基于地理信息技术和SWAT模型的城市水资源评价方法研究

2022-12-16 07:50彭慧
南京信息工程大学学报 2022年6期
关键词:邳州市水资源量水文

彭慧

0 引言

水资源是自然资源的重要组成部分,是人类社会发展的重要物质基础,确保有足够的水供应对人类福祉至关重要[1].查明水资源数量及分布特征是合理开发利用有限水资源的必要环节,更是进行工程建设、河湖管理和制定相关政策的基础[2].我国水资源人均占有量较低、时空分布不平衡[3],特别是平原城市,区域内河网水系密布、下垫面条件复杂、地表—地下水交换机制不明,调查难度大.第三次全国国土调查(以下简称“三调”)成果为基于地理信息技术和水文模型的城市水资源量调查方法提供了有力的数据支撑,更新、更准确的水资源量调查成果仍有待丰富.

水资源数据的实时性和准确性是评判数据质量的重要标准,特别是对于城市,采用新方法、新数据更新水资源量调查成果尤为必要.在社会经济快速发展的大背景下,人类活动及城市下垫面条件变化,对水资源的时空分布有显著影响[4-7].吴青松等[3]以沙颍河沿线10个地级市为例,研究了水资源与经济社会发展的时空匹配关系,结果表明水资源总量与城市社会经济和下垫面条件之间的关系极为复杂.现有水资源调查成果多以流域为对象,例如针对水土流失较为严重的黄河流域,众多学者开展了水资源调查、保护和利用研究[8-10].针对城市的精细化水资源调查成果仍有待丰富,已有调查成果很难被运用于地区生态保护和修复政策的制定.2020年自然资源部下发的《自然资源调查监测体系构建总体方案》指出,水资源调查要以实现自然资源的有效管理和可持续利用为导向、以自然资源的行政体系为基础.

随着地理信息技术和水文模型的发展,水资源调查已具备多种手段,并逐渐趋于多方法耦合.水土评估工具SWAT(Soil and Water Assessment Tool)模型是一种能够模拟径流、土地利用变化和气候变化之间关系的机理模型,模拟效果较好[11],且能够与地理信息系统耦合[12].赵良杰等[13]基于SWAT模型开展了珠江流域地下水资源评价研究,应用SWAT-CUP进行参数率定及敏感性分析,模拟结果纳什效率系数大于0.6,表明SWAT模型应用于水资源调查时准确性较高.夏军等[14]利用水资源生态足迹和水生态承载力指标研究了鄱阳湖流域水资源生态安全状况.汪顺生等[10]以黄河流域为例,收集了27个关于水资源、经济和生态的指标时间序列,建立耦合协调度评价模型,应用ARIMA-GM组合模型预测河南省黄河流域2021—2025年的耦合协调度发展趋势.然而,对于下垫面条件复杂的平原城市,现有方法体系下单一手段的水资源调查方法已经不能满足高质量调查成果的需求,采用内业预判—外业核实—内业数据整理的“内—外—内”调查体系已初步形成.无人机遥感技术在水土保持[15]、河道流量估算[16]、地理信息提取[17]、水资源监控[18-19]等方面已经有了一定程度的应用,该技术结合“三调”资料和水文模型可以最大程度地提高水资源调查成果的准确性.

本文以平原城市为研究对象,区别于传统的单一方法水资源调查,基于三调数据、遥感影像等地理信息数据,结合无人机三维地理信息建模技术和SWAT水文模型,提供一种高可重用性的水资源调查体系.最后以邳州市为例,在本文提出的水资源调查体系下,研究该地区水资源的空间分布特征,研究成果可为现今自然资源管理体制下水资源调查科学方法提供参考.

1 水资源评价方法

为最大程度提升水资源评价结果的准确性,本文采用无人机遥感技术、下垫面数据、水文模型结合的多手段研究方法.水资源量计算基于水文过程模拟,各部分水资源的循环过程采用分布式水文模型SWAT进行模拟.由于水文循环过程受到土地利用类型、土壤类型、气候因素等因素的共同控制,所以在建立水文模型时,研究区域内多时间尺度的地理信息与空间信息是不可或缺的,本研究通过无人机实地测量技术及地理信息系统平台获取空间地理信息.

本文提出的基于地理空间信息和水文模型相结合的研究方法,其技术路线如图1所示.首先,综合以流域为基础的水文信息、涉水工程信息、无人机实测数据及地理信息系统中的遥感数据,通过GIS平台将其转化为以行政区为对象的水文数据、水网分布状况、河湖特征等;然后,通过建立该城市的水文模型,模拟得到水资源量;最后,利用氡同位素示踪法计算重复水量,得到更准确的水资源总量.

图1 研究方法技术路线Fig.1 Technical route of the proposed method for water resource investigation

1.1 SWAT水文模型

SWAT的水文循环模型主要由陆地水文循环模拟(即产流和坡面汇流过程)和河道汇流过程模拟.前者控制着每个子流域内主河道的水、沙、营养物质和化学物质等的输入过程;后者决定水、沙等物质从河网向流域出口的输移运动.SWAT模型主要依据水量平衡方程进行水文循环计算,其计算公式为

(1)

式中:Ws,t(mm)是土壤最终含水量;Ws,0(mm)是土壤初始含水量;t代表时间(d);Rday(mm)为第i天总降水量;Qsurf(mm)是第i天地表径流总量;Ea(mm)是第i天蒸散总量;Wseep(mm)是第i天土壤侧流总量;Qgw(mm)是第i天地下径流总量.在整个水文循环过程中,SWAT模型包含从降雨到径流的各个环节.对于陆地水文循环过程,模型考虑了地表径流(通过SCS曲线法[20]计算)、蒸散发水量(采用Hargreaves方法[21]计算)和地下水径流.对于河道汇流过程,模型采用马斯京根法[22]来分析.关于SWAT模型更详细的结构及求解方法见文献[23-25].

1.2 地理信息数据

SWAT作为一个综合的分布式水文模型,需要大量的数据来驱动,其数据的准确性、可靠性以及完整性是影响模型运算结果是否准确的主要因素[26].在本研究中,所需的数据主要可分为水文数据(如流量、气象要素等)和地理空间信息(如DEM数字高程、土地利用类型、水系图等).其中:水文数据主要通过重组、整合该地区各流域水文数据得到;地理空间信息数据可通过无人机辅助的三维测量技术得到,还可从地理空间信息平台的资料库(如遥感数据资料)中提取相关数据,并通过GIS技术(或GIS类软件)转化处理得到.

地理信息平台能够为水文模型提供大量的基础数据,包括DEM数字高程数据、土地利用类型数据和河网水系数据等.在此基础上,GIS技术还可整合各类数据,以辅助对该地区的水网分布、河湖特征分析.

1.3 无人机遥感技术

采用华测P550无人固定翼航飞平台搭载多镜头获取倾斜影像,地面分辨率0.05 m.结合收集到的地图资料、影像资料等,对飞行区域进行实地踏勘、采集信息,确定空域条件、设备对任务的适应性,寻找并选取适合的起降场地.航线按飞行区走向直线方法敷设,平行于飞行区边界线的首尾航线必须确保侧视镜头能获得测区有效影像.飞行过程严格依据设计航高飞行,实际航高与设计航高之差不大于50 m.同一航线上相邻像片的航高差不大于30 m,最大航高与最小航高之差不大于50 m.本研究采用Geodging软件进行色彩处理,影像背景颜色不参与计算,参照标准模板进行匀光匀色.影像匀色标准模板的制作区分不同区域、不同颜色比重制作不同的标准片.色彩处理后的单片正射影像应纹理清晰、色调均匀、反差适中、自然真彩色、光谱信息丰富.最后,利用精度合格的空三结果作为模型生产数据源,开始构建三维TIN格网,然后创建白体三维模型,将实景照片纹理映射到白体模型上,获得水库实景三维模型.基于无人机遥感的实景三维模型建模过程如图2所示.

图2 基于无人机遥感技术的实景三维模型建模过程Fig.2 Modeling process of real 3D model based on UAV remote sensing technology

2 实例应用——邳州市水资源综合分析

2.1 研究区域概况

邳州市地处沂蒙山区前冲积平原的边缘,地势总体上呈西北高、东南低的特征,坡降范围为1/10 000 至1/1 000.邳州气候属暖温带半湿润季风气候,多年平均降水量约为870 mm.经过邳州市的主要河流有大运河、老沂蒙河、房亭河等,市内还有艾山、黄楼、小吴和杨庙等水库.

2.2 水文模型构建

水文模型最重要的参数就是流域特征信息的提取,该特征信息在描述和量化流域内水文循环过程中的各个环节都起着至关重要的作用.对于大部分流域来说,水文气象因素和下垫面的空间分布情况都比较复杂,因此,在进行SWAT模型计算前,需要将整个区域划分为小的计算单元.在本实例中,首先从水资源计算和利用的角度出发,对行政区划进行保留合并,同时结合地形、地貌的变化,对邳州市进行水资源计算分区,分区结果如图3a所示.其次利用GIS软件对DEM数据进行矫正,得出河网数据(图3c),并根据河网各级支流的汇点以及自定义添加的流域河道上的人工取用水的入流、出流点进行子流域的划分.进一步利用ArcGIS水文分析模块,将邳州市划分为12个子流域.

图3 邳州市水资源及流域特征Fig.3 Characteristic maps of water resources and watershed in Pizhou city

得到水系的相关数据后,再根据模型要求对邳州市的土地利用类型、土壤类型数据进行重新编码.本研究采用的土地利用数据和下垫面数据来自地理空间数据云SRTMDEMUTM 90M分辨率数字高程数据,并结合自然资源部门第三次国土调查成果与实际情况,处理土地信息并载入模型.根据子区域内土地利用类型及土壤类型,对每一个子区域进行相应水文计算单元划分,并对不同单元设置不同类型的阈值.至此,得到了细化的水文计算单元,以便于模型根据不同的下垫面情况进行产汇流计算.

2.3 参数确定

模型中涉及的参数众多,其参数调节可通过SWAT模型自带的参数敏感性分析模块进行.通过合理的抽样多次试算并统计,对各参数的影响等级进行评价并排序,得到对流域水循环及径流模拟结果有较大影响的参数.再向敏感性分析模块中输入邳州降水、温度等气象历史资料,进行参数率定,利用SWAT-CUP的SUFI2算法[27]进行参数率定分析,并参考文献[27-30]得到的参数取值,结果如表1所示.

表1 敏感性参数筛选及取值

2.4 水资源量模拟结果

区域地表水资源主要由当地大气降水形成,邳州区域内水位动态主要受气象条件控制,与降水过程类似.本节先以1组有代表性的来水情况为例,模拟得到各计算分区的多年平均地表水资源量.根据邳州市1960—2018年全市多年平均年降水频率分析,选择降水频率(P)分别为20%、50%、75%和95%的4个代表年份,将降水数据带入率定好的模型,计算结果如图4所示.

图4 邳州市各代表年地表水资源量计算结果Fig.4 Calculation results of annual surface water resources in Pizhou and its districts

针对邳州市全区1960—2018年间的各年来水条件进行水文模拟计算,统计得到各计算分区多年平均地表水资源量,可知地表水资源量为4.43亿m3(表2).水资源量计算结果表明,邳州市城区水资源量较周边更为丰富,主要是因为城区位于房亭河及大运河交汇处,下游经中运河汇入骆马湖,城区内河网水系密布.从多年平均水资源量数据来看,邳州城区面积仅占全市总面积的5.88%,而水资源量占比却高达10.16%.

表2 邳州市多年平均地表水资源量

地下水资源量方面,邳州市区域浅层地下水位动态主要受气象条件控制,表现为受降水多少影响的特征,无明显规律性年际变化.根据邳州市1980—2020年地下水资源量统计数据,邳州市多年平均地下水资源量为3.09亿m3,采用氡同位素示踪法[31]计算得到重复水量约0.24亿m3.因此,邳州市水资源总量(地表水资源量+地下水资源量-重复水量)约为7.28亿m3.

2.5 SWAT模型与地面分类法结果对比

在水资源量计算与分析中,一些传统的方法仍被广泛使用.这些方法通常基于集总式产汇流模型,如常见的地面分类法[32].地面分类法针对不同的下垫面,采用不同产流公式得到各部分的产汇流数据,并以此求出某区域的水资源量.地面分类法需要对水文过程进行简化或折算,有很强的经验性,故原理简单、计算简便,主要适用于缺乏实测径流资料的地区.本文基于大量无人机遥感数据、三调下垫面数据,并采用SWAT分布式水文模型开展更详实的水资源量计算,计算结果与实测数据进行全面复核,从资料和原理层面相较地面分类法更为准确.本研究亦采用地面分类法对邳州市多年平均水资源量进行测算,两种方法与统计值对比结果列于表3.可以看出,本文所采用方法与统计值更为接近,偏差为0%~1.09%,地面分类法则为2.22%~13.33%.对比两种方法计算结果差异可以发现,本文方法得到城区水资源量略大于地面分类法,而非城区则略小.主要原因有两点:1)本文所用模型在计算城镇建设用地产流时将其分为透水层和不透水层,考虑填洼截留进行模拟计算,而地面分类法则主要根据降雨损失量计算;2)本文所用模型在模拟非城区水资源时基于无人机遥感和三调数据,考虑了土地利用类型空间分布特征,所得产汇流过程更符合实际.总的来说,本文所用方法得到的水资源量相较地面分类法计算结果准确度提升约2.22~13.33个百分点.

表3 地面分类法与水文模型得出多年平均水资源量的结果对比

3 结论

本文以平原城市区域为研究对象,提出一种基于“内—外—内”调查模式的水资源量评价方法,并将该方法应用于邳州市水资源综合分析,得到以下主要结论:1)基于无人机遥感技术、城市下垫面数据以及水文模型,实现快速、准确的水资源分布情况调查,大大提高了工作效率;2)区别于传统水资源调查,结合“三调”数据无人机遥感复核,使调查结果更为准确,所包含的属性信息全面;3)将本文提出的水资源调查方法应用于邳州市水资源量研究,结果表明,本文方法相较于考虑因素更简单的地面分类法计算结果准确度提升约2.22~13.33个百分点;4)本研究形成了一套水资源调查体系,并通过实例验证了该调查方法和模式具备较高准确度,研究成果对于类似平原城市水资源调查具有方法层面的指导作用.

猜你喜欢
邳州市水资源量水文
基于SWAT模型分析嘉陵江流域蓝、绿水资源量的时空变化特征
邳州市实施“六个强化” 筑牢城市安全之基
继往开来 守正创新——河北省水文工程地质勘查院
水文
水文水资源管理
邳州市 深化改革 推进应急管理基层建设
墨韵育人
——江苏省邳州市明德实验小学优秀书法作品展
江苏邳州市新河镇新集小学
浙江省近期各分区水资源演变情势分析
水文