基于斑马鱼模型的中药抗骨质疏松的研究进展

2023-08-03 08:51陈林珍林瑞超陶晓宇张淑静范琦琦李芝奇戴胜云李向日赵崇军
中草药 2023年15期
关键词:斑马鱼成骨细胞骨骼

王 璇,陈林珍,林瑞超,陶晓宇,于 雪,张淑静,范琦琦,李芝奇,戴胜云,李向日*,赵崇军*

基于斑马鱼模型的中药抗骨质疏松的研究进展

王 璇1,陈林珍1,林瑞超1,陶晓宇1,于 雪2,张淑静2,范琦琦1,李芝奇1,戴胜云3,李向日1*,赵崇军1*

1. 北京中医药大学 中药品质评价北京市重点实验室,北京 102488 2. 北京中医药大学,北京 102488 3. 中国食品药品检定研究院,北京 102629

骨质疏松症(osteoporosis,OP)是一种以骨密度降低、骨骼微结构改变和骨质脆弱增加为特征的骨骼疾病。由于老龄化问题的逐渐加重,OP的发病率在全球范围内迅速增加。中药在预防和治疗OP中表现出极好的前景和临床效果,然而传统动物模型具有耗时长、费用昂贵、无法准确概括骨疾病复杂性等缺点,很大程度上限制了临床前OP疾病的研究进程。而斑马鱼模型可有效模拟人类骨质减少和OP表型,通过对斑马鱼模型在治疗OP研究中的优势和适用性及该模型在中药抗OP的研究进展进行综述,为斑马鱼模型的广泛使用及中药新药研发提供参考。

斑马鱼;骨质疏松;中药;药对;中药复方;药物筛选

骨质疏松症(osteoporosis,OP)是常见的骨骼疾病,也是现代社会长期困扰患者的基础疾病之一。近年来,中医药治疗OP已显现出巨大优势。然而,中药化学成分复杂,不同化学成分的活性、靶点及作用途径往往各不相同,因此在中药抗OP的研究中,亟需一种新的动物模型研究中药调控骨合成代谢或抗再吸收化合物的发现和筛选。斑马鱼因其早期发育的光学透明性、与人类在生理学和遗传学的相似性及高通量优势,成为骨骼研究的模式生物,并随着深入研究表现出愈发明显的优势。本文主要对近年来斑马鱼在中药抗OP方面的研究进展进行综述,为完善基于斑马鱼模型的中药OP评价技术与方法,进一步促进斑马鱼在中药研究中的广泛应用提供参考。

1 OP的流行病学及治疗策略

OP是老年人群中常见的骨骼代谢性疾病,其特征是骨密度低、骨结构恶化,致使意外骨折频率增加。作为一种高患病率疾病,随着老龄化人口的增加,OP的流行性逐步增加,预计2040年,将有超过3.2亿人处于高骨折风险状态;到2050年,全世界男性髋部骨折的发病率将增加310%,女性将增加240%[1-2]。尽管饮食、运动、药物等在内的一系列可调节因素均可导致年龄相关性骨质丢失,但原发性骨质丢失往往由遗传因素介导。由于OP相关性状的遗传度变化范围较大,使得对该层面的研究存在较大难度,进而导致OP的分子机制目前尚未明确。

OP主要是由成骨细胞相关的骨形成活性和破骨细胞相关的骨吸收活性间的稳态失衡引起的[3]。目前常用的治疗OP的药物主要包括骨吸收抑制药物、促进骨形成药物及具有补钙、多靶点的生物制剂。但大多数化学药长期服用疗效有限,且易引发不良反应,因此,在临床使用过程中要严格控制用药量和用药时长[4]。中药在临床上主要是从健脾补肾的角度出发,基于复方中多成分、多途径、多靶点的特征提升骨密度,在保证用药安全的前提下,达到较好的疗效。因此,基于传统中医药理论,开发新的具有显著疗效且安全的中药治疗,并基于现代技术明确其物质基础和作用机制,对于促进中药在临床治疗OP方面具有重要意义。目前只有少数高等脊椎动物的体内模型可用于骨衰老的致病和治疗研究,如去卵巢啮齿类动物已经成为OP研究和化合物早期测试的参考模型[5],但高成本和低通量筛查相关问题限制了其在OP研究特定领域的应用。而体外细胞模型在一定程度上无法准确反映OP疾病的真实特征。基于此,寻找可替代的动物模型用于解决OP的病理生理学机制,探讨经典抗OP药物的作用内涵,对于加速骨骼研究及测试、确定OP治疗的新药物尤为重要[6-7]。

2 斑马鱼研究OP的适用性

近些年,斑马鱼已成为骨骼研究的模式生物,在早期发育过程中具光学透明性,使用细胞特异性细胞可以在体内轻松、非侵入性地监测鱼类的成骨细胞和破骨细胞,从而实现细胞追踪[8-10]。此外,斑马鱼骨和软骨特征的分析最早可以在受精后3 d开始,期间可通过观察骨和软骨的发育状况进行药物筛选[11]。同时斑马鱼每周产卵量大,满足了多元化设置实验条件及优化实验方案的需求[12]。其他特征如体外发育快、操作简单等也增强了斑马鱼在骨骼研究中的受欢迎程度,是基因功能发现和进行变异体功能分析的首选模型,为小鼠致死等位基因研究提供了可行的替代方案。

相似的生理、遗传学和与人类共享的药物反应突出了斑马鱼作为药物发现新模型的优势[13]。其中70%的人类基因在斑马鱼基因组中至少有一个同源基因[14]。此外,斑马鱼和哺乳动物中几乎所有的骨骼都是匹配的,控制骨骼发生的基因、细胞和机制及骨骼发育相关过程都是高度保守的[15]。斑马鱼模型对基因操作/编辑的适应性,如锌指核酸酶[16]、吗啉反义寡核苷酸[17]等,使基于斑马鱼的OP模型快速研究变得可行。成簇的规律间隔的短回文重复序列系统基因组编辑技术可彻底改变斑马鱼基因功能测试的方式,能模拟人类骨骼疾病的突变系,重现性好、效率高,可实现对敲除表型的快速分析,进而确认相关基因的主要功能[18-19],为OP提供了新的治疗方法。斑马鱼还可以作为测试OP候选药物的工具,并帮助评估针对OP症状的药物。目前,基于斑马鱼表型药物筛选鉴定出的多种化合物正在进行临床研究,如抗破骨细胞分化因子(receptor activator of nuclear factor-κB ligand,RANKL)单克隆抗体地诺单抗[20]和抗Wnt抑制剂结合硬化蛋白的单克隆抗体罗莫单抗[21]。此外,骨形态发生蛋白(bone morphogenetic protein,BMP)信号的小分子抑制剂多索吗啡是利用斑马鱼进行化学筛选发现的首批化合物之一[22],且多索吗啡衍生物(间变性淋巴瘤激酶2抑制剂)正在进行治疗性骨化性纤维发育不良异位骨化的临床试验。

随着斑马鱼发育过程中透明度逐渐丧失,成年斑马鱼内骨骼被肌肉组织和矿化鳞片覆盖,但仍可运用体内成像技术检测骨性元素(颅骨、鳍、岛盖、颌和鳞片),且其他技术(类似于在小鼠中使用的技术)在斑马鱼中同样适用。如茜素红染色被用于显示矿化骨,小动物计算机体层显像仪可以进行3D形态分析和精确的骨密度测量。与传统啮齿类动物模型相比,基于斑马鱼幼鱼和成鱼模型进行OP相关评价,均可以向系统水或胚胎培养基中添加化学试剂进行暴露操作后通过骨骼表型研究来进行检测[23-24],操作简单。同时,对于某些药物,斑马鱼比小鼠模型更能重现特定药物在人类临床使用中观察到的效果。沙利度胺不会引起出生小鼠出现与人类相似的出生缺陷,但是斑马鱼能够再现沙利度胺对肢体的致畸性[25-26],表明基于斑马鱼模型在骨相关遗传疾病研究中的重要性。

3 斑马鱼OP模型的造模方法

3.1 糖皮质激素(glucocorticoid,GC)诱导的OP

GC是一种有效的免疫抑制药物,长期使用会通过减少骨/血管形成及增加骨吸收影响骨代谢[27],进而导致复杂的不良反应,包括继发性OP。由于GC诱导斑马鱼幼鱼模型的造模方法简便易实施,因此被作为一种常用的OP模型[28]。研究表明,泼尼松龙可通过改变参与成骨细胞和破骨细胞信号通路关键基因的表达水平,降低成骨细胞的增殖活性和数量,诱导细胞凋亡,而促进破骨细胞的增殖和活性,进而引起斑马鱼幼鱼组织骨化减少,与人类OP存在相似之处[29],证明泼尼松龙诱导的斑马鱼OP模型的准确性[30]。

在OP相关研究中,常以斑马鱼鳞片作为研究部位,这种鳞片是由磷酸钙和羟基磷灰石晶体构成的,其结构与人类编织骨非常相似,具有相同的细胞类型和与人体组织沉积和吸收相似的调节机制[31-32]。泼尼松龙可通过增强破骨细胞活性,增加基质吸收,降低胶原编码基因表达,诱导成骨细胞和破骨细胞的OP基因表达谱,使矿物质含量减少和引起吸收陷窝,进而诱导OP表型[33]。此外,泼尼松龙还可诱导骨标志物的改变,如抗酒石酸酸性磷酸酶活性(tartrate-resistant acid phosphatase activity,TRAP)增加和碱性磷酸酶(alkaline phosphatase activity,ALP)活性降低[34]。Carnovali等[35]基于茜素红S、骨基质中的钙和乙二胺四乙酸间的特异性结合水平量化矿物质的含量。此外,地塞米松诱导的鳞片再生畸形模型[36]和斑马鱼鳞片OP模型[37]也被用于抗OP药物的筛选和评价。为基于斑马鱼成鱼鳞片进行OP治疗药物筛选的提供理论依据。也有研究表明泼尼松龙可诱导老化鱼鳞出现骨吸收,降低ALP/TRAP的值,为预防年龄相关骨改变提供新的治疗策略[38]。同时,斑马鱼尾鳍也常作为研究部位探究抗矿化和促矿化化合物对骨骼元素、结构和力学特性的影响。泼尼松龙可通过影响成骨细胞和破骨细胞的数量、活性和分化,改变关键生物过程相关基因的表达,恶化再生鳍的细胞运输,干扰骨组织恢复,从而延迟鳍条新生形成过程中的骨生长和受损骨再生过程[39-40]。而阿仑膦酸盐可拮抗泼尼松龙对鳍条矿化和钙/磷水平的影响,恢复骨弹性系数和硬度水平等生物力学性能[41]。进一步证实了该模型的适用性。

3.2 高糖、高脂诱导的OP

糖尿病是一种慢性代谢性疾病,能够引发或加剧OP发展。当前,糖尿病和OP是临床常见的并发症[42]。而斑马鱼已成为研究病理条件下高血糖/肥胖和骨骼相互作用的模型选择[43]。研究表明在高血糖状态下,糖尿病斑马鱼模型幼鱼成骨和尾鳍鳍条的再生能力均受损,而维生素D类似物(帕立骨化醇)和拟钙剂(西那卡塞)可逆转该现象的发生[44]。Carnovali等[45]发现葡萄糖暴露可引起成年斑马鱼鳞片基质矿化减少,诱导强烈的破骨细胞活性相关的骨吸收陷窝,改变骨调节基因的表达,且与糖尿病啮齿类动物骨骼情况类似[46]。此外,高脂饮食喂养且出现肥胖迹象的成年斑马鱼鳞片也发现类似的表型结果[47]。

3.3 铁过载/缺铁诱导的OP

铁作为一种辅助因子,在参与关键代谢功能的生化反应中具有重要作用。过量铁会促进破骨细胞分化并增加骨吸收[48]。在斑马鱼幼鱼中,铁过载可抑制骨形成,降低成骨细胞标志基因的表达。膜铁转运蛋白1表达缺陷的斑马鱼突变体表现出明显的骨形成缺陷,包括钙化椎骨数量减少和成骨细胞基因的异常表达[49]。高铁应激也被用于促进斑马鱼OP表型,幼鱼和成鱼都显示出骨矿化显著减少和软骨形成发育缺陷,而阿仑膦酸盐作为靶向BMP信号通路和促进成骨细胞分化的药物,可显著逆转缺陷骨的生成[50-51]。

3.4 基因编辑技术诱导的OP

基因编辑技术能够获得部分模拟OP表型特征的突变体。这些模型是研究OP相关基因功能和发病机制的潜在工具,如ATP酶H+转运V1亚基H(ATPase H+transporting V1 subunit H,ATP6V1H)、G蛋白偶联受体137b(G protein coupled receptor 137b,GPR137B)、葡萄糖神经酰胺酶1(glucosylceramidase beta 1,GBA1)、Sp7转录因子(Sp7 transcription factor,SP7)突变体皆表现骨表型异常[52-55]。

3.5 其他方式诱导的OP

骨量减少的特征是骨密度轻度降低,长时间不纠正会导致OP,而该过程可能涉及GC的作用和神经内分泌轴的激活[56]。甲状旁腺激素持续暴露可诱导斑马鱼幼鱼骨矿化显著减少[11]。14 d以上活动受限可诱导成年斑马鱼骨量减少的稳定模型。研究发现在运动受限和机械负荷减少的情况下,斑马鱼的椎体形状和椎间隙骨骼参数发生显著改变,骨体积和密度显著降低[57]。此外,在适当的应激条件下(如禁食),鱼类可能发展出与人类疾病相似的OP表型[58]。注射肉毒杆菌毒素后斑马鱼肌肉的短暂麻痹能够通过减少机械负荷和破坏神经功能,进而损害尾鳍再生过程中的膜内骨化[59]。

斑马鱼OP模型的造模方法见表1,基因编辑技术诱导斑马鱼OP模型见表2。

4 基于斑马鱼模型抗OP药物的筛选和评价

斑马鱼OP模型已被研究者广泛应用于探索疾病机制,筛选新的治疗靶点和潜在治疗药物。目前,绿色生活的理念促使人们不断尝试从植物中筛选提取物和化学成分作为营养物质,进一步促进了传统中药被大量开发。事实上,中药在临床治疗OP方面具有显著优势,其中一些天然提取物/化学成分具有抗骨吸收和骨合成代谢活性,但缺乏强有力的科学数据。基于此,研究者使用斑马鱼模型对经典复方、中药药对及单味中药进行药效学评价,筛选其主要活性物质基础,阐释其主要活性机制,并取得了显著的研究成果。

表1 斑马鱼OP模型的造模方法

RUNX2-成骨细胞特异性转录因子2 COL1a1-I型胶原蛋白α1链

RUNX2-Runt-related transcription factor 2 COL1a1-collagen type I α1 chain

表2 基因编辑技术诱导斑马鱼OP模型

LRP5-低密度脂蛋白受体相关蛋白5 EGR1-早期生长反应1 NR3C1-核受体亚家族3 C组成员1 MMP-基质金属蛋白酶 ACP5a-酸性磷酸酶5a

LRP5-low density lipoprotein receptor related protein 5 EGR1-early growth response 1 NR3C1-nuclear receptor subfamily 3 group C member 1 MMP-matrix metalloproteinase ACP5a-acid phosphatase 5a

4.1 在经典复方药效学评价中的应用

目前斑马鱼OP模型主要被用于经典复方、中药药对及单味药的药效学评价,如基于斑马鱼颅骨染色面积、骨矿化面积、累积光密度等不同指标发现仙灵骨葆[67]、二仙汤[73]、二至丸[74]和左归丸[75]等具有显著的抗OP活性,且与传统的经典动物模型具有较高的一致性,一方面揭示斑马鱼模型在复杂化学体系中药复方抗OP药效评价中的适用性,同时也揭示了经典复方在对抗继发OP方面的潜力。然而,目前中药复方的主要物质基础和作用机制缺乏深入研究。因此,借助于斑马鱼的高通量优势、现代生物信息方法的联合优势,为系统阐释中药多成分、多靶点、多途径的作用特点提供参考。Zhong等[74]结合网络药理学预测和斑马鱼的实验验证,发现二至丸中的槲皮素为重要代表性成分。

4.2 在中药药对药效学评价中的应用

在中药药对抗糖尿病OP研究方面,Xu等[76]基于高通量的斑马鱼OP幼鱼、成鱼模型发现知母-黄柏(1∶1)对糖尿病-OP的治疗效果最佳,可显著抑制TRAP和促进ALP活性,上调成骨基因、下调破骨相关基因的表达水平。Lee等[77]发现牛膝-杜仲(1∶1)联合使用治疗OP的效果显著优于单药处理,能够通过改善成骨、破骨蛋白、基因的表达水平缓解OP的发展。这种模式对于基于中医药理论和临床使用环境来进行中药药对的进一步新药开发具有重要的指导意义。

4.3 在单味中药药效学评价中的应用

在单味药药效学评价方面,Peng等[78]基于斑马鱼模型发现骨碎补可显著逆转OP模型斑马鱼幼鱼钙化延迟,通过增加胶原I、骨桥蛋白(osteopontin,OPN)和骨连接蛋白的表达增加成骨细胞的活性,并通过减少MMP9和MMP13a的表达抑制骨吸收。牡蛎通过上调成骨细胞标志物(ALP、RUNX2和osterix),减少钙化水平,进而恢复成骨活性[79]。青风藤提取物及其所含生物碱可以通过调节丝裂原活化蛋白激酶14(mitogen-activated protein kinase 14,MAPK14)、半胱氨酸天冬氨酸蛋白酶-3、CXC基序趋化因子配体8、白细胞介素-1β(nterleukin-1β,IL-1β)、IL-6等表达促进斑马鱼骨质形成,并能有效降低OP中TRAP含量[80]。淫羊藿中的淫羊藿素、淫羊藿苷和宝藿苷I可显著增加斑马鱼OP模型的骨染色面积、累积光密度和Ca的含量[81],且淫羊藿素C可通过激活磷脂酰肌醇3-激酶和蛋白激酶B信号通路,减轻地塞米松对斑马鱼幼鱼细胞成骨的抑制作用[82]。生姜的正己烷提取物及其所含的10-姜酚可显著抑制泼尼松龙诱导的OP再生鳞片中的破骨细胞生成以促进正常再生,而该过程与破骨细胞特异性组织蛋白酶K(cathepsin K,CTSK)、MMP2、MMP9表达水平变化相关[83]。木槿中的多酚类化合物能够通过抑制糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)进而激活β-catenin,促进成骨活性,发挥抗OP作用[84]。黄酮类化合物黄芩苷可通过调节RANK/RANKL/骨保护素(osteoprotegerin,OPG)[85]致使破骨细胞活性受损和骨吸收减少。其他酚类化合物,如丹参素[86]和丹酚酸B[65]被证明具有骨合成代谢特性。漆黄素可通过GSK-3β/β-catenin信号通路[87]、羟基红花黄色素A[88]具有骨合成代谢和抗吸收特性。大黄酸通过腺苷酸活化蛋白激酶/Smad(small mothers against decapentaplegic)1/5/9表达[89]、环黄芪醇通过靶向端粒体酶促进成骨细胞分化[90]。槲皮素和异槲皮素分别通过肿瘤坏死因子(tumor necrosis factor,TNF)、Kelch样环氧氯丙烷相关蛋白-1/核因子E2相关因子2/抗氧化反应元件信号通路缓解斑马鱼的OP症状[91-92]。当归中的藁本内脂通过GPR30/表皮生长因子受体途径促进骨形成[93],吴茱萸碱可通过MMP3/OPN/MAPK促进骨重建[61],知母中天麻皂苷AIII可通过抑制晚期糖基化终产物特异性受体/ MAPK信号通路减轻糖尿病-OP[94]等。此外,菟丝子及其所含的金丝桃素、对羟基肉桂酸等[95]、甘草中甘草苷[96]、马齿苋中多聚糖[97]、牛膝中低聚果糖[98]、白藜芦中白藜芦醇[62]被证实均具有显著的抗OP活性。

表3 中药抗斑马鱼OP模型的作用机制

续表3

NFATC-1-活化T细胞核因子1 TGF-β-转化生长因子-β Bcl-2-B淋巴细胞瘤-2

NFATC-1-nuclear factor of activated T cells 1 TGF-β-transforming growth factor-β Bcl-2-B-cell lymphoma-2

综上,天然提取物富含很有前景的骨活性化合物,有望开发为治疗OP的下一代药物。而斑马鱼具有基因高度保守、生长周期短和高通量等特征,为繁琐的药效物质筛选提供了明显的技术优势,当前斑马鱼OP模型已被首选作为对中药潜在抗OP活性成分进行筛选的一线模型。中药抗OP具体作用机制见表3。

5 结语与展望

5.1 斑马鱼模型逐步成为OP的替代模型

斑马鱼作为OP研究的主要替代模型,具光学透明性、体积小、发育快等优势,同时因其与人类骨骼结构、功能和调控机制等方面的高度同源性、光学透明性、体积小、发育快和转基因技术的不断发展促使斑马鱼被广泛用于骨生理病理过程研究、人类骨骼疾病模型的模拟和构建、高通量生物活性化合物筛选等。另一方面,成年斑马鱼的一些功能也为成人骨骼疾病如骨转换、修复、退行性变的治疗研究提供了一种新型的强大资源。基于此,斑马鱼模型被广泛应用于经典抗OP复方、补肝肾中药的药效学评价[112-113],且大多数研究采用斑马鱼、传统动物联合评价,进一步证实了斑马鱼模型的可靠性。目前,斑马鱼模型还被广泛用于天然化合物库活性成分[114]、动物(海洋生物)活性大分子的筛选[115-116]及功能食品的制备[117-118]、老药新用的发现等。

5.2 斑马鱼OP模型的参照标准亟需建立

目前,研究者常用GC诱导的斑马鱼OP模型进行中药药效评价及活性成分筛选,但是在不同研究者构建模型的方法(包括暴露浓度、暴露时间、鱼龄的选择)及药效评价的基准不同。因此,笔者建议相关研究领域应尽快完善斑马鱼OP模型的标准参数,为治疗OP筛选候选药物和开展新药研发奠定基础。

5.3 斑马鱼OP模型应综合考虑机体其他并发症对研究结果的影响

OP是一种代谢性疾病,具有明显的年龄相关性,往往伴随着激素降低,糖尿病、高血压和老年痴呆等[119]。目前建立的斑马鱼OP相关模型及基于该模型进行的药物筛选过程大多数只是针对机体单一的骨骼生理病理过程进行的筛选和评价,不能完全反映大多数OP患者临床状态。因此,基于临床疾病状态,建议重点关注和构建以年龄为核心、不同并发症同时存在的OP模型,准确反映药物的临床治疗效果。同时,在研究中要关注遗传性疾病,如成骨不全、糖尿病和肥胖等遗传性疾病对模型和药效的影响。

5.4 斑马鱼OP模型结果向临床研究结果转化存在的问题

基于斑马鱼模型进行OP相关研究,须考虑斑马鱼模型与哺乳动物、人类在骨骼组成和功能方面的差异性。如虽然斑马鱼与哺乳动物细胞的重吸收活性和分子途径高度保守,但是不同时期斑马鱼成骨细胞、破骨细胞的存在状态和比例与哺乳动物存在差异,如斑马鱼破骨细胞通常是单核细胞,而哺乳动物大多为多核细胞。因此,欲将斑马鱼系统评价结果扩展到临床研究结果或应用时应谨慎。未来仍需系统评价基于斑马鱼不同细胞类型、细胞生物过程及特定靶点的评价结果与对应传统哺乳动物评价模型结果间的一致性,进一步确认斑马鱼模型在OP疾病机制研究、药物评价中的地位和作用。

利益冲突 所有作者均声明不存在利益冲突

[1] Odén A, McCloskey E V, Kanis J A,. Burden of high fracture probability worldwide: Secular increases 2010—2040 [J]., 2015, 26(9): 2243-2248.

[2] Burge R, Dawson-Hughes B, Solomon D H,. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005—2025 [J]., 2007, 22(3): 465-475.

[3] Fujii T, Murata K, Mun S H,. MEF2C regulates osteoclastogenesis and pathologic bone resorption via c-Fos [J]., 2021, 9: 4.

[4] Cui L J, Xia W B, Yu C,. Overview of the clinical efficacy and safety of eldecalcitol for the treatment of osteoporosis [J]., 2022, 17(1): 74.

[5] Komori T. Animal models for osteoporosis [J]., 2015, 759: 287-294.

[6] Bergen D J M, Kague E, Hammond C L. Zebrafish as an emerging model for osteoporosis: A primary testing platform for screening new osteo-active compounds [J]., 2019, 10: 6.

[7] Carnovali M, Banfi G, Mariotti M. Zebrafish models of human skeletal disorders: Embryo and adult swimming together [J]., 2019, 2019: 1253710.

[8] Truong B T, Artinger K B. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders [J]., 2021, 59(1/2): e23407.

[9] Rauner M, Foessl I, Formosa M M,. Perspective of the GEMSTONE consortium on current and future approaches to functional validation for skeletal genetic disease using cellular, molecular and animal-modeling techniques [J]., 2021, 12: 731217.

[10] Sojan J, Raman R, Muller M,. Probiotics enhance bone growth and rescue BMP inhibition: New transgenic zebrafish lines to study bone health [J]., 2022, 23(9): 4748.

[11] Fleming A, Sato M, Goldsmith P. High-throughputscreening for bone anabolic compounds with zebrafish [J]., 2005, 10(8): 823-831.

[12] Patton E E, Zon L I, Langenau D M. Zebrafish disease models in drug discovery: From preclinical modelling to clinical trials [J]., 2021, 20(8): 611-628.

[13] Tonelli F, Bek J W, Besio R,. Zebrafish: A resourceful vertebrate model to investigate skeletal disorders [J]., 2020, 11: 489.

[14] Howe K, Clark M D, Torroja C F,. The zebrafish reference genome sequence and its relationship to the human genome [J]., 2013, 496(7446): 498-503.

[15] Farquharson C. Bones and cartilage: Developmental and evolutionary skeletal biology: Second edition [J]., 2015, 56(6): 755-756.

[16] Gaj T, Gersbach C A, Barbas C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering [J]., 2013, 31(7): 397-405.

[17] Stainier D Y R, Raz E, Lawson N D,. Guidelines for morpholino use in zebrafish [J]., 2017, 13(10): e1007000.

[18] Shah A N, Davey C F, Whitebirch A C,. Rapid reverse genetic screening using CRISPR in zebrafish [J]., 2015, 12(6): 535-540.

[19] Cornet C, Di Donato V, Terriente J. Combining zebrafish and CRISPR/Cas9: Toward a more efficient drug discovery pipeline [J]., 2018, 9: 703.

[20] Deeks E D. Denosumab: A review in postmenopausal osteoporosis [J]., 2018, 35(2): 163-173.

[21] Cosman F, Crittenden D B, Adachi J D,. Romosozumab treatment in postmenopausal women with osteoporosis [J]., 2016, 375(16): 1532-1543.

[22] Yu P B, Hong C C, Sachidanandan C,. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism [J]., 2008, 4(1): 33-41.

[23] Huang H X, Lin H, Lan F,. Application of bone transgenic zebrafish in anti-osteoporosis chemical screening [J]., 2018, 1(1): 53-61.

[24] Marí-Beffa M, Mesa-Román A B, Duran I. Zebrafish models for human skeletal disorders [J]., 2021, 12: 675331.

[25] Akhurst R J. Taking thalidomide out of rehab [J]., 2010, 16(4): 370-372.

[26] Ito T, Ando H, Suzuki T,. Identification of a primary target of thalidomide teratogenicity [J]., 2010, 327(5971): 1345-1350.

[27] Chotiyarnwong P, McCloskey E V. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment [J]., 2020, 16(8): 437-447.

[28] Compston J. Glucocorticoid-induced osteoporosis: An update [J]., 2018, 61(1): 7-16.

[29] Hayat S, Magrey M N. Glucocorticoid-induced osteoporosis: Insights for the clinician [J]., 2020, 87(7): 417-426.

[30] Huo L, Wang L, Yang Z Y,. Prednisolone induces osteoporosis-like phenotypes via focal adhesion signaling pathway in zebrafish larvae [J]., 2018, 7(7): bio029405.

[31] Sire J Y, Akimenko M A. Scale development in fish: A review, with description of sonic hedgehog (shh) expression in the zebrafish () [J]., 2004, 48(2/3): 233-247.

[32] Pasqualetti S, Banfi G, Mariotti M. Osteoblast and osteoclast behavior in zebrafish cultured scales [J]., 2012, 350(1): 69-75.

[33] Jiang Y, Xin N, Yang J,. Prednisolone suppresses collagen-encoding gene expression causing cartilage defects in zebrafish larvae [J]., 2021, 87: 103719.

[34] Pasqualetti S, Congiu T, Banfi G,. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale [J]., 2015, 96(1): 11-20.

[35] Carnovali M, Pasqualetti S, Banfi G,. A new analytical method for calcium quantification inscales [J]., 2021, 76(2): 267-272.

[36] Saito Y, Nakamura S, Chinen N,. Effects of anti- osteoporosis drugs against dexamethasone-induced osteoporosis-like phenotype using a zebrafish scale- regeneration model [J]., 2020, 143(2): 117-121.

[37] Chaichit S, Sato T, Yu H Q,. Evaluation of dexamethasone-induced osteoporosisusing zebrafish scales [J]., 2021, 14(6): 536.

[38] Carnovali M, Banfi G, Mariotti M. Age-dependent modulation of bone metabolism in zebrafish scales as new model of male osteoporosis in lower vertebrates [J]., 2020, 43(2): 1-14.

[39] Geurtzen K, Vernet A, Freidin A,. Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues [J]., 2017, 32(12): 2476-2488.

[40] Schmidt J R, Geurtzen K, von Bergen M,. Glucocorticoid treatment leads to aberrant ion and macromolecular transport in regenerating zebrafish fins [J]., 2019, 10: 674.

[41] Bohns F R, Shih Y R, Chuang Y J,. Influence of prednisolone and alendronate on themineralization of zebrafish caudal fin [J]., 2021, 5(2): e10435.

[42] Cipriani C, Colangelo L, Santori R,. The interplay between bone and glucose metabolism [J]., 2020, 11: 122.

[43] Carnovali M, Luzi L, Terruzzi I,. Liquiritigenin reduces blood glucose level and bone adverse effects in hyperglycemic adult zebrafish [J]., 2019, 11(5): 1042.

[44] Carvalho F R, Fernandes A R, Cancela M L,. Improved regeneration andbone formation in a diabetic zebrafish model treated with paricalcitol and cinacalcet [J]., 2017, 25(3): 432-442.

[45] Carnovali M, Luzi L, Banfi G,. Chronic hyperglycemia affects bone metabolism in adult zebrafish scale model [J]., 2016, 54(3): 808-817.

[46] An Y N, Zhang H F, Wang C,. Activation of ROS/ MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis [J]., 2019, 33(11): 12515-12527.

[47] Carnovali M, Luzi L, Terruzzi I,. Metabolic and bone effects of high-fat diet in adult zebrafish [J]., 2018, 61(2): 317-326.

[48] Simão M, Gavaia P J, Camacho A,. Intracellular iron uptake is favored in-KO mouse primary chondrocytes mimicking an osteoarthritis-related phenotype [J]., 2019, 45(4): 583-597.

[49] Bo L, Liu Z C, Zhong Y B,. Iron deficiency anemia’s effect on bone formation in zebrafish mutant [J]., 2016, 475(3): 271-276.

[50] Zhang W J, Xu J J, Qiu J H,. Novel and rapid osteoporosis model established in zebrafish using high iron stress [J]., 2018, 496(2): 654-660.

[51] Zhang S J, Zhang Q, Zhang D W,. Anti-osteoporosis activity of a novelpolysaccharide via stimulating bone formation [J]., 2018, 184: 288-298.

[52] Zhang Y H, Huang H G, Zhao G X,. Correction: ATP6V1H deficiency impairs bone development through activation of MMP9 and MMP13 [J]., 2017, 13(2): e1006624.

[53] Urso K, Caetano-Lopes J, Lee P Y,. A role for G protein-coupled receptor 137b in bone remodeling in mouse and zebrafish [J]., 2019, 127: 104-113.

[54] Zancan I, Bellesso S, Costa R,. Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/ β-catenin signaling [J]., 2015, 24(5): 1280-1294.

[55] Kague E, Roy P, Asselin G,. Osterix/Sp7 limits cranial bone initiation sites and is required for formation of sutures [J]., 2016, 413(2): 160-172.

[56] Suarez-Bregua P, Guerreiro P M, Rotllant J. Stress, glucocorticoids and bone: A review from mammals and fish [J]., 2018, 9: 526.

[57] Khajuria D K, Karasik D. Novel model of restricted mobility induced osteopenia in zebrafish [J]., 2021, 98(4): 1031-1038.

[58] Schartl M. Beyond the zebrafish: Diverse fish species for modeling human disease [J]., 2014, 7(2): 181-192.

[59] Recidoro A M, Roof A C, Schmitt M,. Botulinum toxin induces muscle paralysis and inhibits bone regeneration in zebrafish [J]., 2014, 29(11): 2346-2356.

[60] He H L, Wang C Q, Tang Q F,. Possible mechanisms of prednisolone-induced osteoporosis in zebrafish larva [J]., 2018, 101: 981-987.

[61] Yin H, Wang J W, Wu M,. Preventive effects of evodiamine on dexamethasone-induced osteoporosis in zebrafish [J]., 2019, 2019: 1-6.

[62] Luo Q, Liu S B, Xie L M,. Resveratrol ameliorates glucocorticoid-induced bone damage in a zebrafish model [J]., 2019, 10: 195.

[63] 韦英杰, 王长梅, 蔡雪婷, 等. 地塞米松影响骨骼发育的斑马鱼模型的建立 [J]. 药学学报, 2013, 48(2): 255-260.

[64] Rosa J T, Laizé V, Gavaia P J,. Fish models of induced osteoporosis [J]., 2021, 9: 672424.

[65] Luo S Y, Chen J F, Zhong Z G,. Salvianolic acid B stimulates osteogenesis in dexamethasone-treated zebrafish larvae [J]., 2016, 37(10): 1370-1380.

[66] 薛司徒, 秦伟, 刘宗英, 等. 基于斑马鱼骨质疏松模型评价一组2-乙酰苯并五元杂环类化合物的抗骨质疏松活性 [J]. 中国医药生物技术, 2015, 10(3): 211-217.

[67] Wu H, Zhong Q X, Wang J,. Beneficial effects and toxicity studies of Xian-Ling-Gu-Bao on bone metabolism in ovariectomized rats [J]., 2017, 8: 273.

[68] Khrystoforova I, Shochat-Carvalho C, Harari R,. Zebrafish mutants reveal unexpected role of Lrp5 in osteoclast regulation [J]., 2022, 13: 985304.

[69] Muller M, Dalcq J, Aceto J,. The function of the Egr1 transcription factor in cartilage formation and adaptation to microgravity in zebrafish,[J]., 2010, 26(2): 239-244.

[70] 苏幸.基因CRISPR/CAS9敲除对斑马鱼骨骼发育影响的初步研究 [D]. 长沙: 湖南师范大学, 2016.

[71] 江瑞雪, 蒋欣泉, 文晋. 骨质疏松动物模型研究现状与进展 [J]. 中国骨质疏松杂志, 2022, 28(7): 1039-1044.

[72] Jiang Y. Glucocorticoids induce osteoporosis mediated by glucocorticoid receptor-dependent and- independent pathways [J]., 2020, 13: 100449.

[73] Wang N N, Xu P C, Wang X P,. Integrated pathological cell fishing and network pharmacology approach to investigate main active components of Er-Xian decotion for treating osteoporosis [J]., 2019, 241: 111977.

[74] Zhong Z G, Li Y Y, Chen Y,. Predicting and exploring the mechanisms of Erzhi Pill in prevention and treatment of osteoporosis based on network pharmacology and zebrafish experiments [J]., 2021, 15: 817-827.

[75] Yin H, Wang S F, Zhang Y F,. Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae [J]., 2018, 97: 995-999.

[76] Xu P C, Lin B F, Deng X H,. Anti-osteoporosis effects of/herb pair and its major active components in diabetic rats and zebrafish [J]., 2022, 293: 115269.

[77] Lee J H, Wei Y J, Zhou Z Y,. Efficacy of the herbal pair,and, in preventing glucocorticoid-induced osteoporosis in the zebrafish model [J]., 2022, 20(1): 83-90.

[78] Peng C H, Lin W Y, Li C Y,. Gu Sui Bu (J. Sm.) antagonizes glucocorticoid-induced mineralization reduction in zebrafish larvae by modulating the activity of osteoblasts and osteoclasts [J]., 2022, 297: 115565.

[79] Molagoda I M N, Athapaththu A M G K, Park E K,. Fermented oyster () extract cures and prevents prednisolone-induced bone resorption by activating osteoblast differentiation [J]., 2022, 11(5): 678.

[80] Liu W J, Jiang Z M, Chen Y,. Network pharmacology approach to elucidate possible action mechanisms offor treating osteoporosis [J]., 2020, 257: 112871.

[81] Jiang J, Xiao J P, He J J,. Prediction and verification ofwith different glycosylation numbers in reversing glucocorticoid-induced bone formation inhibition by molecular docking and zebrafish [J]., 2022, 9: 793527.

[82] Xu Y X, Chen S C, Huang L X,. Epimedin C alleviates glucocorticoid-induced suppression of osteogenic differentiation by modulating PI3K/Akt/RUNX2 signaling pathway [J]., 2022, 13: 894832.

[83] Zang L Q, Kagotani K, Nakayama H,. 10-gingerol suppresses osteoclastogenesis in RAW264.7 cells and zebrafish osteoporotic scales [J]., 2021, 9: 588093.

[84] Karunarathne W A H M, Molagoda I M N, Lee K T,. Anthocyanin-enriched polyphenols fromL. (Malvaceae) exert anti-osteoporosis effects by inhibiting GSK-3β and subsequently activating β-catenin [J]., 2021, 91: 153721.

[85] Zhao Y, Wang H L, Li T T,. Baicalin ameliorates dexamethasone-induced osteoporosis by regulation of the RANK/RANKL/OPG signaling pathway [J]., 2020, 14: 195-206.

[86] Luo S Y, Yang Y J, Chen J F,. Tanshinol stimulates bone formation and attenuates dexamethasone-induced inhibition of osteogenesis in larval zebrafish [J]., 2016, 4: 35-45.

[87] Molagoda I M N, Kang C H, Lee M H,. Fisetin promotes osteoblast differentiation and osteogenesis through GSK-3β phosphorylation at Ser9 and consequent β-catenin activation, inhibiting osteoporosis [J]., 2021, 192: 114676.

[88] Liu L, Tao W W, Pan W J,. Hydroxysafflor yellow A promoted bone mineralization and inhibited bone resorption which reversed glucocorticoids-induced osteoporosis [J]., 2018, 2018: 6762146.

[89] Lim Y J, Kim K M, Jang W G. Chrysophanol increases osteoblast differentiation via AMPK/Smad1/5/9 phosphorylationand[J]., 2021, 48(4): 515-523.

[90] Wu J H, Zeng Z W, Li Y Y,. Cycloastragenol protects against glucocorticoid-induced osteogenic differentiation inhibition by activating telomerase [J]., 2021, 35(4): 2034-2044.

[91] Hu Y, Yuan W, Cai N,. Exploring quercetin anti- osteoporosis pharmacological mechanisms withandmodels [J]., 2022, 12(7): 980.

[92] Li X E, Zhou D Y, Yang D,. Isoquercitrin attenuates osteogenic injury in MC3T3 osteoblastic cells and the zebrafish model via the Keap1-Nrf2-ARE pathway [J]., 2022, 27(11): 3459.

[93] Yang F, Lin Z W, Huang T Y,. Ligustilide, a major bioactive component of, promotes bone formation via the GPR30/EGFR pathway [J]., 2019, 9: 6991.

[94] Wang N N, Xu P C, Wang X P,. Timosaponin AIII attenuates inflammatory injury in AGEs-induced osteoblast and alloxan-induced diabetic osteoporosis zebrafish by modulating the RAGE/MAPK signaling pathways [J]., 2020, 75: 153247.

[95] Tao Y, Chen L, Pan M L,. Tracing anti-osteoporosis components from raw and salt-processed semen ofby employing a biochemometrics strategy that integrates ultrasonic-assisted extraction, quantitation, efficacy assessment in zebrafish, and grey relationship analysis [J]., 2021, 44(17): 3229-3236.

[96] Carnovali M, Banfi G, Mariotti M. Liquiritigenin reduces osteoclast activity in zebrafish model of glucocorticoid- induced osteoporosis [J]., 2020, 143(4): 300-306.

[97] Fu Y H, Hu X A, Zhou D Y,. Anti-osteoporotic effect of viscozyme-assisted polysaccharide extracts fromL. on H2O2-treated MC3T3-E1 cells and zebrafish [J]., 2022, 9(5): 128.

[98] Yan C Y, Zhang S J, Wang C S,. A fructooligosaccharide frominhibits osteoporosis by stimulating bone formation [J]., 2019, 210: 110-118.

[99] 徐宇, 黄维琛, 郭礼跃, 等. 补肾运脾方对糖皮质激素性骨质疏松斑马鱼模型骨代谢的调节作用 [J]. 中药药理与临床, 2019, 35(3): 138-141.

[100]谭登, 张玉, 张农山, 等. 补肾通络方对骨质疏松斑马鱼效应评价及破骨细胞自噬机制 [J]. 中国实验方剂学杂志, 2020, 26(7): 79-85.

[101]赵蓉, 蒋俊, 肖世长, 等. 桃红四物汤逆转斑马鱼模型糖皮质激素性骨质疏松的研究 [J]. 药学学报, 2019, 54(2): 313-320.

[102]詹扬, 韦英杰, 王长梅, 等. 淫羊藿总黄酮对泼尼松龙诱导斑马鱼致骨质疏松的防治作用 [J]. 中国医院药学杂志, 2014, 34(4): 251-255.

[103]夏海建, 郭文杰, 裴晋阳, 等. 淫羊藿素逆转糖皮质激素所致骨质疏松及其与RUNX-2靶点的相互作用研究 [J]. 中国骨质疏松杂志, 2020, 26(6): 797-801.

[104]Li X J, Zhang Q, Zhu Y Z,. Structural characterization of a mannoglucan polysaccharide fromand evaluation of its osteogenesis promotion activities [J]., 2022, 211: 441-449.

[105]郑慧丽, 华永庆, 刘欣慧, 等. 基于斑马鱼模型的枸杞子改善骨质疏松活性部位筛选及其机制初探 [J]. 药学学报, 2023, 58(1): 127-138.

[106]曹语珈, 王凯, 王子丽, 等. 多花黄精多糖对斑马鱼2型糖尿病合并骨质疏松症模型的药效学研究 [J]. 中草药, 2021, 52(21): 6545-6551.

[107]Li Y Q, Chen Y, Fang J Y,. Integrated network pharmacology and zebrafish model to investigate dual- effects components offor treating both Osteoporosis and Alzheimer’s Disease [J]., 2020, 254: 112764.

[108]Liu B J, Liu X X, Ning Q,. Evaluation of toxicity and anti-osteoporosis effect in rats treated with the flavonoids of[J]., 2020, 75: 104262.

[109]陶益, 江恩赐, 姜慧洁, 等. 牛膝炮制品对骨质疏松斑马鱼的影响 [J]. 浙江工业大学学报, 2020, 48(5): 504-507.

[110]林紫微, 杨菲, 黄天一, 等. 芍药苷干预成骨细胞凋亡抗骨质疏松作用研究 [J]. 南京中医药大学学报, 2019, 35(4): 426-431.

[111]郭东贵, 俸婷婷, 李俐, 等. 白藜芦醇对泼尼松诱导的斑马鱼骨质疏松的影响 [J]. 时珍国医国药, 2019, 30(7): 1604-1606.

[112]Wang F R, Rong P Z, Wang J A,. Anti-osteoporosis effects and regulatory mechanism ofbased on network pharmacology and experimental validation [J]., 2022, 13(11): 6419-6432.

[113]Fu S Q, Wang Z Y, Jiang Z M,. Integration of zebrafish model and network pharmacology to explore possible action mechanisms offor treating osteoporosis [J]., 2020, 17(5): e2000056.

[114]Lee K, Jang Y J, Lee H,. Transcriptome analysis reveals thatNakai extract inhibits RANKL-mediated osteoclastogenensis mainly through suppressing Nfatc1 expression [J]., 2020, 9(8): 212.

[115]Su J, Chen T R, Liao D Y,. Novel peptides extracted frombone promote calcium transport, osteoblast differentiation, and calcium absorption [J]., 2022, 95: 105157.

[116]Yu H L, Chen Y X, Zhu J J. Osteogenic activities of four calcium-chelating microalgae peptides [J]., 2022, 102(14): 6643-6649.

[117]Lee H, Lee K, Lee S,. Ethyl acetate fraction of aqueous extract ofinhibits osteoclastogenesis by suppressing NFATc1expression [J]., 2020, 21(4): 1347.

[118]Carnovali M, Ramoni G, Banfi G,. Herbal preparation (bromelain, papain,, black pepper) enhances mineralization and reduces glucocorticoid- induced osteoporosis in zebrafish [J]., 2021, 10(12): 1987.

[119]Föger-Samwald U, Kerschan-Schindl K, Butylina M,. Age related osteoporosis: Targeting cellular senescence [J]., 2022, 23(5): 2701.

Research progress on anti-osteoporosis of traditional Chinese medicine based on zebrafish model

WANG Xuan1, CHEN Lin-zhen1, LIN Rui-chao1, TAO Xiao-yu1, YU Xue2, ZHANG Shu-jing2, FAN Qi-qi1, LI Zhi-qi1, DAI Sheng-yun3, LI Xiang-ri1, ZHAO Chong-jun1

1. Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China 2. Beijing University of Chinese Medicine, Beijing 102488, China 3. National Institutes for Food and Drug Control, Beijing 102629, China

Osteoporosis is a bone disease characterized by decreased bone density, changes in bone microstructure, and increased bone fragility. Due to the increasing aging problem, the incidence of osteoporosis is increasing rapidly around the world. Traditional Chinese medicine has shown excellent prospects and clinical effects in the prevention and treatment of osteoporosis. However, traditional animal models have disadvantages of time-consuming, high cost and inability to accurately summarize the complexity of bone diseases, which greatly limits the research process of preclinical osteoporosis diseases. The zebrafish model can effectively simulate the human osteopenia and osteoporosis phenotype. The advantages and applicability of zebrafish model in the treatment of osteoporosis and the research progress of this model in the anti-osteoporosis of Chinese medicine were reviewed, with view to providing references for the widespread use of zebrafish model and the development of new Chinese medicine drugs.

zebrafish; osteoporosis; traditional Chinese medicine; herb pair; traditional Chinese medicine compound; drug screening

R285

A

0253 - 2670(2023)15 - 5088 - 13

10.7501/j.issn.0253-2670.2023.15.032

2023-02-09

国家自然科学基金资助项目(82204753);国家科技重大专项(2018ZX09735005);国家中医药管理局公益性中医药行业科研专项(201507004)

王 璇(2000—),女,硕士研究生,研究方向为中药安全性评价及主要活性/毒性物质基础筛选。E-mail: wangxuan9962@163.com

通信作者:李向日(1972—),女,教授,博士生导师,从事中药炮制、质量控制及药效物质基础研究。E-mail: lixiangri@sina.com

赵崇军(1988—),男,助理研究员,从事中药安全性评价及主要活性/毒性物质基础筛选。E-mail: 1014256537@qq.com

[责任编辑 赵慧亮]

猜你喜欢
斑马鱼成骨细胞骨骼
斑马鱼天生就能辨别数量
做家务的女性骨骼更强壮
三减三健全民行动——健康骨骼
小斑马鱼历险记
骨骼和肌肉
瓜蒌不同部位对斑马鱼促血管生成及心脏保护作用
淫羊藿次苷Ⅱ通过p38MAPK调控成骨细胞护骨素表达的体外研究
土家传统药刺老苞总皂苷对2O2诱导的MC3T3-E1成骨细胞损伤改善
Bim在激素诱导成骨细胞凋亡中的表达及意义
几种石油烃对斑马鱼的急性毒性效应研究