不规则烧结矿余热回收竖罐内气体阻力特性

2021-07-14 05:28张四宗温治刘训良张辉王帅刘晓宏
关键词:床层粒级实测值

张四宗,温治,刘训良,张辉,王帅,刘晓宏

(北京科技大学能源与环境工程学院,北京,100083)

能耗高是钢铁行业的一个重要特征[1−3]。在整个钢铁工业中,烧结工序的能耗约占总能耗的10%~15%[4]。然而,烧结矿余热约占整个烧结工序余热资源的70%[5]。因此,烧结矿余热的高效回收是降低烧结工序能耗最有效的途径[6−7]。目前,主要利用环冷工艺回收烧结矿余热。然而,环冷机的漏风率高达35%~50%[6],且冷却空气只能被加热到150~380 ℃,导致余热回收率不足30%[7]。

针对现有冷却工艺的不足,基于干熄焦工艺[8−10]提出了烧结矿竖罐式冷却工艺(简称竖冷工艺)[7]。首先,竖冷工艺的漏风率接近于零,大幅降低了颗粒污染物的排放;其次,竖冷工艺可将冷却空气加热到500~550 ℃,将余热回收率提高到80%左右[7]。竖冷工艺的可行性主要取决于气体阻力和气固传热特性2个方面[11]。气体阻力特性不仅影响着气固传热效率,还直接决定着风机的功率和能耗。因此,研究气体阻力特性对于评价竖冷工艺的经济性和可行性十分重要。在实际生产中烧结矿的形状极不规则,粒度分布广,具有多粒级混合的特点[12]。本质上,烧结矿余热回收罐是一种不规则大颗粒的非均质填充床[13]。

目前,国内外大量研究了颗粒填充床内气体阻力特性。其中,ERGUN的研究最具代表性,并提出了著名的ERGUN 方程[14]。为了准确地预测不同颗粒填充床内气体阻力,学者们从壁面效应[15−17]、颗粒形状[18−22]和粒径分布[21−25]等角度修正ERGUN 方程。当床层直径D与颗粒直径dp之比(D/dp)大于10 时,可以忽略壁面对气体阻力的影响[15]。原始的ERGUN 方程可以准确地预测球形颗粒填充床内气体阻力,但在预测不规则颗粒时存在较大偏差[18,20−21]。粒度的多分散性增强了局部结构和气体流动的不均匀性,导致气体的阻力和湍流程度增加[25]。以往研究大多集中于规则的小颗粒(粒径为0.5~22.0 mm),而对于不规则大颗粒的研究较少。

因此,一些学者对烧结矿填充床气体阻力进行实验研究[11−13,26−33],发现用ERGUN方程得到的气体阻力预测值比单粒级烧结矿填充床内气体阻力的实测值低40%左右[12]。为了准确预测单粒级烧结矿床层内气体阻力,将阻力系数分别修正为床层直径与粒径之比D/dp[11,26]和空隙率ε[13]的函数。此外,TIAN 等[28−29]还考虑了壁面效应来修正阻力系数,发现当D/dp≥19时,壁效应可以被忽略,而当D/dp<19 时,壁面限制引起的空隙率效应大于壁面摩擦效应,导致气体阻力降低。此外,田付有等[31]发现双粒级烧结矿填充床内气体流动比单粒级烧结矿更紊乱,将粒径小于10 mm 的烧结矿碎料掺混到多粒级烧结矿混料中会导致填充床内气体阻力增加2~3倍[32]。但当掺混比例大于15%时,掺混比增加对气体阻力的影响不再显著[33]。然而,以往研究大多针对单粒级烧结矿组成的均质填充床,与烧结矿竖罐式冷却工艺中多粒级烧结矿混合的工业实际不相符。为此,本文采用实验方法研究了单粒级和多粒级烧结矿填充床内气体阻力特性,并获得了气体阻力预测关联式,从而为准确地评估烧结矿竖罐式冷却工艺提供依据。单粒级烧结矿,如图2所示。

图2 烧结矿的实物照片Fig.2 Photographs of sinter

1 实验系统与方法

1.1 实验装置

利用自制的实验装置测量烧结矿填充床内气体阻力,实验装置示意图如图1所示[34]。填充床的高度和直径分别为1 000 mm和400 mm。实验中选用变频风机精确地控制鼓入床层的气体流量,采用涡街流量计测量气体的流量,并利用压力变送器测量不同位置处的气体压力。基于工业实际,设计实验中气体的运行状态,详见文献[34]。仪器的基本参数如表1所示。

图1 烧结矿填充床内气体阻力实验装置示意图Fig.1 Sketch of experimental apparatus for measuring gas resistance in sinter packed bed

表1 实验仪器的基本参数Table 1 Basic parameters of experimental instruments

1.2 烧结矿的颗粒特性

研究所用的烧结矿颗粒取自邯郸钢铁有限公司的2 号烧结机。测试中烧结矿粒度范围为5~60 mm[12,34],包括未筛分的多粒级烧结矿和筛分的

为了更好地表征烧结矿,利用实验手段获得了烧结矿的颗粒特性参数。对于每种单粒级烧结矿,颗粒的表观密度ρa,s和当量粒径dp,s可分别利用静力学天平根据排水法[12,31]和等效球体积法[12,28,30]测定,如式(1)和式(2)所示:

式中:ρa,s为单粒级烧结矿的表观密度,kg/m3;m1为干烧结矿质量,kg;m2为烧结矿+试验篮在水中质量,kg;m3为湿烧结矿的质量,kg;m4为试验篮在水中的质量,kg;ρw为试验温度下蒸馏水密度,kg/m3;dp,s为单粒级烧结矿的当量粒径,m;ms为单颗单粒级烧结矿的质量,kg。

对于由多种单粒级烧结矿组成的多粒级烧结矿,其表观密度ρa,m和当量粒径dp,m可分别通过式(3)[31]和式(4)[22]计算:

式中:ρa,m为多粒级烧结矿的表观密度,kg/m3;dp,m为多粒级烧结矿的当量粒径,m;wi,ρa,si和dp,si分别为多粒级烧结矿中某单粒级烧结矿的质量分数、表观密度和当量粒径,单位分别为%,kg/m3和m。

烧结矿的堆积密度ρb利用直径为400 mm的有机玻璃容器通过直接称重法[12,31]测得,计算如下:

式中:ρb为烧结矿的堆积密度,kg/m3;M1为某一批烧结矿和容器质量,kg;M2为空试验容器的质量,kg;R和L分别为试验容器的半径和烧结矿料层的填充高度,m。

床层的空隙率ε和颗粒的形状因子φ可分别通过式(6)[12,28,31]和式(7)[22]计算:

在测试中,基于当量粒径设计了6 种由11 种单粒级烧结矿组成的多粒级烧结矿,如表2所示。图3所示为6种多粒级烧结矿的粒度组成。本研究还测量了11 种单粒级烧结矿填充床内气体阻力作为对照,如表3所示。利用上述方法测定的11 种单粒级烧结矿和6种多粒级烧结矿的颗粒特性参数如图4所示。

图4 烧结矿的颗粒特性参数Fig.4 Particle characteristic parameters of sinter

表2 6种多粒级烧结矿的试验工况参数Table 2 Experimental condition parameters of six kinds of multi-size sinter

表3 11种单粒级烧结矿的试验工况参数Table 3 Experimental condition parameters of 11 kinds of mono-size sinter

图3 6种多粒级烧结矿的粒度组成Fig.3 Particle size composition of six kinds of multi-size sinter

1.3 不确定度分析

表4所示为根据误差传递理论[30]计算的本研究中主要参数的相对不确定度,具体介绍详见文献[34]。例如雷诺数Rep的相对不确定可通过下式获得:

表4 主要参数的相对不确定度Table 4 Relative uncertainty of main parameters

2 填充床内气体阻力的影响因素

2.1 气体速度

图5所示为不同单粒级和多粒级烧结矿填充床内单位高度气体阻力(ΔP/L)随着气体速度(ug)的变化。由图5(a)可见:随着ug增加,ΔP/L逐渐增大且与二次函数拟合良好。所有曲线的相关系数R2均大于0.992。这与文献[11,13,26 和27]的结论一致。随着ug增加,气体与颗粒之间的碰撞加剧,造成气体流动的紊乱程度增加。因此,气体流动的阻力急剧增加。此外,拟合函数的系数a和b随着粒度增大而减小,归因于床层空隙率随着粒度增大而增大。

由图5(b)可见:多粒级烧结矿的ΔP/L也随着ug增大呈二次关系增加。拟合曲线的相关系数R2均大于0.994。这表明气体速度对多粒级烧结矿和单粒级烧结矿ΔP/L的影响相同,但不同当量粒径拟合函数的系数a和b并不一致。6 种多粒级烧结矿的粒度组成不同,导致填充床内颗粒的堆积结构不同。因此,多粒级烧结矿的粒度分布会直接影响着填充床内气体阻力。

图5 不同单粒级和多粒级烧结矿的单位高度气体阻力(ΔP/L)随着气体速度(ug)的变化Fig.5 Change of gas resistance per unit height(ΔP/L)for different mono-size and multi-size sinters with gas velocity(ug)

2.2 当量粒径

2.2.1 当量粒径对单粒级烧结矿气体阻力的影响

图6所示为当量粒径(dp,s)对单粒级烧结填充床内单位高度气体阻力(ΔP/L)的影响。由图6可知:

图6 当量粒径(dp,s)对单粒级烧结矿填充床内单位高度气体阻力(ΔP/L)的影响Fig.6 Influence of equivalent particle size(dp,s)on gas resistance per unit height(ΔP/L)in packed bed with mono-size sinter

1)不同气体速度下,ΔP/L随着dp,s增加而降低,且与指数函数拟合良好。所有曲线的相关系数R2均大于0.993。这与文献[11,13,27]的结果一致。由于床层空隙率随着dp,s增大而增加,且较大空隙率床层内气体流动的紊乱程度和比表面积较低,从而导致惯性阻力和黏性阻力降低。

2)ΔP/L的衰减幅度为气体阻力ΔP/L对当量粒径dp,s的导数,也随着dp,s增加而下降。这归因于床层空隙率增加幅度也随着dp,s增加而减小。

2.2.2 当量粒径对多粒级烧结矿气体阻力的影响

图7所示为当量粒径(dp,m)对多粒级烧结矿填充床内单位高度气体阻力(ΔP/L)的影响。由图7(a)可见:不同气体速度下,ΔP/L也随着dp,m增加而降低。但图7(b)表明ΔP/L衰减幅度随着dp,m增大先上升后下降,这不同于当量粒径对单粒级烧结矿ΔP/L的影响。如在气体速度为1.6 m/s 的工况下,当dp为11.20,19.20 和31.20 mm 时,ΔP/L的衰减幅度分别为123.29,238.91和18.92 Pa·m−1·mm−1。

图7 当量粒径(dp,m)对多粒级烧结矿填充床内单位高度气体阻力(ΔP/L)的影响Fig.7 Influence of equivalent particle size(dp,m)on gas resistance per unit height(ΔP/L)in packed bed with multi-size sinter

对于多粒级烧结矿而言,小粒度烧结矿会填充在大粒度烧结矿颗粒的间隙中[22],导致床层内空隙分布不均匀[25]。因此,多粒级烧结矿填充床内气体阻力不仅取决于床层空隙率,还受粒度组成的影响。由于小粒度烧结矿(5~10 mm)的掺混会导致多粒级烧结矿的气体阻力急剧上升[32−33],因此,对于dp,m较小的多粒级烧结矿而言,小粒度烧结矿的比例是ΔP/L变化的主导因素。在dp,m为11.20 mm的多粒级烧结矿中,(5,10]mm 的单粒级烧结矿比例高达24.57%。随着dp,m从11.20 mm 增至19.20 mm,小粒度烧结矿的比例逐渐下降,导致ΔP/L的降低幅度随着dp,m增加而增大,这与彭岩等[33]的研究结果类似。而当多粒级烧结矿的dp,m增大到23.20 mm 时,(5,10]mm 的小粒度烧结矿比例只有5.31%。因此,对于dp,m较大的多粒级烧结矿而言,ΔP/L变化的主导因素不再是小粒度烧结矿,而是床层空隙率。从图4(b)可知,随着dp,m从19.20 mm 增至31.20 mm,多粒级烧结矿床层空隙率的增加幅度逐渐减小,这导致ΔP/L的衰减幅度随着dp,m继续增大而降低。

3 烧结矿填充床内气体阻力预测关联式的分析

为了便于研究结果的应用,将床层内单位高度气体阻力ΔP/L与各参数之间的关系拟合成类似于ERGUN方程的经验关联式:

由于烧结矿的形状非常不规则,因此,将形状因子φ考虑到修正的关联式中,如下式所示[11,28]:

根据文献[11−13,26−30]可知,主要是通过修正黏性阻力系数k1和惯性阻力系数k2来改进阻力经验关联式。因此,将式(10)除以黏性阻力项得到:

为了简化上式,引入2个量纲一参数即阻力因子fp和颗粒雷诺数Rep:

则式(11)可简化为量纲一公式:

根据式(14)可知,fp和Rep呈线性关系。

3.1 单粒级烧结矿

首先,将图5(a)中单位高度气体阻力ΔP/L数据和图4(a)中颗粒特性参数代入式(12)和(13)中,即可获得不同单粒级烧结矿的阻力因子fp和颗粒雷诺数Rep。其次,利用最小二乘法对fp和Rep进行线性拟合,得出不同粒度烧结矿的黏性阻力系数k1和惯性阻力系数k2,如表5所示。所有的相关系数R2均大于0.994 2,表明每个粒度烧结矿的fp均与Rep呈良好的线性关系。由于空隙率ε是与颗粒特性相关的量纲一参数,因此将其引入到k1和k2的拟合函数中,如图8(a)所示。因此,单粒级烧结矿阻力因子fp的表达式如下:

表5 不同单粒级和多粒级烧结矿的黏性阻力系数k1和惯性阻力系数k2Table 5 Viscous resistance coefficient k1 and inertial resistance coefficient k2 of different mono-size and multi-size sinters

图8(b)所示为式(15)获得的单粒级烧结矿单位高度气体阻力的预测值ΔP/Lcal和实测值ΔP/Lexp的对比。由图8(b)可见:单位高度气体阻力ΔP/L的预测值与实测值吻合良好,平均和最大不确定度分别为3.59%和12.07%。因此,式(15)可以准确地预测单粒级烧结矿填充床内气体阻力。

图8 单粒级烧结矿气体阻力关联式的分析Fig.8 Analysis of gas resistance correlation of mono-size sinter

3.2 多粒级烧结矿

利用单粒级烧结矿的阻力关联式即式(15)预测6 种多粒级烧结矿的气体阻力,如图9所示。由图9可见:单位高度气体阻力预测值ΔP/Lcal和实测值ΔP/Lexp的平均不确定度和最大不确定度分别高达24.58%和67.4%,且实测值大多高于预测值。因此,单粒级烧结矿的阻力关联式不适用于多粒级烧结矿气体阻力的预测。多粒级烧结矿的粒度分布比单粒级烧结矿的更宽,造成多粒级烧结矿床层的空隙分布更不均匀[25]。这导致多粒级烧结矿填充床内气体流动更加紊乱[35−36]。因此,利用单粒级烧结矿阻力关联式计算的预测值比多粒级烧结矿的实测值平均低25%左右。

图9 式(15)获得的多粒级烧结矿的气体阻力预测值ΔP/Lcal与实测值ΔP/Lexp的对比Fig.9 Comparison between predicted value ΔP/Lcal obtained by Eq.(15)and experimental value ΔP/Lexp of gas resistance for multi-size sinter

基于此,利用最小二乘法对多粒级烧结矿的阻力因子fp和颗粒雷诺数Rep进行了线性拟合,如表5所示。所有的相关系数R2均大于0.982 9,表明每种多粒级烧结矿的fp与Rep都具有良好的线性关系。同样地,将黏性阻力系数k1和惯性阻力系数k2拟合为空隙率ε的函数,如图10(a)所示。根据2.2.2 节的分析可知,当量粒径dp大于和小于19.20 mm时,多粒级烧结矿气体阻力的主要影响因素不同。

图10 多粒级烧结矿气体阻力关联式的分析Fig.10 Analysis of gas resistance correlation of multi-size sinter

因此,将多粒级烧结矿的fp分段表示:

图10(b)所示为式(16)获得的多粒级烧结矿床层内气体阻力预测值ΔP/Lcal和实测值ΔP/Lexp之间的比较。由图10(b)可见:气体阻力的预测值均匀地分布在实测值两侧,且平均不确定度为3.39%。这表明式(16)可以准确地预测多粒级烧结矿填充床内气体阻力。

4 结论

1)气体速度对单粒级和多粒级烧结矿填充床内气体阻力的影响相同,即单位高度气体阻力(ΔP/L)均随着气体速度增加呈二次关系增加。

2)单粒级烧结矿的ΔP/L随当量粒径(dp)增大呈指数降低,ΔP/L衰减幅度逐渐减小。虽然多粒级烧结矿的ΔP/L也随着dp增加而降低,但由于粒度组成和床层空隙率的综合作用,导致ΔP/L的衰减幅度呈先上升后下降趋势。

3)单粒级烧结矿和多粒级烧结矿阻力关联式可以准确地预测烧结矿填充床内气体阻力,平均不确定度分别为3.59%和3.39%。多粒级烧结矿的粒度分布比单粒级烧结矿的更宽,导致单粒级烧结矿关联式获得的气体阻力预测值比多粒级烧结矿气体阻力的实测值平均低25%左右。

猜你喜欢
床层粒级实测值
床层密实度对马尾松凋落物床层水分变化过程的影响1)
6NOC2022年6月6月CERNET2国内互联互通总流量降50G
烧结矿竖罐内气固换热㶲传递特性
一种脱除气体中的H2S并回收硫磺的方法
山地暗棕壤不同剖面深度的团聚体分布
某铜矿粗扫选泡沫流动特性研究
粗骨料最佳级配的试验研究
YOA和Ca2+对锂辉石浮选行为的研究
基于Ansys屋盖不同单元类型下的模态分析
微纤维- 活性炭双床层对苯蒸汽吸附动力学研究