季生福
工业催化 2021年11期
关键词:烷基化滑石酸碱

杜晓倩,冉真真,季生福

(北京化工大学化工资源有效利用国家重点实验室,北京 100029)

在有机反应中,烷基化反应占有重要地位。芳香族化合物的C、N、O等原子上引入烷基化剂,如卤代烃、烯烃、醇等,可以得到各种含烷基的高附加值产品,用于生产香料、药物、染料等[1-3]。催化剂在烷基化反应中起至关重要作用。目前,烷基化反应的催化剂主要分为酸催化剂和碱催化剂。酸催化剂包括无机酸、离子液体、分子筛等,传统的无机酸如无水氯化铝、氢氟酸等虽然催化活性高,但存在回收困难和污染环境的问题,逐渐被固体酸取代[4-7]。碱催化剂主要包括分子筛、金属氧化物、水滑石等。分子筛作为一种固体酸碱催化剂,环境友好可再生,但需要适当的改性使其具有适宜的酸碱位点,制备方法繁琐,限制了其进一步应用[6,8-9]。水滑石(LDHs)以及经过高温焙烧形成的双金属氧化物(LDO)制备过程简单,是同时具有酸、碱位点的固体双功能催化剂,近年来在烷基化反应、酯交换反应、缩合反应等重要的有机反应中得到广泛应用[10-12]。

本文重点综述LDHs及其氧化物LDO作为酸碱双功能催化剂催化芳香族化合物C-烷基化、O-烷基化、N-烷基化反应的研究进展,并对这些材料的催化性能、催化机理以及反应条件等方面进行归纳和总结。

1 酸碱双功能水滑石催化剂的C-烷基化反应

通过不同的方法如烷基化、缩合、加成反应等可以实现C-C的形成,烷基化反应作为增加碳数的重要方法之一,在有机化工原料合成中占有不可替代的作用[13]。酸碱双功能催化剂LDHs以及LDO是用于各种C-C键形成反应的高效催化剂。

1.1 芳香烃的C-烷基化反应

图1 Mg-Al LDH的活性位变化[19]

另外,Said S等[21]系统地研究了Cu(Co)-Fe LDO 催化下甲苯转化为三甲苯的反应,甲苯首先歧化生成苯和二甲苯,二甲苯和甲醇通过烷基化反应生成三甲苯。温度能够使催化剂的酸位点种类和数量发生变化,随着反应温度的增加,催化活性大幅度增加。在较低的反应温度[(375~400)℃]下甲苯主要发生歧化反应,在较高的反应温度[(400~450)℃]下甲苯则易发生烷基化反应生成三甲苯,三甲苯收率最高达82%。Cu含量也是影响催化活性的因素之一,当温度高于425 ℃,二甲苯选择性迅速降低,Cu分布在LDO的外表面上,随着含量的增加,分散不均匀导致孔道变窄,三甲苯的扩散受到限制,二甲苯选择性随之升高。

1.2 芳香酚的C-烷基化反应

Velu S等对苯酚和醇(C1~C8)的气相烷基化反应进行了研究[22-26]。在Cu-Al、Ni-Al、Mg-Cr和Mg-Fe LDO的催化作用下,苯酚与甲醇发生C-烷基化反应生成直链烷基酚[22-24]。在较低温度[(250~400) ℃]下苯酚完全转化,随着温度升高,苯酚转化率逐渐降低,邻甲酚选择性下降,2,6-二甲苯酚的选择性上升。苯酚与2-丙醇的反应中[25-26],Mg-Al、Cu-Al、Ni-Al LDO上都发生C-烷基化反应,但苯酚转化率降低,2-异丙基苯酚为主要产物。当支链醇作为烷基化剂时,由于体积较大,烷基化倾向于发生在空间上容易接近的位置,所以支链仲醇只发生邻位上的C-烷基化反应,生成2-烷基苯酚和2,6-二烷基苯酚。苯酚与醇的烷基化遵循酸碱位点协同作用机理。如图2所示,苯酚立式吸附在Lewis酸位点上,形成酚氧基团,附近的碱性位点吸附醇羟基的质子,酚氧基团亲核攻击接近于邻位的丙醇基团,生成2-丙基苯酚[25]。

图2 苯酚和醇的烷基化反应[25]

Velu S等还用Mg-Al LDO催化了间甲酚和甲醇以及2-丙醇的气相烷基化反应,发现进料比、反应温度能够影响产物选择性。间甲酚与甲醇物质的量比为1∶4时,能够有效减少副产物的生成;由于C-烷基化反应的活化能较高,300 ℃以下,C-烷基化产物几乎没有生成,超过300 ℃时,C-烷基化产物的选择性明显上升。间甲酚和2-丙醇的反应具有相似的特点,随温度的升高,C-烷基化产物逐渐增多。温度影响Lewis酸位点的形成。在高温形成LDO的过程中,Al3+逐渐溶解在MgO晶格中形成了Lewis酸位点,与纯MgO相比,Mg-Al LDO由于同时具有酸碱活性位点,且酸性更强,因此催化活性高[26]。

1.3 芳香腈的C-烷基化反应

芳香腈作为有机中间体,可用于合成多种塑料、农药、涂料等[27]。MotokuraK等[28-29]设计了一种新型的多功能钌接枝镁铝水滑石(Ru/Mg-Al LDH),由于水滑石的高吸附能力,活性金属位点可以很容易存在于催化剂表面,使得酸碱双功能水滑石上增加了活性Ru4+物种,成为一种多功能催化剂。将Ru/Mg-Al LDH用于苯乙腈和乙醇的一锅法反应,能够得到收率为98%的2-苯基丁腈。而在LDH或RuCl3·nH2O单独存在下,α-烷基化反应几乎不会发生。对于其他Ru催化剂,如Ru/Al2O3、Ru/MgO、Ru/Mg(OH)2和Ru/Al(OH)3等,催化活性较低。如图3所示,具有一个羟基和两个水配体的Ru(Ⅳ)物种接枝到表面氧原子上,接枝的Ru4+物种具有脱氢作用,与表面碱性位点协同催化反应的进行。芳香腈和醇经历氧化脱氢、羟醛缩合、氢化以及迈克尔加成四个过程,最终得到烷基化的芳香腈[28]。水滑石作为催化剂载体,负载的金属活性位点和本身的活性位点共同发挥作用。这种具有新型的接枝活性位点的水滑石是烷基化腈合成方案中具有较大优势的催化剂,具有高催化活性和选择性、易于回收和分离、没有其他副产物(除水外)特点,同时,一锅的合成方法简便,没有中间操作,节省原料。

图3 芳香腈的C-烷基化反应[28]

1.4 芳香酮的C-烷基化反应

α-烷基化酮的制备传统上采用烷基卤化物作为烷基化试剂和酮反应,会形成大量的副产物。采用醇作为烷基化试剂生成烷基酮,是一种原子利用率高并且环境友好的工艺[30-31]。Dixit M等[30]制备出了乙酸铜浸渍的Mg-Al LDH,在反应温度180 ℃、苯乙酮和苯甲醇物质的量比为2的条件下,苯乙酮转化率达到了99.5%,1,3-二苯基-1-丙酮选择性达到了96%。研究发现,反应物物质的量比、催化剂用量、反应时间和温度都是影响转化率和产物选择性的主要因素。此外,可以通过调整催化剂的性质(如铜含量、分散性、载体碱度等)增强催化活性。结果表明,铜物种均匀地分散在催化剂表面,并且与催化剂的酸碱中心共同催化反应的发生,通过借氢机理进行[31-32]:(1)金属位点不活泼的醇(氢供体)脱氢成为更具有活性的羰基化合物;(2)羰基化合物与亲核试剂酮(氢受体)生成不饱和化合物;(3)产生的氢物种与不饱和化合物反应得到α-烷基酮,如图4所示。

图4 芳香酮和醇反应[31]

张作军[33]研究发现Pd负载的Mg-Al LDO催化苯乙酮和丁醇的反应,在温度190 ℃、反应时间16 h、镁铝物质的量比为3条件下,苯乙酮转化率最高为51%,苯己酮选择性达到68%,具有较高的催化活性。活性Pd物种均匀的分散在催化剂表面,和表面的碱位点共同催化反应的进行。常规的碱催化剂(如氢氧化钠、氢氧化镁等)反应过程中产生大量的盐使催化剂难以重复使用,而对于非均相Mg-Al LDO催化剂,弥补了均相催化剂的不足,并且具有较高的比表面积,因此有较好的催化效果。

2 酸碱双功能水滑石催化剂的O-烷基化反应

芳香酚的O-烷基化反应是合成香料、化妆品、药物和染料等中间体产品过程中一个重要的反应步骤[2]。以醇、碳酸二甲酯等作为烷基化剂,在LDHs、LDO等的催化作用下,能够高效的催化芳香族化合物的O-烷基化反应。

2.1 芳香酚和醇的O-烷基化反应

作为有毒害作用的卤代烷和硫酸二甲酯的替代,烷基化剂甲醇和苯酚的反应是合成苯甲醚的绿色途径[34]。Velu S等[23,35]用Mg-Al LDO催化剂研究了甲醇与苯酚的气相烷基化反应。物质的量比为4的Mg-Al LDO活性最高,在400 ℃时苯酚转化率可达到100%,主要产物为苯甲醚、邻甲苯酚和2,6-二甲苯酚。与MgO和Al2O3的混合氧化物相比,具有高比表面积和孔隙率的Mg-Al LDO金属氧化物之间存在协同作用,物理混合的氧化物不存在这种作用,因而活性低。朱小梅等[36]合成了偏钨酸铵阴离子(AMT)插层的Mg-Al LDH(镁铝物质的量比分别为3、2和1.5),用于邻苯二酚和甲醇的反应。由于AMT-Mg2Al LDH和AMT-Mg1.5Al LDH上存在较多的弱Brönsted酸位点和弱碱位点,两种位点协同作用,在反应中表现出较高的催化活性。

Padmasri A H等[37]采用Mg-Al、Mg-Cr、Zn-Al LDO作为催化剂,研究了苯酚和异丁醇的叔丁基化过程。研究发现,水热处理18 h后再焙烧18 h的Mg-Al LDO比水热处理1 h再焙烧8 h的LDO活性更高,说明制备过程中水热处理时间以及焙烧时间是影响催化活性的因素。利用NH3-TPD和CO2-TPD对催化剂的酸碱性进行了表征,发现Mg-Cr LDO上的酸和碱位点比较少,没有得到叔丁基苯基醚和邻叔丁基苯酚产物。虽然Zn-Al LDO酸性和碱性都比较强,但是产生了其他产物(丁酸苯基酯,2-乙基己醛和2-甲基丙基酯),表明该催化剂的酸碱强度不适合于苯酚叔丁基化反应。Mg-Al LDO活性最高,苯酚转化率达到了44.9%。Mg-Al LDO在三种LDO中碱性最强,酸性低于Zn-Al LDO。如图5所示,Mg-Al LDO催化得到叔丁基苯基醚、邻叔丁基苯酚、丁烯基苯基醚、邻丁烯基苯酚四种产物,其中叔丁基苯基醚的选择性最高,达到了71.4%。催化剂的酸碱强度决定了反应的方向,Mg-Al LDO表现出的强碱性和较弱的酸性提高了O-烷基化产物的选择性。

图5 苯酚和异丁醇的叔丁基化过程[37]

2.2 芳香酚和碳酸酯的O-烷基化反应

碳酸二甲酯和碳酸二乙酯也是一类环境友好的烷基化剂。Wang X等[38-39]采用Mg-Al、Zn-Al、Ni-Al LDO(物质的量比为3∶1)催化了苯酚、对二苯酚、邻甲基苯酚等和碳酸二甲酯及碳酸二乙酯的反应。短链的碳酸二甲酯比长链的碳酸二乙酯更容易发生烷基化反应。但在汞灯照射条件下,碳酸二乙酯也可以发生烷基化,且酚的转化率更高。酚吸收光后,反应活化能降低,酚羟基脱氢更容易发生。实验结果表明,Mg-Al LDO的催化效果最好,催化剂上的酸碱中心发挥了协同作用。苯酚和碳酸二甲酯的O-烷基化反应机理如图6所示。

图6 苯酚和碳酸二甲酯的O-烷基化反应机理[38]

碳酸二甲酯吸附在酸中心Al3+上,苯酚吸附在碱性中心Mg2+-O2-上。苯酚分子吸收光达到激发态后,催化剂的碱性中心可以结合苯酚分子的氢原子,促进表面的O-H裂解,苯酚的氧对碳酸二甲酯的甲基碳进行亲核攻击形成苯甲醚,最后,其余的碳酸氢甲酯分解成甲醇和CO2后解吸,催化剂表面再生用于另一个反应循环。另外,Wu G等[40]制备了氟改性的Mg-Al LDO用于该反应,通过CO2-TPD对催化剂的碱性进行表征,发现引入氟离子后,中强和强碱中心的解吸峰移动到更高的温度,弱碱中心的解吸峰没有明显变化。改性的LDO在镁铝物质的量比为4∶1时催化活性最高,其中苯酚转化率达到99.3%,苯甲醚选择性为100%。说明氟改性的LDO提高了中强碱性和强碱性,这有利于提高催化活性。

Jyothi T M等[41]探究了Mg-Al LDO对邻苯二酚和碳酸二甲酯反应的催化作用,与甲醇相比,邻苯二酚和碳酸二甲酯在高温下也能发生O-烷基化反应,而甲醇主要在低温下发生O-烷基化反应,这可能是两种烷基化剂与催化剂的表面作用不同导致的。邻苯二酚与碱性氧原子上的氢键结合而活化,而碳酸二甲酯通过其羰基氧吸附在相邻的Lewis酸中心上,酚酸根阴离子的氧原子对碳酸二甲酯的甲基碳原子进行亲核攻击,碳酸氢甲酯残基分解形成CO2。MgO的碱性比Mg-Al LDO强,但更容易受到CO2的影响而中毒失活,而Mg-Al LDO由于具有适宜的酸碱中心,是催化邻苯二酚和碳酸二甲酯反应的高活性催化剂。

2.3 芳香酚和卤代芳烃的O-烷基化反应

卤代芳烃和酚类反应可以生成芳香醚。包玉红[42]研究了卤代芳烃(碘苯、溴苯等)和苯酚类化合物(苯酚、对硝基苯酚)合成芳香醚的反应,发现共沉淀法制备的Cu2Mg1Al1LDO(物质的量比为2∶1∶1)是催化该类反应的高效催化剂。其中,苯酚和碘苯反应生成二苯醚的收率可达到99%,重复使用5次后,二甲醚收率还有80%。对比水热法和共沉淀法制备的LDO,共沉淀法制备的LDO可将更多的Cu2+引入到水滑石层板上,结晶度较高,Cu2+高度分散在催化剂的晶格中,产生了弱碱中心,有利于中间产物吸附。在相同反应条件下,作者还研究了Cu-Al LDH、Mg-Al LDH、CuO、Cu(OH)2、CuO-MgO-Al2O3等催化剂,发现催化活性都较差,说明水滑石上酸碱位点的结构对催化性能影响较大。

溶剂和反应物本身的性质也能影响反应活性。如图7所示,Choudhary V R等[43]制备了催化芳香酚和卤代芳烃反应的Cu-Fe LDO催化剂,由于具有氧化还原特性的Cu(Ⅱ)和Fe(Ⅲ)活性物种的均匀分布,该催化剂在较短的反应时间内可以达到较高的芳基醚收率。溶剂对苯酚和碘苯的反应有重要影响,其中二甲基甲酰胺是效果最好的溶剂,二苯醚产率达到了89%。在二甲基甲酰胺作溶剂下,研究了不同取代基的卤代芳烃和苯酚、对甲氧基苯酚、萘酚的反应,与包玉红[42]的研究一致,卤代芳烃上的给电子基团存在会使产物收率降低,吸电子基团的存在会使产物收率升高,对甲氧基苯酚上给电子基团存在会使产物收率升高,说明芳基卤化物提供吸电子基团,苯酚类提供给电子基团,更容易反应。

图7 芳香酚和卤代芳烃的反应机理[43]

3 酸碱双功能水滑石催化剂的N-烷基化反应

芳香胺和烷基化剂反应的产物N-烷基胺被用于合成药物、染料等其他化学品[3]。传统的N-烷基化反应的烷基化剂主要是卤代烃,在无毒害的烷基化剂逐渐被人们利用到LDHs催化的N-烷基化反应后,反应过程将更加环保和经济[3,44-45]。

3.1 芳香胺和醇的N-烷基化反应

Santhanalakshmi J等[44]用Mg-Al LDO探究了苯胺和甲醇的气相烷基化反应。研究发现在不同镁铝物质的量比的LDO中,物质的量比为4的LDO具有较大的比表面积,可以有效地吸附苯胺,同时,Mg-Al LDO具有适宜的酸碱位点协同催化反应的发生,所以活性较高。在生成的产物中,以N-甲基苯胺为主,高温下也会生成少量双烷基化产物N,N-二甲基苯胺,但由于空间位阻的原因,第二个甲基很难接近N原子,所以N,N-二甲基苯胺不容易生成。合成条件对LDO催化活性有重要影响。Bukhtiyarova M V等[45]探究了Cu-Al LDO制备过程中的焙烧温度、碱溶液浓度对茴香胺和甲醇反应催化活性的影响,发现较高的焙烧温度和较低的碳酸根浓度能够提高茴香胺的转化率。在650 ℃焙烧温度下,LDO能够形成良好的结晶相CuO,更容易还原为催化活性物质Cu0。Cu-Al LDO催化甲醇和茴香胺的反应遵循借氢机理:甲醇在铜位点脱氢成甲醛,甲醛进一步与茴香胺反应生成相应的亚胺。最后,通过CuO物种的表面氢原子氢化亚胺得到N-甲基对茴香胺。Cu-Fe LDH也能够进行醇的脱氢。Putro W S等[46]探究了一系列的Cu-M(M=Fe,In,Zr,La,Mn,Ce和Y)LDHs对苯甲醇和苯胺的N-烷基化的催化活性,其中Cu-Fe LDH催化效果最佳,苯甲醇转化率为100%,N-苄基苯胺选择性达到73%。如图8所示,在Cu-Fe LDH上的反应过程通过借氢机理进行:首先苯甲醇脱氢成为苯甲醛,苯甲醛和苯胺缩合形成N-亚苄基苯胺,最后N-亚苄基苯胺和催化剂表面的氢物种反应生成N-苄基苯胺。研究表明,Cu和Fe物种的协同作用对反应的进行至关重要,尤其是Cu能够促进苯甲醇脱氢的发生。

图8 苯甲醇和苯胺的反应[46]

在催化剂中引入Ru和Cu物种,能有效提高醇和胺的反应活性。Zhang S等[47]制备的Ru负载Mg-Al LDH对硝基苯选择加氢和N-烷基化催化活性较高,硝基苯通过选择加氢生成苯胺,苯胺进行N-烷基化得到N,N-二甲基苯胺。在Ru负载量为5%,镁铝物质的量比为2的条件下,苯胺的N-烷基化选择性达到了98%。由于Ru纳米粒子很好的分散在Mg-Al LDH上,且Mg-Al LDH上的金属-O键、金属-OH键有利于提高纳米粒子的稳定性,从而使得Mg-Al LDH催化活性较高。Dixit M等[30]发现Cu负载的Mg-Al LDH对胺和醇的反应有较高的催化活性,其中苯胺转化率最高达到99%,引入的Cu物种具有低温还原性,有利于借氢机理的进行,从而催化反应进行。

3.2 芳香胺和卤代烃的N-烷基化反应

Shetty M R等[48]研究了芳香胺和烯丙基溴的反应,采用Mg-Al LDH和Mg-Al LDO催化了苯胺和烯丙基的反应,发现镁铝物质的量比为5的LDH催化效果最好,苯胺转化率达90%,N,N-二烯丙基苯胺收率达87%。焙烧温度对LDO的催化活性影响不大,产物的产率比较接近,可能是由于该反应需要的碱性较小,LDH和LDO的碱性足以促进该反应的发生。其他芳香胺如对硝基苯胺和邻三氟甲基苯胺的N-烷基化反应,都需要较高的温度,且收率较低,说明反应物本身的性质是反应的影响因素。

Dixit M等[49]将Mg-Al LDH和Mg-Al LDO应用于苯胺、苄胺和1,4-二氯丁烷的反应,研究发现LDH比LDO具有更高的催化活性,可能LDO中Brönsted酸中心减少,Lewis碱中心较强,不利于反应的发生。如图9所示,伯胺作为亲核试剂,对1,4-二氯丁烷的氯原子进行亲核取代,在碱位点的作用下,季铵盐脱去HCl,然后仲胺对氯原子进行亲核取代后环化,最终得到N-烷基化的产物。

图9 伯胺和1,4二氯丁烷的反应机理[49]

此外,他们还研究了温度、反应物物质的量比、催化剂用量对催化活性的影响。结果表明,随着温度的升高,1,4-二氯丁烷转化率先升高后降低,这可能是由于高温下反应物处于气体状态,液相反应物浓度降低;苯胺与1,4-二氯丁烷物质的量比从1∶1升至2∶1时,1,4-二氯丁烷转化率从50%升高至98%,可能由于作为亲核试剂的苯胺增多,增加了亲核取代反应的可能;1,4-二氯丁烷转化率在反应物与催化剂质量比为6时最高,催化剂用量非常少就可以催化反应的发生。除苯胺外,Mg-Al LDH对苄胺、环己胺、正丁胺的N-烷基化同样有效,产物选择性均能达到99%以上,这说明Mg-Al LDH是胺的N-烷基化反应的有效催化剂。

酸碱双功能水滑石催化烷基化反应的类型如表1所示。

表1 水滑石催化的烷基化反应的类型

4 结语与展望

酸碱双功能水滑石催化芳香族化合物的C-烷基化可以实现苯环上的C-C键以及侧链上的C-C键的形成;芳香酚的O-烷基化反应中,Mg-Al LDO具有较好的催化作用;芳香族化合物N-烷基化反应主要是芳香胺的N-C键形成,一般通过借氢机理进行,需要在水滑石上负载Ru、Cu活性物种进行借氢、加氢的过程,促进反应的高效进行。水滑石催化芳香族化合物的烷基化反应具有突出的优势:反应活性和产物选择性高,稳定性高,环境友好,易于回收。离子的可调性赋予了水滑石种类的多样性,具有不同酸碱位点的双功能水滑石作为非均相催化剂,在酸催化反应、碱催化反应、酸碱协同催化反应中工业前景都将会非常广阔。进一步深入研究水滑石的结构特征以及调控酸碱位点数量和强度的规律,在深化水滑石催化机理认识的同时,加快工业应用,将是催化领域的研究重点和挑战。

猜你喜欢
烷基化滑石酸碱
自制酸碱指示剂
酸碱滴定法测定香菇中二氧化硫的含量
酸碱体质与酸碱食物
KBR固体酸烷基化技术(K-SAAT)
水滑石的制备及应用进展
水滑石在软质聚氯乙烯中的应用研究
KBR公司K-SAAT固体酸烷基化技术首次授让
7-O-羧烷基化白杨素衍生物的合成及其抗癌活性
油酸钠改性锌镁铝水滑石的制备及对聚丙烯的增强作用
磁性水滑石的合成及性能的研究