航天用镍基高温合金及其激光增材制造研究现状

2023-02-02 09:33陈娇罗桦贺戬谭庆彪祝国梁
精密成形工程 2023年1期
关键词:增材微观热处理

陈娇,罗桦,贺戬,谭庆彪,祝国梁

航天用镍基高温合金及其激光增材制造研究现状

陈娇1,罗桦2,贺戬2,谭庆彪2,祝国梁2

(1.上海航天信息研究所,上海 201109;2.上海交通大学 a.材料科学与工程学院 b.上海市先进高温材料及其精密成形重点实验室,上海 200240)

新型航天器用镍基高温合金部件呈现出复杂化、薄壁化、复合化、一体化的发展趋势,使得传统的铸造或锻造加工技术无法胜任。基于逐层堆积的激光增材制造(LAM)技术是实现这类复杂部件制备的理想解决方案,能够进一步赋予高温合金更高的价值,极大地推动航天装备的发展。首先介绍了航天领域常用的镍基高温合金种类,然后以研究最多的IN 718和IN 625合金为例,总结了镍基高温合金增材制造的研究现状:归纳了镍基高温合金增材制造工艺优化方法,表明增材制造综合加工图和实验设计方法是两种行之有效的方法;指出了增材制造镍基高温合金材料的微观组织特点,讨论了增材制造后续热处理对材料微观组织和力学性能的影响规律,表明增材制造技术极快速冷却的特点引起镍基高温合金材料内部存在普遍的局部微观偏析现象,导致常规热处理工艺不再是最优工艺;并通过5个典型的增材制造镍基高温合金航天构件案例展示了增材制造技术的优势。在此基础上,针对镍基高温合金增材制造过程中存在的关键科学问题和技术难题,展望了增材制造镍基高温合金未来的研究方向。

镍基高温合金;增材制造;微观组织;热处理;航天

航天用材料及其制备技术的发展是新型航天器实现多功能性、高性能、高可靠性和成本效益的基础和保证[1-4]。镍基高温合金具有优异的室温/高温力学性能、高温抗氧化性能与耐蚀性能,因而在航天领域得到重要应用,如航天器发动机热端部件[5]和航天器防热系统[6]。

相较于航空领域,航天领域对于高温合金部件的制造要求更加苛刻,呈现出更加复杂化、薄壁化、复合化、一体化等趋势。以高性能液体火箭发动机燃烧室为例[7],其部件往往暴露在高热、负荷等工作环境中,因此需要进行高效率的冷却。传统的减材或等材加工技术无法胜任此类独特且巧妙的冷却系统的制备。

20世纪80年代后期发展起来的增材制造(Additive Manufacturing,AM)技术[8]作为一种先进的一体化制造技术,正逐渐成为镍基高温合金复杂构件制备的颠覆性技术[9]。与传统制造方法相比,AM成形技术在缩减零件数、缩短生产周期、降低成本、实现复杂结构自由设计,从而实现轻量化、多组件整合和性能提高方面展现出巨大优势[4,7,10-15]。

文中以航天领域最常用的IN 718和IN 625合金为例,详细论述了镍基高温合金增材制造工艺优化方法、微观组织特征、增材制造后热处理工艺的研究现状,同时展示了几个增材制造镍基高温合金航天构件案例,以期为增材制造镍基高温合金在航天领域的进一步应用提供参考。

1 航天领域常用镍基高温合金

镍基高温合金是以镍为基体(含量一般大于50%)的高温合金,在650~1 000 ℃范围内具有较高强度、良好抗氧化和抗燃气腐蚀能力等综合性能[16]。镍基高温合金牌号众多,目前已有大量的综述文献[17-25]对其发展历程、成分、微观组织、力学性能、服役性能及制备技术进行了详细总结。原则上,航空用镍基高温合金都可以用于航天领域,但就现有文献资料可知,航天领域用镍基高温合金[13,26-29]主要包括IN 718、IN 625、Rene′41、MAR−M 246、Incoloy 903、IN X−750、Astroloy、Alloy 713C、Rene′95、Hastelloy系列、IN 617、GH4202、GH4642和GH4587等。

在航天器发动机领域[1],选用高温合金的主要依据是部件服役时的受力情况。工作叶片、轮盘、涡轮转子和紧固件等受力复杂部件对材料力学性能要求极为严格,通常选用性能更好的沉淀硬化型镍基高温合金,如用作轮盘材料的IN 718、Rene′41、Astroloy合金和用于制备定向结晶铸造叶片的Alloy713C、Mar−M246合金[5]。对只受高温静负载或不大的热应力和振动应力作用的部件,则更多地考虑抗高温氧化性能,如IN 625合金被用于制造“超X”计划中超音速巡航飞行器以及飞机状航天器的发动机出气口和进气口控制板[1]。

在航天器防热系统方面[6,30-31],镍基高温合金通常用于制备金属热防护结构的蜂窝夹芯结构或蒙皮。图1所示为第3代金属防热系统方案示意图[30],其稀疏蜂窝芯层和侧壁薄板选用IN 617镍基高温合金。该合金为固溶强化型高温合金,具有优良的高温抗氧化性和高温强度,可承受982~1 038 ℃的高温,极限瞬时耐热可达约1 093 ℃,适用于>650 ℃的较高温区[6]。

随着增材制造技术理论研究的不断发展,激光增材制造的一体化构件在航天领域受到越来越多的关注[4,32-44]。IN 718和IN 625合金是航天领域最常用的两类合金,也是被报道和研究得最多的两类镍基高温合金,二者总计占比达到约83%[45]。二者的名义化学成分如表1所示。

图1 IN 617高温合金蜂窝夹芯结构及侧壁示意图[30]

表1 IN 718[46]和IN 625[47]合金的化学成分

Tab.1 Chemical composition of IN 718[46] and IN 625[47] superalloys wt.%

尽管IN 718和IN 625合金的化学成分接近,但其强化机理不同:IN 718是一种以γ''相作为主要强化相,γ'相作为辅助强化相,晶间δ相作为晶界强化相的沉淀硬化型合金;IN 625是一种以难熔金属Nb/Mo固溶强化为主,辅以各种碳化物(MC、M6C、M23C6)强化的Ni−Cr基固溶强化型合金。下文以IN 718和IN 625合金为例,详细综述镍基高温合金增材制造工艺优化、组织特点及增材制造后热处理的研究现状。

2 航天领域用镍基高温合金材料的增材制造技术研究

2.1 工艺优化方法

IN 718和IN 625合金具有相似的密度和熔化区间[48],且(Al+Ti)的质量分数均远低于4%,属于易焊合金[49]。但两者对增材制造工艺参数的敏感性存在较大差异。例如,Zhong等[48]研究表明,在相同的增材制造工艺参数条件下,IN 625合金的致密度(孔隙率为0.009%)显著高于IN 718合金(孔隙率为0.69%),且IN 625合金的凝固组织更细。这主要是由于IN 625合金熔池内部的对流更强,提高了凝固速度,促进了气体排出。这一结果也表明,对于特定的镍基高温合金材料,须进行更细致的增材制造工艺参数优化研究。

增材制造工艺的综合加工图可以快速筛选出适合某种材料的增材制造工艺参数范围。以激光粉末床熔融(Laser Powder Bed Fusion,LPBF)增材制造技术[50]为例,在考虑控制熔池几何尺寸特征(图2a)的基础上,综合考虑影响熔池的能量密度,可以建立LPBF综合加工图(图2b)。在加工工艺窗口内(图2b中III区)可获得搭接良好、缺陷较少的增材制造镍基高温合金材料。

图2 LPBF综合加工图的构建[50]

另一方面,实验设计方法可以用最少的实验次数快速筛选出关键工艺参数项及其参数范围,并据此确定最优化的工艺参数组合,在增材制造工艺参数优化过程中也被广泛地应用[51-54]。Moradi等[51]使用全因子设计实验方法,系统研究了激光扫描速度、送粉速率和扫描策略对直接激光金属沉积(Direct Laser Metal Deposition,DLMD)增材制造IN 718合金的几何尺寸、硬度标准差和增材制造壁稳定性的影响,基于统计分析获得了最佳的工艺条件:扫描速度2.5 mm/s、送粉速率28.52 g/min、单向扫描模式。Benoit等[53]研究了合金成分和LPBF工艺参数对IN 625合金缺陷形成的影响规律(图3)。结果表明,LPBF−IN 625合金的裂纹对材料的成分十分敏感:当合金粉中含有较高含量的Si和Nb时,无论如何优化工艺参数,裂纹都无法消除;在低Si和Nb含量时,样品中不存在裂纹,且可以通过优化工艺参数获得低孔隙率样品。

2.2 增材制造镍基高温合金的微观组织

金属增材制造层层沉积的过程实际上是许多小尺寸熔池重复累加的过程,其宏微观组织特点本质上是由金属熔化和凝固过程中的传热和传质过程决定的。Liu等[50]根据增材制造过程中的热历史,将增材制造的微观结构划分为凝固微观结构(包括柱晶结构和晶间析出相)和凝固后微观结构(由应力和热循环而引起的位错胞和纳米析出相),使增材制造镍基高温合金的微观组织呈现出跨尺度的分级结构特点[55]。

一方面,对凝固组织而言,晶粒形貌和尺寸可依据经典凝固理论进行分析[56]。通常,增材制造的温度梯度和凝固速率都极高,使增材制造镍基高温合金呈现出比传统制备工艺更细小的枝晶/胞晶和析出相尺寸[57],且在较大的激光能量密度范围内(4.1~ 300.0 J/mm2),胞晶/枝晶尺寸往往随着激光能量密度的增加而增大,基本上呈线性关系[55]。

另一方面,尽管增材制造技术在解决材料成分宏观偏析方面具有巨大的优势[58],但极快的冷却速度往往引起材料内部局部产生微观偏析[59]。由于Nb和Mo元素极易在胞界富集,在LPBF−IN 718合金中,大量的Laves相在胞界上析出[60](图4a),且Laves相的数量、形貌和尺寸与增材制造工艺参数密切相关[61-63]。Zhang等[59]也发现,在LBPF−IN 625合金中,Nb和Mo元素也倾向于在枝晶间区域富集(图4b),在增材制造后的热处理过程中,这些局部微观偏析导致LBPF−IN 625合金中δ相的生长速度远远快于锻造合金。

图3 合金成分及工艺参数对裂纹出现倾向和孔隙率的影响[53]

图4 增材制造样品的微观偏析

2.3 增材制造镍基高温合金的后续热处理工艺

增材制造后续热处理是调控增材制造镍基高温合金力学性能的重要工序,其影响如图5所示[11]。通过热处理,能够消除材料内部热应力和微观偏析,以及调控微观组织,从而使增材制造镍基高温合金部件更好地满足服役要求。但对于不同类型的增材制造镍基高温合金,后续热处理对力学性能的影响存在巨大的差异。对沉淀强化型IN 718合金而言,增材制造过程中极高的温度梯度和极快的冷却速度会抑制γ'' 和γ'相的析出,导致增材制造IN 718合金的硬度和强度较低[60,64]。合适的热处理能促使γ''和γ'相重新析出,从而显著地提高了材料的屈服强度,但引起塑性普遍下降;对固溶强化型IN 625合金而言,热处理对室温屈服强度的影响并不显著。

图5 增材制造后热处理对不同镍基高温合金力学性能的影响[11]

2.3.1 增材制造IN 718合金的热处理

基于IN 718合金的TTT图[65],增材制造IN 718合金的后续热处理制度通常包含以下3种规范[66-67]:析出时效(precipitation aging,DA);δ相时效+析出时效(δ aging + precipitation aging,SA);高温微观组织均匀化+δ相时效+析出时效(high-temperature microstructure homogenization + δ aging + precipitation aging,HSA)。具体的热处理工艺规范如表2所示。

通常来说,较低温度下的DA处理不会影响增材制造合金的打印态晶粒形貌,仅会促使γ''相和γ'相析出,但低的热处理温度并不能消除打印过程中由于微观偏析而析出的Laves相。Laves相是一种有害相,会损害材料的力学性能[68],通常在>970 ℃的高温条件下可以将其溶解。因此,增材制造IN 718合金往往采用高于970 ℃的温度进行均匀化热处理。

采用较低均匀化热处理温度的SA制度可以使Laves相溶解并转化为沿晶界析出的δ相。δ相会随固溶处理时间的延长而长大[69],过长的热处理时间会引起δ相由<1 μm的颗粒状转变为长约10 μm的长条状(图6)。引起这一现象的主要原因是:晶界处的Laves相溶解,引起Nb元素在晶界附近聚集,导致δ相在晶界或晶界附近析出;亚稳态γ''相向δ相的转变(650 ℃)。

表2 增材制造IN 718合金常规的后续热处理工艺规范

Tab.2 Conventional post-heat treatment process for AM-IN 718 superalloy

Note:FC, Furnace cooling; AC, Air cooling.

图6 970 ℃固溶时效时δ相的析出及长大[69]

随着固溶温度(HSA)的提高[67],增材制造样品的再结晶程度也逐渐提高,使微观组织由各向异性逐渐转变为各向同性。当固溶温度高于1 180 ℃时,增材制造样品可发生完全再结晶现象,并且随着均匀化温度的提高和时间的延长,Laves相或碳化物相完全溶解,引起γ''相尺寸增大[69]。

由此可见,增材制造IN 718合金固溶热处理制度的选择[69-70]不仅影响γ''相和δ相的析出行为,也会影响材料的再结晶程度,对调控合金的微观组织极为重要。

Li等[71]开发了一种增材制造后新型热处理工艺路线(图7a),与传统热处理工艺相比,新型热处理工艺采用更高的固溶处理温度,但随后仅进行一次低温时效处理。这种新的热处理工艺一方面使合金中出现低层错能的退火孪晶和无局部应变的再结晶晶粒(图7b),贡献了极好的塑性;另一方面使合金基体中析出弥散分布的10~35 nm超细近球形γ''+γ'强化相,贡献了极好的强度(图7c)。这种理想的微观组织特点使LPBF−IN 718合金在基本不损失强度的前提下,使其断裂伸长率由17%大幅提高至24%(图7d)。这一研究成果表明,基于增材制造镍基高温合金特殊的微观组织特点,通过开发新的热处理工艺有可能获得强塑性良好的综合力学性能。

2.3.2 增材制造IN 625合金的热处理

不同于沉淀硬化型镍基高温合金,对固溶强化型镍基高温合金而言,增材制造后续热处理的主要目的是消除内应力和均匀化微观组织。基于IN 625合金的TTT图[72-73],增材制造IN 625合金的后续热处理通常包含3种常用工艺规范[73-74]:去应力退火(Stress- relief Annealing,SR);中温退火(Intermediate- temperature Annealing, ITA);高温固溶处理(High- temperature Solution Treatment,ST)。通常来说,SR(650~870 ℃)可以消除材料内部残余内应力,防止试样变形,但不会改变打印态样品的柱晶结构特征。然而,由于Nb和Mo元素的局部微观偏析[59,73],会引起LPBF−IN 625合金的TTT图显著地向左移动[73],即δ相析出的动力学显著加快(图8),使LPBF−IN 625合金中δ相的生长速度远快于锻造合金[59]。ITA(930~1 040 ℃)处理可以溶解大多数的δ相,形成再结晶晶粒。再结晶现象的发生降低了材料力学性能的各向异性。ST(1 040~1 200 ℃)处理的高温可以溶解增材制造过程中析出的MC碳化物和δ相,从而方便通过后续的时效处理控制δ相(760 ℃)或碳化物的再析出(980 ℃)。

Inaekyan等[75]详细总结了LPBF−IN 625合金在各种热处理工艺条件下形成的微观组织演化示意图(图9a)。正是由于这些微观结构的不同,引起ST的LPBF−IN 625合金在高温下发生动态应变时效,使其拉伸断裂伸长率显著下降(图9b、c)。

图7 新型热处理工艺提供优异的强塑性[71]

图8 增材制造对IN 625合金中δ相析出动力学的影响

图9 不同热处理工艺对LPBF−IN 625合金微观组织和力学行为的影响[75]

2.3.3 增材制造镍基高温合金的热等静压处理

热等静压(Hot Isostatic Pressing,HIP)技术[76]以惰性气体为载体,在高温和高压的协同作用下,通过提高材料的塑性变形和原子扩散能力,在闭合裂纹/孔隙/未熔合等缺陷的同时可以使合金成分均匀、微观组织稳定。HIP被越来越多地应用于镍基高温合金增材制造后处理过程[60, 77-87]研究,并取得了良好的进展。

在提升增材制造镍基高温合金致密度方面,HIP处理比传统热处理呈现出更大的优势[77, 84-85]:去应力热处理使样品整体孔隙体积比降低,但会导致样品表面较大孔的数量增加[84],而HIP处理可以同时使内部和表面缺陷显著减少,使增材制造材料的相对密度由99.50%提高到99.90%[78]。在改善增材制造镍基高温合金微观组织方面,HIP处理也表现出积极的影响。Xu等[60]对比研究了HIP(1 150 ℃,4 h,1 500 bar)、HT(970 ℃,1 h,然后718 ℃,8 h + 621 ℃,8 h)、HIP + HT 3种后处理工艺对LPBF−IN 718合金微观组织变化的影响规律,发现HIP处理促进Laves相全部溶解的同时抑制了γ''相的长大(图10a、b)。Rezaei等[78]的研究结果也表明,HIP处理会促使一种γ''/γ'/γ''共析出相形成(图10c),有利于提高增材制造镍基高温合金的强度;同时,经HIP+HT处理后样品室温条件下的各向异性程度由11.6%降低至3.5%。

图10 HIP对增材制造IN 718合金微观组织的有益影响

总而言之,HIP作为一种热力耦合的后续热处理技术,在消除/减少打印缺陷、调控微观组织方面展现出了巨大的潜力,但HIP在调控微观组织方面的机理还不是十分清晰,需要进一步的深入研究。

3 增材制造镍基高温合金在航天构件领域的典型应用

3.1 典型构件案例

增材制造具有超出传统铸造、锻造制备工艺的成形制造能力,非常适合制备内含复杂内流道、多孔点阵结构等极难加工的结构构件,如火箭推进器耐高温部件、助推器等,对未来空间探索至关重要,因此受到全世界的关注[4,32-43]。

火箭发动机喷嘴头是助推器的核心构件之一,在传统设计中,该构件由248个零部件装配而成,ArianeGroup利用增材制造技术将原来的248个组件合并成一个构件(图11a),克服了传统加工工艺(铸造、焊接及钻孔等众多复杂工艺步骤)耗时和在极端负荷环境中存在风险的缺点,真正实现了喷嘴头一体化设计[38]。DMRL研究人员使用增材制造技术制备了升级版燃料喷射器(图11b)。该构件采用66.4°横截面设计,升级了零件的流道,移除了低应力区域材料,在零件底部引入了超轻网格结构增材制造构件,其抗压、抗拉及硬度的测试结果优于传统制造的IN 718构件,展示出增材制造技术在导弹终端的应用潜力[39]。MSFC利用DLMD技术成功制备了IN 625合金的整体推力室(图11c),该推力室内部形成了完整的通道结构,可用于腔室的通道冷却喷嘴部分。在主测试阶段,喷嘴的壁温超过732 ℃,证明DLMD技术制备整体推力室的可行性[40]。换热器是航天设备长效稳定运行的关键部件,AddUp、Sogeclair和Temisth合作,通过增材制造技术成功制备出薄壁(<0.5 mm)没有泄漏且存在大量薄鳍片(0.15 mm)的IN 718合金换热器(图11d)。该换热器可确保对热量的要求,能获得与增材制造铝制外壳相似的质量和性能,完美地体现了增材制造技术在制备复杂、精密部件领域的技术优势[41]。EOS与Hyperganic合作,通过计算机算法和人工智能创建了一件结构极其复杂的Aerospike火箭发动机模型。EOS采用增材制造技术将其成功制备出来,该发动机高达80 cm(图11e),其长度只有常规钟型火箭发动机的1/4,质量只有航天飞机主发动机的2/3,与喇叭形喷嘴相比,这种独特结构使发动机效率提高了15%。增材制造技术自由制造的特点为该新型火箭发动机的研制掀起了新的热潮,是火箭推进领域的巨大进步[42]。

3.2 增材制造技术的应用

上述案例均极好地展示了增材制造技术作为一体化成形方法的巨大优势。然而,在制备构件过程中,除考虑材料可用性、制备质量、成本外,还需考虑生产工艺可能构建的构件尺寸及特征分辨率。根据粉末输送方式的不同,商用金属增材制造设备可分为2类[13]:基于铺粉的LPBF技术和基于同步送粉/丝的DLMD技术。前者成形精度高但零件加工尺寸受限;后者则不受尺寸限制但成形精度略低,后期需要进行加工以满足使用需求。Kerstens等[7]根据欧洲和美国增材制造机器供应商的制造体积,总结了3种常用增材制造机器的尺寸限制及特征尺寸范围,见图12。据此,可根据所生产构件的尺寸和精度要求选择合适的增材制造技术。

图11 激光增材制造的镍基高温合金航天构件

图12 LPBF和DLMD技术的比较[7]

4 结论

镍基高温合金是航天工业中不可或缺的材料,随着金属增材制造理论研究的深入,增材制造技术将进一步扩大和加快镍基高温合金在航天领域的应用。然而,增材制造技术涉及极为复杂的冶金、物理、化学、热耦合等过程,尽管在航天器构件制备方面有很多成功的案例,且针对镍基高温合金的增材制造也进行了大量的研究,但“材料–增材制造工艺–后续热处理–组织–性能”之间的匹配关系仍不是十分清晰。在今后的研究中,以下几个方面仍值得进一步关注。

1)镍基高温合金成分十分复杂,且对增材制造工艺参数极为敏感,厘清关键合金元素与增材制造缺陷的关联关系对制备零缺陷材料至关重要。

2)微观偏析是增材制造镍基高温合金中普遍存在的现象,往往给材料的微观组织和力学性能带来不利的影响。通过优化合金成分和增材制造工艺参数来减轻或消除微观偏析现象是一个重要的关注点。

3)增材制造镍基高温合金材料独特的微观组织给增材制造后续热处理工艺选择带来一定的挑战性:用于铸造或锻造镍基高温合金的常规热处理工艺将不再是最优的工艺规范。开发新的热处理工艺,通过对微观组织的调控,获得高强韧增材制造镍基高温合金是一个艰巨的任务。同时,具有热–机械协同效应的热等静压技术单独或与其他热处理工艺相结合,在消除冶金缺陷和调控微观组织方面均具有积极的效果,有望成为提高增材制造构件性能的非常有前景的选择。

4)室温和高温强度、疲劳、蠕变、腐蚀及抗氧化性能均是镍基高温合金服役的重要指标。目前的研究大多集中在室温和高温强度方面,应进一步加强对增材制造镍基高温合金其他性能的评价。

5)镍基高温合金增材制造构件的研制是一个复杂的系统工程,涉及材料、粉体制备、增材制造技术、构件设计、制造标准等,需进行全面系统的研究,以满足未来航天领域快速发展的挑战。

[1] 潘坚, 王家胜. 航天专用材料发展趋势[J]. 中国航天, 2002(9): 41-45.

PAN Jian, WANG Jia-sheng. Development Trend of Aerospace Special Materials[J]. Aerospace China, 2002(9): 41-45.

[2] 邱惠中, 吴志红. 国外航天材料的新进展[J]. 宇航材料工艺, 1997, 27(4): 5-13.

QIU Hui-zhong, WU Zhi-hong. Development of Aerospace Materials Abroad[J]. Aerospace Materials & Technology, 1997, 27(4): 5-13.

[3] 王娜, 李海庆, 徐方涛, 等. 双组元液体火箭发动机推力室材料研究进展[J]. 宇航材料工艺, 2019, 49(3): 1-8.

WANG Na, LI Hai-qing, XU Fang-tao, et al. Recent Development of Advanced Materials for Liquid Rocket Thruster Chambers[J]. Aerospace Materials & Technology, 2019, 49(3): 1-8.

[4] 张武昆, 谭永华, 高玉闪, 等. 液体火箭发动机增材制造技术研究进展[J]. 推进技术, 2022, 43(5): 29-44.

ZHANG Wu-kun, TAN Yong-hua, GAO Yu-shan, et al. Research Progress of Additive Manufacturing Technology in Liquid Rocket Engine[J]. Journal of Propulsion Technology, 2022, 43(5): 29-44.

[5] 章本立. 国外液体火箭发动机涡轮高温材料的现状和发展[J]. 国外导弹技术, 1983(2): 36-50.

ZHANG Ben-li. Present Situation and Development of High Temperature Materials for Liquid Rocket Engine Turbine Abroad[J]. Missiles and Space Vehicles, 1983 (2): 36-50.

[6] 韩鸿硕. 国外航天器防热系统和材料的应用研究现状[J]. 宇航材料工艺, 1994, 24(6): 1-4, 12.

HAN Hong-shuo. Application and Research Status of Spacecraft Thermal Protection Systems and Materials Abroad[J]. Aerospace Materials & Technology, 1994, 24(6): 1-4, 12.

[7] KERSTENS F. End to End Process Evaluation for Additively Manufactured Liquid Rocket Engine Thrust Chambers[J]. Acta Astronautica, 2021, 182: 454-465.

[8] HERZOG D, SEYDA V, WYCISK E, et al. Additive Manufacturing of Metals[J]. Acta Materialia, 2016, 117: 371-392.

[9] PANWISAWAS C, TANG Y T, REED R C. Metal 3D Printing as a Disruptive Technology for Superalloys[J]. Nature Communications, 2020, 11(1): 2327.

[10] ORME M E, GSCHWEITL M, FERRARI M, et al. Additive Manufacturing of Lightweight, Optimized, Metallic Components Suitable for Space Flight[J]. Journal of Spacecraft and Rockets, 2017, 54(5): 1050-1059.

[11] TAN Chao-lin, WENG Fei, SUI Shang, et al. Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804.

[12] SNYDER J C, THOLE K A. Effect of Additive Manufacturing Process Parameters on Turbine Cooling[J]. Journal of Turbomachinery, 2020, 142(5): 051007.

[13] BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal Additive Manufacturing in Aerospace: A Review[J]. Materials & Design, 2021, 209: 110008.

[14] 辛艳喜, 蔡高参, 胡彪, 等. 3D打印主要成形工艺及其应用进展[J]. 精密成形工程, 2021, 13(6): 156-164.

XIN Yan-xi, CAI Gao-shen, HU Biao, et al. Recent Development of Main Process Types of 3D Printing Technology and Application[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 156-164.

[15] 汤海波, 吴宇, 张述泉, 等. 高性能大型金属构件激光增材制造技术研究现状与发展趋势[J]. 精密成形工程, 2019, 11(4): 58-63.

TANG Hai-bo, WU Yu, ZHANG Shu-quan, et al. Research Status and Development Trend of High Performance Large Metallic Components by Laser Additive Manufacturing Technique[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 58-63.

[16] 《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 第2版. 北京:中国标准出版社, 2002.

China Aviation Materials Manual Editorial Committee. China Aeronautical Materials Handbook [M]. 2nd edition. Beijing: Standards Press of China, 2002.

[17] 张军, 介子奇, 黄太文, 等. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.

ZHANG Jun, JIE Zi-qi, HUANG Tai-wen, et al. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9): 1145-1159.

[18] 郭建亭. 变形高温合金和等轴晶铸造高温合金材料与应用基础理论研究[J]. 金属学报, 2010, 46(11): 1303-1321.

GUO Jian-ting. Review on Whrought Superalloy and Equi-Axed Crystal Cast Superalloy Materials and Their Application Basic Theories[J]. Acta Metallurgica Sinica, 2010, 46(11): 1303-1321.

[19] 黄朝晖, 谭永宁, 贾新云, 等. 第二代定向凝固柱晶高温合金DZ406(DZ6)[C]//动力与能源用高温结构材料——第十一届中国高温合金年会论文集. 北京, 2007: 394-398.

HUANG Zhao-hui, TAN Yong-ning, JIA Xin-yun, et al. The Second Generation Directionally Solidified Superalloy DZ406 (DZ6)[C]// High-Temperature Structural Materials for Power and Energy: Proceedings of the 11th Annual Chinese Superalloy Conference. Beijing, 2007: 394-398.

[20] 王博. 第三代镍基单晶高温合金成分设计及组织稳定性研究[D]. 西安: 西北工业大学, 2018.

WANG Bo. Alloy Design and Microstructure Stability of Third Generation Ni-Based Single Crystal Superalloys[D]. Xi'an: Northwestern Polytechnical University, 2018.

[21] 孙宝德, 王俊, 疏达, 等. 航空发动机高温合金大型铸件精密成型技术[M]. 上海: 上海交通大学出版社, 2016.

SUN Bao-de, WANG Jun, SHU Da. Precision Forming Technology of Large Superalloy Castings for Aircraft Engine[M]. Shanghai: Shanghai Jiao Tong University Press, 2016.

[22] 干梦迪, 种晓宇, 冯晶. 航空航天高温结构材料研究现状及展望[J]. 昆明理工大学学报(自然科学版), 2021, 46(6): 24-36.

GAN Meng-di, CHONG Xiao-yu, FENG Jing. Research Status and Prospects of Aerospace High-Temperature Structural Materials[J]. Journal of Kunming University of Science and Technology (Natural Sciences), 2021, 46(6): 24-36.

[23] 齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程, 2012, 40(8): 92-100.

QI Huan. Review of INCONEL 718 Alloy: Its History, Properties, Processing and Developing Substitutes[J]. Journal of Materials Engineering, 2012, 40(8): 92-100.

[24] 张鹏, 杨凯, 朱强, 等. 微量元素对镍基高温合金微观组织与力学性能的影响[J]. 精密成形工程, 2018, 10(2): 1-6.

ZHANG Peng, YANG Kai, ZHU Qiang, et al. Effect of Microelement on Microstructure and Mechanical Property of Nickel-Base Superalloy[J]. Journal of Netshape Forming Engineering, 2018, 10(2): 1-6.

[25] 张龙飞, 江亮, 周科朝, 等. 航空发动机用单晶高温合金成分设计研究进展[J]. 中国有色金属学报, 2022, 32(3): 630-644.

ZHANG Long-fei, JIANG Liang, ZHOU Ke-chao, et al. Research Progress of Compositional Design in Nickel- Based Single Crystal Superalloys for Aero-Engine Applications[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(3): 630-644.

[26] 黄进峰, 余红燕, 李永兵, 等. 富氧气氛下高温合金氧化特征及机理[J]. 钢铁研究学报, 2009, 21(3): 51-54.

HUANG Jin-feng, YU Hong-yan, LI Yong-bing, et al. Oxidation Characteristic and Mechanism of Superalloys in Oxygen-Enriched Atmosphere[J]. Journal of Iron and Steel Research, 2009, 21(3): 51-54.

[27] 张冬云, 高阳, 曹明, 等. SLM成形Inconel 718合金的组织性能调控研究[J]. 上海航天(中英文), 2020, 37(3): 82-88.

ZHANG Dong-yun, GAO Yang, CAO Ming, et al. Study on Regulation of Microstructure and Mechanical Properties of SLM-Processed Inconel 718 Alloy[J]. Aerospace Shanghai (Chinese & English), 2020, 37(3): 82-88.

[28] 滕庆, 李帅, 薛鹏举, 等. 激光选区熔化Inconel 718合金高温腐蚀性能[J]. 中国有色金属学报, 2019, 29(7): 1417-1426.

TENG Qing, LI Shuai, XUE Peng-ju, et al. High-Tem­perature Corrosion Resistance of Inconel 718 Fabricated by Selective Laser Melting[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7): 1417-1426.

[29] 刘俊, 邱鑫, 段德莉. 新型加热器在运载火箭绿色单元发动机上的应用[J]. 上海航天, 2020, 37(1): 113-118, 124.

LIU Jun, QIU Xin, DUAN De-li. Application of New Type Heaters in the Green Monopropellant Thruster of Launch Vehicle[J]. Aerospace Shanghai (Chinese & English), 2020, 37(1): 113-118, 124.

[30] 邢春鹏. 金属蜂窝夹芯结构性能研究与多层隔热结构优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2008.

XING Chun-peng. Research on Properties of Metallic Honeycomb Structure and Optimization of Multilayer Insulations[D]. Harbin: Harbin Institute of Technology, 2008.

[31] DORSEY J, POTEET C, CHEN R, et al. Metallic thermal protection system technology development - Concepts, requirements and assessment overview[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV. Reston, Virginia: AIAA, 2002: 502.

[32] 孙晓峰, 宋巍, 梁静静, 等. 激光增材制造高温合金材料与工艺研究进展[J]. 金属学报, 2021, 57(11): 1471-1483.

SUN Xiao-feng, SONG Wei, LIANG Jing-jing, et al. Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing[J]. Acta Metallurgica Sinica, 2021, 57(11): 1471-1483.

[33] 张红梅, 顾冬冬. 激光增材制造镍基高温合金构件形性调控及在航空航天中的应用[J]. 电加工与模具, 2020(6): 1-10.

ZHANG Hong-mei, GU Dong-dong. Laser Additive Manufacturing of Nickel-Based Superalloys and Its Structure-Performance Control and Aerospace Applications[J]. Electromachining & Mould, 2020(6): 1-10.

[34] GRADL P R, PROTZ C S, WAMMEN T. Additive Manufacturing and Hot-Fire Testing of Liquid Rocket Channel Wall Nozzles Using Blown Powder Directed Energy Deposition Inconel 625 and JBK-75 Alloys[C]//AIAA Propulsion and Energy 2019 Forum. Indianapolis, IN. Reston, Virginia: AIAA, 2019.

[35] OERLIKON. Case Study LENA Space Rocket Nozzle [EB/OL]. https://www.oerlikon.com /ecomaXL/files/en/ oerlikon_Oerlikon_Aerospace_Case_study_LENA_Ro­cket_Nozzle_EN.PDF&download=0.

[36] DONATH S. Case Study: Additive Manufacturing, 3D Printing A Rocket Engine[EB/OL]. https://www.etmm- online.com/3d-printing-a-rocket-engine-a-886960/.

[37] MOLITCH-HOU M. GKN Launches into Aerospace 3D Printing[EB/OL]. https://www. engineering.com/story/ gkn-launches-into-aerospace-3d-printing.

[38] EOS. All-in-one Design122 Injection Nozzles and Further Parts as One Integrated Component[EB/OL]. https://www.eos.info/en/all-3d-printing-applications/aerospace-additive-manufacture ring-for-ariane-injection- nozzles.

[39] KUMAR S R, SRINIVAS V, REDDY G J, et al. 3D Printing of Fuel Injector in IN718 Alloy for Missile Applications[J]. Transactions of the Indian National Academy of Engineering, 2021, 6(4): 1099-1109.

[40] GRADL P R, BRANDSMEIER W, GREENE S E. Channel Wall Nozzle Manufacturing and Hot-Fire Testing Using A Laser Wire Direct Closeout Technique for Liquid Rocket Engines[C]// 54th AIAA/SAE/ASEE Joint Propulsion Conference, 2018.

[41] 3DScienceValley. Heat Exchanger With Additive Manufacturing[EB/OL]. http://en.51shap e.com/?p=1751.

[42] CHRONIC AM. EOS and Hyperganic Team Up to Elevate The Design and Performance of Space Propulsion Components[EB/OL]. https://www.amchronicle.com/news/ eos-and-hyperganic-team-up-to-elevate-the-design-and- performance-of-space-propulsion-components/.

[43] 闵捷, 温东旭, 岳天宇, 等. 增材制造技术在高温合金零部件成形中的应用[J]. 精密成形工程, 2021, 13(1): 44-50.

MIN Jie, WEN Dong-xu, YUE Tian-yu, et al. Application of Additive Manufacturing Technology in Forming of Superalloy Component[J]. Journal of Netshape Forming Engineering, 2021, 13(1): 44-50.

[44] 吴楷, 张敬霖, 吴滨, 等. 激光增材制造镍基高温合金研究进展[J]. 钢铁研究学报, 2017, 29(12): 953-959.

WU Kai, ZHANG Jing-lin, WU Bin, et al. Research and Development of Ni-Based Superalloy Fabricated by Laser Additive Manufacturing Technology[J]. Journal of Iron and Steel Research, 2017, 29(12): 953-959.

[45] SANCHEZ S, SMITH P, XU Z K, et al. Powder Bed Fusion of Nickel-Based Superalloys: A Review[J]. International Journal of Machine Tools and Manufacture, 2021, 165: 103729.

[46] Special Metals Corporation: INCONEL@ Alloy 718, 2007[EB/OL]. https://www. specialmetals.com/docu­ments/technical-bulletins/inconel/inconel-alloy-718.pdf.

[47] Special Metals Corporation: INCONEL@ Alloy 625, 2013[EB/OL]. https://www. specialmetals.com/docu­ments/technical-bulletins/inconel/inconel-alloy-625.pdf.

[48] ZHONG Chong-liang. Study of Nickel-Based Super- Alloys Inconel 718 and Inconel 625 in High-Deposition- Rate Laser Metal Deposition[J]. Optics & Laser Technology, 2019, 109: 352-360.

[49] WANG H. Selective Laser Melting of the Hard-to-Weld IN738LC Superalloy: Efforts to Mitigate Defects and the Resultant Microstructural and Mechanical Properties[J]. Journal of Alloys and Compounds, 2019, 807: 151662.

[50] LIU Zhi-yuan, ZHAO Dan-dan, WANG Pei. Additive Manufacturing of Metals: Microstructure Evolution and Multistage Control[J]. Journal of Materials Science & Technology, 2022, 100: 224-236.

[51] MORADI M. Direct Laser Metal Deposition Additive Manufacturing of Inconel 718 Superalloy: Statistical Modelling and Optimization by Design of Experiments[J]. Optics & Laser Technology, 2021, 144: 107380.

[52] DINDA G P, DASGUPTA A K, MAZUMDER J. Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability[J]. Materials Science and Engineering: A, 2009, 509(1/2): 98-104.

[53] BENOIT M J, MAZUR M, EASTON M A, et al. Effect of Alloy Composition and Laser Powder Bed Fusion Parameters on the Defect Formation and Mechanical Properties of Inconel 625[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(3): 915-927.

[54] 刘化强, 刘江伟, 国凯, 等. 激光定向能量沉积Inconel 718特征与工艺参数优化[J]. 应用激光, 2021, 41(1): 13-21.

LIU Hua-qiang, LIU Jiang-wei, GUO Kai, et al. Characteristics and Process Parameters Optimization of Inconel 718 Fabricated via Laser Directed Energy Deposition[J]. Applied Laser, 2021, 41(1): 13-21.

[55] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 129-138.

YANG Hao, LI Yao, HAO Jian-min. Research Progress of Laser Additively Manufactured Inconel 718 Superalloy[J]. Materials Reports, 2022, 36(6): 129-138.

[56] KURZ W, FISHER D J. Fundamentals of Solidification[M]. Switzerland: Trans Tech Publications, 1998.

[57] LI Shuai, WEI Qing-song, SHI Yu-sheng, et al. Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting[J]. Journal of Materials Science & Technology, 2015, 31(9): 946-952.

[58] RAMSPERGER M, MÚJICA RONCERY L, LOPEZ- GALILEA I, et al. Solution Heat Treatment of the Single Crystal Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting[J]. Advanced Engineering Materials, 2015, 17(10): 1486-1493.

[59] ZHANG Fan, LEVINE L E, ALLEN A J, et al. Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by Laser Powder Bed Fusion[J]. Acta Materialia, 2018, 152: 200-214.

[60] XU J H, MA T R, PENG R L, et al. Effect of Post-Processes on the Microstructure and Mechanical Properties of Laser Powder Bed Fused IN718 Superalloy[J]. Additive Manufacturing, 2021, 48: 102416.

[61] XIAO H, LI S M, XIAO W J, et al. Effects of Laser Modes on Nb Segregation and Laves Phase Formation during Laser Additive Manufacturing of Nickel-Based Superalloy[J]. Materials Letters, 2017, 188: 260-262.

[62] XIAO Hui, LI Si-meng, HAN Xu, et al. Laves Phase Control of Inconel 718 Alloy Using Quasi-Continuous- Wave Laser Additive Manufacturing[J]. Materials & Design, 2017, 122: 330-339.

[63] YANG Hui-hui, MENG Liang, LUO Shun-cun, et al. Microstructural Evolution and Mechanical Performances of Selective Laser Melting Inconel 718 from Low to High Laser Power[J]. Journal of Alloys and Compounds, 2020, 828: 154473.

[64] ZHANG Yao-cheng, YANG Li, LU Wang-zhang, et al. Microstructure and Elevated Temperature Mechanical Properties of IN718 Alloy Fabricated by Laser Metal Deposition[J]. Materials Science and Engineering: A, 2020, 771: 138580.

[65] BROOKS J W, BRIDGES P J. Metallurgical Stability of Inconel Alloy 718[C]//Superalloys 1988 (Sixth International Symposium). TMS, 1988: 33-42.

[66] QI H, AZER M, RITTER A. Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718[J]. Metallurgical and Materials Transactions A, 2009, 40(10): 2410-2422.

[67] HUANG Liang, CAO Yan, ZHANG Jia-hao, et al. Effect of Heat Treatment on the Microstructure Evolution and Mechanical Behaviour of a Selective Laser Melted Inconel 718 Alloy[J]. Journal of Alloys and Compounds, 2021, 865: 158613.

[68] ZHANG Yao-cheng, LI Zhu-guo, NIE Pu-lin, et al. Effect of Heat Treatment on Niobium Segregation of Laser-Cladded IN718 Alloy Coating[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 708-716.

[69] TUCHO W M, HANSEN V. Characterization of SLM-Fabricated Inconel 718 after Solid Solution and Precipitation Hardening Heat Treatments[J]. Journal of Materials Science, 2019, 54(1): 823-839.

[70] 张杰, 张群莉, 陈智君, 等. 固溶温度对激光增材制造Inconel 718合金组织和性能的影响[J]. 表面技术, 2019, 48(2): 47-53.

ZHANG Jie, ZHANG Qun-li, CHEN Zhi-jun, et al. Effects of Solution Temperature on Microstructure and Properties of Inconel 718 Alloy Fabricatedvia Laser Additive Manufacturing[J]. Surface Technology, 2019, 48(2): 47-53.

[71] LI X, SHI J J, CAO G H,et al. Improved Plasticity of Inconel 718 Superalloy Fabricated by Selective Laser Melting through a Novel Heat Treatment Process[J]. Materials & Design, 2019, 180: 107915.

[72] STEPHEN F, FUCHS G E, YANG W J. The Metallurgy of Alloy 625[J]. 1994.

[73] FLOREEN S, FUCHS G E, YANG W J. The Metallurgy of Alloy 625[J]. Superalloys, 1994, 718(625): 13-37.

[74] LINDWALL G, CAMPBELL C E, LASS E A, et al. Simulation of TTT Curves for Additively Manufactured Inconel 625[J]. Metallurgical and Materials Transactions A, 2019, 50(1): 457-467.

[75] KREITCBERG A, BRAILOVSKI V, TURENNE S. Elevated Temperature Mechanical Behavior of IN625 Alloy Processed by Laser Powder-Bed Fusion[J]. Materials Science and Engineering: A, 2017, 700: 540-553.

[76] INAEKYAN K, KREITCBERG A, TURENNE S, et al. Microstructure and Mechanical Properties of Laser Powder Bed-Fused IN625 Alloy[J]. Materials Science and Engineering: A, 2019, 768: 138481.

[77] 刘文彬, 莫仕栋, 谢月光, 等. 热等静压消除金属增材制造构件孔隙的研究进展[J]. 材料研究与应用, 2021, 15(3): 287-296.

LIU Wen-bin, MO Shi-dong, XIE Yue-guang, et al. Research Progress of Hot Isostatic Pressing to Eliminate the Pores in Metal Parts Prepared by Additive Manufacturing[J]. Materials Research and Application, 2021, 15(3): 287-296.

[78] TILLMANN W, SCHAAK C, NELLESEN J, et al. Hot Isostatic Pressing of IN718 Components Manufactured by Selective Laser Melting[J]. Additive Manufacturing, 2017, 13: 93-102.

[79] REZAEI A, KERMANPUR A, REZAEIAN A, et al. Contribution of Hot Isostatic Pressing on Densification, Microstructure Evolution, and Mechanical Anisotropy of Additively Manufactured IN718 Ni-Based Superalloy[J]. Materials Science and Engineering: A, 2021, 823: 141721.

[80] 罗浩, 李小强, 潘存良, 等. 热等静压处理对选区激光熔化成形Inconel 718合金各向组织及力学性能的影响[J]. 表面技术, 2022, 51(3): 333-341.

LUO Hao, LI Xiao-qiang, PAN Cun-liang, et al. Effects of Hot Isostatic Pressing on Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Alloy in Different Directions[J]. Surface Technology, 2022, 51(3): 333-341.

[81] GOEL S, SITTIHO A, CHARIT I, et al. Effect of Post-Treatments under Hot Isostatic Pressure on Microstructural Characteristics of EBM-Built Alloy 718[J]. Additive Manufacturing, 2019, 28: 727-737.

[82] BASSINI E, SIVO A, MARTELLI P A, et al. Effects of the Solution and First Aging Treatment Applied to As-Built and Post-HIP CM247 Produced via Laser Powder Bed Fusion (LPBF)[J]. Journal of Alloys and Compounds, 2022, 905: 164213.

[83] POULIN J R, KREITCBERG A, BRAILOVSKI V. Effect of Hot Isostatic Pressing of Laser Powder Bed Fused Inconel 625 with Purposely Induced Defects on the Residual Porosity and Fatigue Crack Propagation Behavior[J]. Additive Manufacturing, 2021, 47: 102324.

[84] KALETSCH A, QIN S, HERZOG S, et al. Influence of High Initial Porosity Introduced by Laser Powder Bed Fusion on the Fatigue Strength of Inconel 718 after Post-Processing with Hot Isostatic Pressing[J]. Additive Manufacturing, 2021, 47: 102331.

[85] BABAMIRI B B, INDECK J, GEMENEGHI G, et al. Quantification of Porosity and Microstructure and Their Effect on Quasi-Static and Dynamic Behavior of Additively Manufactured Inconel 718[J]. Additive Manufacturing, 2020, 34: 101380.

[86] SHAJI KARAPUZHA A, FRASET D, ZHU Y M, et al. Effect of Solution Heat Treatment and Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Hastelloy X Manufactured by Electron Beam Powder Bed Fusion[J]. Journal of Materials Science & Technology, 2022, 98: 99-117.

[87] SHAO Shuai, MAHTABI M J, SHAMSAEI N, et al. Solubility of Argon in Laser Additive Manufactured Α-Titanium under Hot Isostatic Pressing Condition[J]. Computational Materials Science, 2017, 131: 209-219.

[88] DU PLESSIS A, MACDONALD E. Hot Isostatic Pressing in Metal Additive Manufacturing: X-Ray Tomography Reveals Details of Pore Closure[J]. Additive Manufacturing, 2020, 34: 101191.

Research Status of Nickel-based Superalloy for Aerospace Field and Its Laser Additive Manufacturing Technology

CHEN Jiao1, LUO Hua2, HE Jian2, TAN Qing-biao2, ZHU Guo-liang2

(1. Shanghai Institute of Aerospace Information, Shanghai 201109, China; 2. a. School of Materials Science and Engineering, b. Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China)

Nickel-based superalloy components for new spacecraft exhibit a development trend of complexity, thin wall, combination, and integration. As a result, traditional processing technologies such as casting or forging are no more available. Laser additive manufacturing (LAM) technology based on layer-by-layer deposition becomes an ideal solution to realize the fabrication of such complex components, which can further endow superalloy with higher value and promote the development of aerospace equipment. Firstly, the nickel-based superalloy frequently used in the aerospace field was briefly introduced, and then the research status of nickel-based superalloy prepared by LAM was reviewed with IN 718 and IN 625 as examples. The optimization method of additive manufacturing process was summarized, indicating that comprehensive processing map of additive manufacturing and experimental design were two effective methods. The microstructure characteristics of nickel-based superalloy by LAM were pointed out, and the effect of LAM-post heat-treatment on the microstructure and mechanical properties was also discussed. The local microsegregation in nickel-based superalloy by LAM was ubiquitous, which was caused by the rapid cooling rate inherent in the LAM process. Therefore, the conventional heat treatment was no longer the optimal process due to microsegregation. The advantages of LAM technology were demonstrated through five typical cases of nickel-based superalloy aerospace components by LAM. Finally, some future research directions on LAM technology of nickel-base superalloy were put forward and prospected according to the key scientific and technical problems in nickel-based superalloy by LAM.

nickel-base superalloy; additive manufacturing; microstructure; heat treatment; aerospace

10.3969/j.issn.1674-6457.2023.01.020

V261.8;TG146.1

A

1674-6457(2023)01-0156-14

2022–07–17

2022-07-17

国家自然科学基金(51871147)

National Natural Science Foundation of China (51871147)

陈娇(1982—),女,博士,高级工程师,主要研究方向为国防和航天领域情报分析。

CHEN Jiao (1982-), Female, Doctor, Senior engineer, Research focus: information analysis in the field of national defense and aerospace.

谭庆彪(1981—),男,博士,主要研究方向为高温合金精密成形技术。

TAN Qing-biao (1981-), Male, Doctor, Research focus: precision forming technology of superalloys.

陈娇, 罗桦, 贺戬, 等. 航天用镍基高温合金及其激光增材制造研究现状[J]. 精密成形工程, 2023, 15(1): 156-169.

CHEN Jiao, LUO Hua, HE Jian, et al. Research Status of Nickel-based Superalloy for Aerospace Field and Its Laser Additive Manufacturing Technology[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 156-169.

猜你喜欢
增材微观热处理
石材增材制造技术研究
民用飞机零件的热处理制造符合性检查
Cr12MoV导杆热处理开裂分析
LN17模具钢预硬化热处理正交试验
激光增材制造仿真过程分析
我国增材制造技术的应用方向及未来发展趋势
一种曲轴竖置热处理装置设计
一种新的结合面微观接触模型
一种增材与减材复合制造机研究
微观的山水