非洲猪瘟病毒免疫逃逸特性

2021-06-06 08:48谢春芳于瑞嵩董世娟陈冰清
国外畜牧学·猪与禽 2021年1期
关键词:细胞凋亡

谢春芳 于瑞嵩 董世娟 陈冰清

摘  要:非洲猪瘟病毒(African Swine Fever Virus,ASFV)主要感染猪单核细胞和巨噬细胞等免疫淋巴细胞,通常会导致猪出现急性出血症状,体温升高,死亡率达100%。猪在人类食物链中的地位不可替代,而且猪的生理结构、免疫特性与人类相似,因此非洲猪瘟的免疫防控问题与人类社会环境和疾病控制密切相关。本文综述了宿主细胞对ASFV侵染做出的免疫应答,以及ASFV如何抑制宿主细胞的免疫应答,希望对非洲猪瘟的免疫防控提供一些理论参考。

关键词:非洲猪瘟病毒;免疫应答;免疫逃逸;细胞凋亡;自噬抑制

中图分类号:S855 文献标志码:C 文章编号:1001-0769(2021)01-0031-04

非洲猪瘟病毒(African Swine Fever Virus,ASFV)侵染细胞后,进入细胞内泡小体,内泡小体内的酸性环境可以破坏ASFV的外膜和蛋白衣壳,暴露内膜,使ASFV内膜上的跨膜肽得以与细胞膜上的受体结合,待病毒内膜与细胞膜融合后,病毒核质进入细胞质内,从而感染宿主细胞,启动病毒复制周期[1-4]。

被ASFV感染的细胞通过模式识别受体(Pattern Recognition Receptors,PRRs)检测病原体相关分子模式(Pathogen-associated Molecular Patterns,PAMPs),启动先天性免疫,分泌细胞免疫因子。为了逃避宿主细胞的免疫应答,ASFV编码相应的病毒蛋白用于免疫逃逸或抑制[5-6]。

ASFV很难清除,目前非洲猪瘟的灭活苗、亚单位苗和弱毒苗都不能诱导猪产生足够安全且有效的抗体来控制非洲猪瘟[7-8]。

1  宿主细胞感染ASFV后的免疫应答

ASFV主要侵染单核细胞、巨噬细胞和树突状细胞等免疫细胞。免疫细胞感染ASFV后,迅速产生免疫应答,在被ASFV刺激的免疫细胞外周血单核细胞( Peripheral Blood Mononuclear Cells,PBMC)中,干扰素(Interferon,IFN)阳性淋巴细胞群以CD4+/CD8+ T细胞表型为主,还有一部分为记忆辅助性T细胞。体外试验证明,猪IFN可降低猪巨噬细胞中ASFV的复制,在病毒感染早期IFN可能直接影响感染ASFV宿主细胞的相互作用[9-10]。

细胞毒性T淋巴细胞(Cytotoxic T Lymphocytes,CTL)对抵御细胞内病原体,特别是病毒起重要作用。ASFV强毒株与弱毒株或无毒株的发病机制和免疫诱导不同。感染弱毒或无毒的ASFV时,被感染猪体内T细胞、自然杀伤(Natural Killer,NK)细胞的活性增强,NK细胞可以通过直接与被病毒感染的细胞结合杀死病毒,也可以通过分泌细胞因子如干扰素和趋化因子等抵抗病毒感染,感染细胞分泌的干扰素还可以增强NK细胞的活性;弱毒或无毒的ASFV会诱导表达穿孔素的T细胞分化增殖为CD4+ T细胞或CD4+/CD8+ T细胞。弱毒或无毒的ASFV感染能诱导记忆性T细胞的增殖,抵抗再次感染同源性病毒株[11-15]。

哺乳动物巨噬细胞至少有13种不同的Toll样受体(Toll-like Receptor,TLR),病毒的脂类或糖蛋白与TLR的胞外域结合后会诱导巨噬细胞炎症细胞因子、趋化因子的共同效应,还能诱导产生具有增强抗病毒作用的IFN-β,并参与细胞先天性免疫应答中TLR依赖和非依赖途径,诱导抗病毒作用[16-18]。

2  ASFV抑制细胞免疫应答

当ASFV侵染细胞后,为了避免被细胞的免疫因子降解,ASFV会编码多种病毒蛋白用于逃避宿主细胞的免疫應答。ASFV主要通过抑制TLR、干扰素调节因子3 (Interferon Regulation Factor 3,IRF3)和核因子?B (Nuclear Factor ?B,NF-?B)等细胞免疫因子逃避细胞免疫,从而在细胞内环境中生存。

ASFV抑制TLR免疫信号途径的蛋白目前只发现一种,即ASFV pI329L。该蛋白高度糖基化,是一种跨膜蛋白,具有与TLR3-Toll/Interleukin-1受体(TLR3-TIR)结构域同源的区域,通过作用于β-干扰素TIR结构域衔接蛋白(TIR-domain-containing Adaptor Inducing Interferon-β,TRIF)抑制TLR3信号途径,抑制双链RNA刺激的NF-?B和IRF3的激活,从而抑制细胞免疫反应[19-20]。

ASFV多基因家族蛋白(Multiogenes Family,MGF)中的MGF360和MGF505/530也可以通过抑制IRF3和NF-?B转录因子抑制诱导和影响Ⅰ型干扰素的作用,阻断感染细胞Ⅰ型干扰素的免疫应答。ASFV pDP96R有4段10个氨基酸串联重复序列(10-amino acid tandem repeats),C-末端有结构域,可以抑制TANK结合酶1(TANK Binding Kinase 1,TBK1)的磷酸化,从而抑制下游干扰素调节因子3(Interferon Regulation Factor 3,IRF3)的活性,阻断干扰素刺激基因(Stimulator of Interferon Gene,STING)参与的STING-TBK1-IRF3或STING-TBK1-IKKβ信号途径,抑制干扰素的表达,而干扰素是恒定自然杀伤T                             (Invariant Nature Killer T,iNKT)细胞激活的有效电感器,干扰素的阻断可能会影响iNKT细胞的活化[21-24]。

ASFV pA238L可以抑制NF-?B和活化T細胞核因子(Nuclear Factor of Activated T Cells,NFAT)免疫途径。pA238L与细胞组氨酸酰基转移酶p300/CBP共作用,通过直接结合钙调神经磷酸酶抑制NF-?B转录因子,从而抑制宿主钙调神经磷酸酶依赖途径,抑制宿主免疫调节基因的转录活性[6]。

3  ASFV抑制细胞凋亡和自噬

自噬和凋亡是细胞重要的生物学特征,破坏程序性细胞死亡的宿主防御系统是大DNA病毒感染的一个显著特征。为了在宿主细胞中有足够的时间复制增殖,ASFV会抑制细胞的过早凋亡。

ASFV pA179L定位于细胞线粒体或内质网中,能够与B细胞淋巴瘤2 (B-cell Lymphoma-2,Bcl-2)或Bcl-2同源物包括促凋亡的Bcl-2蛋白家族成员和自噬调节因子Beclin相结合。pA179L与Beclin结合时使用的是与促凋亡Bcl-2结合的同一典型配体结合槽,pA179L具有与促凋亡的Bcl-2蛋白相似的α螺旋结构配体结合槽,Beclin BH3肽与pA179L的α螺旋2~5形成的表面凹槽结合,Beclin BH3基序与pA179L配体结合槽的结合模式和Bid BH3基序与pA179L配体结合槽的结合模式非常相似,Beclin利用3个典型的疏水残基L110、L114和F121以及T117来结合pA179L配体结合槽,pA179L配体结合槽与Bcl-2促凋亡蛋白家族成员及自噬调节因子Beclin BH3基序结合:pA179L D80和pA179L与Beclin K115之间的离子相互作用以及pA179L N83与Beclin D119之间的氢键、pA179L G85与Beclin D122之间的氢键和pA179L Y46与Beclin L114主链之间的氢键相互作用,抑制细胞自噬;pA179L的α螺旋2~5形成配体结合槽,与Bcl-2 BH3基序配体结合,从而与促凋亡蛋白Bcl-2竞争性结合促凋亡蛋白,抑制细胞凋亡[25-27]。

DP71L作用于宿主蛋白磷酸化酶1 (Protein Phosphatase 1,PP1)的去磷酸化,从而防止通过双链RNA依赖性蛋白激酶R (Double-stranded RNA-dependent Protein Kinase,PKR)或内质网应激蛋白激酶R样内质网激酶(Protein Kinase R-like ER Kinase,PERK)磷酸化诱导的蛋白合成关闭[28]。

入侵的ASFV可以抑制细胞自噬和凋亡的发生或过早发生,从而为ASFV的复制和表达装配争取足够的时间,传播并繁殖下一代病毒。

4  小结

ASFV抗原多样性是阻碍ASFV疫苗发展的关键因素,天然和基因缺失的减毒活毒株可抵御同源的毒株,诱导抗体起保护作用。诱导细胞毒性T淋巴细胞(Cytotoxic T Lymphocyte,CTL)可能是完全保护的关键,依赖于CTL靶点识别的亚单位疫苗可诱导商品猪ASFV抗原特异性CTL反应,但仍需要进一步的评估[29-30]。

ASFV在家猪上可引起致命的出血病,死亡率高达100%。ASFV可以在蜱虫体内存活,在环境中的耐受力强,一系列预防和控制非洲猪瘟的措施是提高饲养技术、改善饲养环境、改善生态环境和控制猪肉安全的首要条件。同时,研究ASFV与细胞的相互作用可以为人类相似病毒的免疫防控提供一些启示,但是关于非洲猪瘟疫苗的研究仍然存在许多问题,需要去克服、去完善。

参考文献

[1] GREEGG D A,MEBUS C A,SCHLAFER D H. Early infection of interdigitating cells in the pig lymph node with African swine fever viruses of high and low virulence: immunohistochemical and ultrastructural studies[J]. Journal of Veterinary Diagnostic Investigation,1995,7(1):23-30.

[2] GREEGG D A,SCHLAFER D H,MEBUS C A. African swine fever virus infection of skin-derived dendritic cells in vitro causes interference with subsequent foot-and-mouth disease virus infection[J]. Journal of Veterinary Diagnostic Investigation,1995,7(1):44-51.

[3] SANCHEZ P J,ROMERO J L,PEDRERA M,et al. Role of hepatic macrophages during the viral haemorrhagic fever induced by African swine fever virus[J]. Histology and Histopathology 2008,23(6):683-691.

[4] HERNAEZ B,GUERRA M,SALAS M L,et al. African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes[J]. PloS Pathogenes,2016,12(4):e1005595.

[5] OURA C A,POWELL P P,ANDERSON E,et al. The pathogenesis of African swine fever in the resistant bushpig[J]. Journal of General Virology,1998,79(6):1439-1443.

[6] GRANJA A G,NOGAL M L,HURTADO C,et al. The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway[J]. Journal of Immunology,2006,176(1):451-462.

[7] SANCHEZ P J,MONTOYA M,REIS A L,et al. African swine fever: A re-emerging viral disease threatening the global pig industry[J]. Veterinary Journal (London,England:1997),2018,233:41-48.

[8] GALLARDO C,NURMOJA I,SOLER A,et al. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent[J]. Veterinary Microbiology,2018,219:70-79.

[9] DIXON L K,CHAPMAN D A,NETHERTON C L,et al. African swine fever virus replication and genomics[J]. Virus Research,2013,173:3-14.

[10] ESPARZA L,GONZALEZ J C,VINUELA E.Effect of interferon-alpha, interferon-gamma and tumour necrosis factor on African swine fever virus replication in porcine monocytes and macrophages[J]. The Journal of General Virology,1988,69 (Pt 12):2973-2980.

[11] BARRY M,BLEACKLEY R C. Cytotoxic T lymphocytes: all roads lead to death[J]. Nature Reviews Immunology,2002,2(6):401-409.

[12] TAKAMATSU H,DENYER M S,LACASTA A,et al. Cellular immunity in ASFV responses[J]. Virus Research,2013,173 (1):110-121.

[13] PAUST S,GILL H S,WANG B Z,et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specifific memory of haptens and viruses[J]. Nature Immunology,2010,11:1127-1136.

[14] PAUST S,VON ANDRIAN U H. Natural killer cell memory[J]. Nature Immunology,2011,12(6):500-508.

[15] ALONSO F,DOMINGUEZ J,VINUELA E,et al. African swine fever virus-specifific cytotoxic T lymphocytes recognize the 32 kDa immediate early protein (vp32)[J]. Virus Research,1997,49(2):123-130.

[16] TAKEDA K,AKIRA S. Toll-like receptors[J]. Current Protocols in Immunology,2015,109:14.12.1-14.12.10.

[17] JIN M S,LEE J O. Structures of TLR-ligand complexes[J]. Current Opinion in Immunology,2008,20(4):414-419.

[18] YAMAMOTO M,SATO S,MORI K,et al. Cutting edge: a novel Toll/IL-1 receptor domaincontaining adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling[J]. Journal of Immunology (Baltimore,Md. :1950),2002,169(12):6668-6672.

[19] HISCOTT J. Convergence of the NF-?B and IRF pathways in the regulation of the innate antiviral response[J]. Cytokine and Growth Factor Reviews,2007,18(5-6):483-490.

[20] OLIVEIRA V L,ALMEIDA S C,SOARES H R,et al. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV)[J]. Archives of Virology,2011,156(4):597-609.

[21] AFONSO C L,PICCONE M E,ZAFFUTO K M,et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response[J]. Journal of Virology,2004,78(4):1858-1864.

[22] CORREIA S,VENTURA S,PARKHOUSE R M. Identification and utility of innate immune system evasion mechanisms of ASFV[J]. Virus Research,2013,173(1):87-100.

[23] XIXI W,JING W,YINGTONG W,et al. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1[J]. Biochemical and Biophysical Research Communications,2018,506(3):437-443.

[24] ALEXANDER S,JANE H,THERESA S,et al. Porcine invariant natural killer T cells: functional profiling and dynamics in steady state and viral infections[J]. Frontiers in Immunology,2019,10:1380.

[25] BANJARA S,SHIMMON G L,DIXON L K,et al. Crystal structure of African swine fever virus A179L with the autophagy regulator Beclin[J]. Virus,2019,11:789.

[26] BANJARA S,CARIA S,DIXON L K,et al. Structural insight into African swine fever virus A1791L-mediated inhibition of apoptosis[J]. Journal of Virology,2017,91(6):e02228-16.

[27] JINLING L,GEN L,YUESONG C,et al. An insight into the transmission role of insect vectors based on the examination of gene characteristics of African swine fever virus originated from non-blood sucking flies in pig farm environments[J]. BMC Veterinary Research,2020,16(1):227.

[28] SCAPIN C,FERRI C,PETTINATO E,et al. Phosphorylation of eIF2ɑ promotes schwann cell differentiation and myelination in CMT1B mice with activated UPR[J]. The Journal of Neuroscience: the Officcial Journal of the Society for Neuroscience,2020,40(42):8174-8187.

[29] LOKHANDWALA S,WAGHELA S D,BRAY J,et al. Induction of robust immune responses in swine by using a cocktail of adenovirus-vectored african swine fever virus antigens[J]. Clinical and Vaccine Immunology,2016,23(11):888-900.

[30] KRUG P W,HOLINKA L G,ODONNELL V,et al. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome[J]. Journal of Virology,2015,89(4):2324-2332.

猜你喜欢
细胞凋亡
三氧化二砷对人大细胞肺癌NCI—H460细胞凋亡影响的研究
木犀草素对对乙酰氨基酚诱导的L02肝细胞损伤的保护作用
传染性法氏囊病致病机理研究
G—RH2诱导人肺腺癌A549细胞凋亡的实验研究
益气养血补肾方对长期大强度运动大鼠海马JAK/STAT信号转导通路的影响
Fas/FasL对糖尿病心肌病的影响