西藏邦铺钼多金属矿床碳氧同位素组成及意义

2014-08-08 02:13温春齐费光春岳相元
金属矿山 2014年1期
关键词:金属矿床方解石碳酸盐岩

周 雄 温春齐 费光春 张 贻 周 玉, 岳相元 温 泉

(1.中国地质科学院矿产综合利用研究所,四川 成都 610041;;2.成都理工大学地球科学学院,四川 成都 610041)

西藏邦铺钼多金属矿床碳氧同位素组成及意义

周 雄1温春齐2费光春2张 贻1周 玉1,2岳相元1温 泉2

(1.中国地质科学院矿产综合利用研究所,四川 成都 610041;;2.成都理工大学地球科学学院,四川 成都 610041)

对西藏邦铺钼铜多金属矿床中的灰岩、方解石进行了C、O同位素测定。测试结果表明,早期的灰岩具有相对较高的δ13CV-PDB(3.1‰~4.0‰)、δ18OV-SMOW(5.2‰~12.5‰)和Z值(136.44~141.72),晚期的方解石的δ13CV-PDB(-5.6‰~-3.8‰)、δ18OV-SMOW(1.3‰~5.5‰)和Z值(118.57~120.17)则偏低。δ13CV-PDB-δ18OV-SMOW碳酸盐岩来源判别图解显示碳主要来源于蚀变及再沉积碳酸盐岩,δ13CV-PDB-δ18OV-SMOW流体来源判别图解显示成矿流体中的碳来源于岩浆及碳酸盐岩的溶解作用,但明显混合了大气降水。综合分析认为,早期为同生期成岩环境,后期为埋藏混合水环境,流体中的碳可能主要来源于海相碳酸盐岩的溶解作用,但不排除岩浆岩对碳的贡献。碳氧同位素结果显示,当大气降水强度加大时,δ13CV-PDB向低、负值方向偏移,δ18OV-SMOW发生强烈的负偏移,即氧同位素漂移。

碳氧同位素 溶解作用 钼铜多金属矿床 邦铺

西藏邦铺矿床是冈底斯斑岩铜矿带上典型的以钼为主的大型Mo-Cu-Pb-Zn多金属矿床,钼铜矿为斑岩型矿床,铅锌矿为碳酸盐岩型[1]。该矿床自发现以来(2007—2009),便受到了人们的广泛关注,许多学者从成矿地质背景[1,2]、岩石地球化学[3]、成矿流体来源[2,4-5]、成矿物质来源[6]、成岩成矿时代[7-13]、矿床成因[1,14]等方面进行了研究,为该矿床的理论研究提供了丰富的资料。目前,该矿床的Pb、Zn矿床的研究仍相对薄弱,在一定程度上制约了对矿床成因的进一步认识。

前人研究显示,碳酸盐岩中的灰岩、方解石的C、O同位素体系已经广泛运用于示踪各类热液矿床成矿流体来源及演化[15-18]。灰岩是邦铺矿床的赋矿岩石,方解石是主要的脉石矿物,因此可以为研究该矿床成矿流体来源及演化提供重要的信息。本研究在大量野外工作的基础上,采集了铅锌矿体赋矿围岩洛把堆组(P1l)灰岩及方解石样品,进行了C、O同位素测定,以期进一步探讨成矿流体中碳的来源。

由于前人对矿床地质特征已做了详细讨论[1-2,13],在此不再做相关描述。

1 样品采集及测试

研究所用样品主要来自矿区东南部铅锌矿体的坑道。邦铺矿区4件石灰岩和2件方解石的碳氧同位素组成由核工业北京地质研究院同位素室测试。

碳同位素δ13C和氧同位素δ18OV-SMOW测试值及根据Keith and Weber[19]碳酸盐岩碳氧同位素组成计算的碳酸盐岩盐度指数Z值结果见表1。

表1 碳氧同位素组成 Tab.1 Carbon and oxygen isotopic compositions

由表1可见,铅锌矿床中4件石灰岩δ13CV-PDB均为正值,且变化范围较小(3.1‰~4.0‰),平均值为3.45‰;δ18OV-SMOW组成变化相对较大(5.2‰~12.5‰),平均值为8.63‰;Z值变化较小(136.44~141.72),平均值为138.66。

2件方解石的δ13CV-PDB‰均为负值,为-5.6‰~-3.8‰,平均值为-4.7‰;δ18OV-SMOW值为1.3‰~5.5‰,平均值为3.4‰;Z值为118.57~120.17,平均为119.37。

注:测试单位为核工业北京地质研究院同位素实验室;Z值据Keith and Weber[19],Z=2.048(δ13C+50)+0.498(δ18O+50)。

2 讨 论

Keith and Weber[19]研究结果表明,碳酸盐岩的Z值小于120为淡水成岩环境,Z值接近120为埋藏混合水环境,Z值大于120为同生期成岩环境。由表1可见,灰岩的Z值为136.44~141.72,平均值为138.66,指示为同生期成岩环境,即为海相沉积碳酸盐岩;方解石的Z值为118.57~120.17,平均为119.37,指示为埋藏混合水环境。

根据石灰岩及方解石碳氧同位素组成,绘制了邦铺矿区δ13CPDB-δ18OSMOW碳酸盐岩来源判别图解和δ13CPDB-δ18OSMOW成矿流体来源判别图解,见图1、图2。在图1中,有1个方解石样品直接投在了岩浆源碳酸岩区域内,其余点主要投在蚀变及再沉积碳酸盐岩区域内,表明C主要来源于蚀变及再沉积碳酸盐岩。在图2中,2件灰岩样品(BP133、BP134)投点位于花岗岩区域,表明成矿流体来源于岩浆岩或深源岩浆流体;1件灰岩样品投点位于花岗岩与海相碳酸盐岩之间,表明成矿流体中的碳来源于岩浆及碳酸盐岩的溶解作用;另外1件灰岩及2件方解石样品的投点位于花岗岩左侧,但明显混合了大气降水,结合表1及图1、图2,可认为流体中的碳可能主要来源于海相碳酸盐岩的溶解作用,但不排除岩浆岩对碳的贡献。

图1 δ13CPDB -δ18OSMOW碳酸盐岩来源判别图解 (背景图据文献[20])Fig.1 δ13CPDB -δ18OSMOW diagram for the carbonate source (the plot is after reference[20])□—灰岩;○—方解石

图2 δ13CPDB -δ18OSMOW流体来源判别图解 (背景图据文献[16]、[21]修改)Fig.1 δ13CPDB -δ18OSMOW diagram for the source of the fluid (modified by the references[16],[21])□—灰岩;○—方解石

后期的方解石,无论是δ13CV-PDB、δ18OV-SMOW还是Z值,均低于早期的灰岩,反映出大气降水对成岩环境的影响,指示当时的环境为浅埋藏或暴露,显示当时大气降水强度加大时,δ13CV-PDB向低、负值方向偏移,δ18OV-SMOW发生强烈的负偏移,即氧同位素漂移。

3 结 论

(1)铅锌矿床中4件石灰岩δ13CV-PDB均为正值,且变化范围较小(3.1‰~4.0‰),平均值为3.45‰;δ18OV-SMOW值变化相对较大(5.2‰~12.5‰),平均值为8.63‰;Z值变化较小(136.44~141.72),平均值为138.66;2件方解石的δ13CPDB均为负值(-5.6‰~-3.8‰),平均值为-4.7‰;δ18OV-SMOW值为1.3‰~5.5‰,平均值为3.4‰;Z值为118.57~120.17,平均为119.37。

(2) H、O同位素判别图解显示,成矿流体中的碳可能主要来源于海相碳酸盐岩的溶解作用,但不排除岩浆岩对碳的贡献。

[1] 周 雄.西藏邦铺钼铜多金属矿床成因研究[D].成都:成都理工大学,2012. Zhou Xiong.Genisis Study of Mo-Cu Polymetallic Ceposit from the Bangpu,Tibet[D].Chengdu:Chengdu University of Technology,2012.

[2] 周 雄.西藏邦铺钼铜多金属矿床流体包裹体研究[D].成都:成都理工大学,2009. Zhou Xiong.Study on the Fluid Inclusions of the Bangpu Molybdenum Copper Polymetallic Deposit,Tibet[D].Chengdu:Chengdu University of Technology,2009.

[3] 周 雄,温春齐,费光春,等.西藏邦铺斑岩钼矿床二长花岗斑岩地球化学特征及构造意义[J].矿物岩石,2010,30(4):48-54. Zhou Xiong,Wen Chunqi,Fei Guangchun,et al.Geochemical characteristics of monzonite granite-porphyry in bangpu porphyry Mo deposit,Tibet,and it's tectonic significance[J].Journal of Mineralogy and Petrology,2010,30(4):48-54.

[4] 周 雄,温春齐,霍 艳,等.西藏邦铺钼铜多金属矿床成矿流体的特征[J].地质通报,2010,29(7):1039-1048. Zhou Xiong,Wen Chunqi,Huo Yan,et al.Characteristics of ore-forming fluid of Bangpu molybdenum-copper polymetallic deposit,maizhokunggar area,Tibet[J].Geological Bulletin of China,2010,29(7):1039-1048.

[5] 罗茂澄,毛景文,王立强,等.西藏邦铺斑岩钼铜矿床岩浆-热液流体演化:流体包裹体研究[J].地球学报:2012,33(4):471-484. Luo Maocheng,Mao Jingwen,Wang Liqiang,et al.Fluid inclusion evidence for magmatic-hydrothermal evolution in the Bangpu porphyry molybdenum-copper deposit,Tibet[J].Acta Geoscientica Sinica,2012,33(4):471-484.

[6] 周 雄,温春齐,张学全,等.西藏邦铺钼铜多金属矿床硫、铅同位素地球化学特征[J].地质与勘探,2012,48(1):24-30. Zhou Xiong,Wen Chunqi,Zhang Xuequan,et al.Geochemical characteristics of sulfur,lead isotope from Bangpu Mo-Cu polymetallic deposit,Tibet[J].Geology and Exploration,2012,48(1):24-30.

[7] 孟祥金,侯增谦,高永丰,等.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据[J].矿床地质,2003,22(3):246-252. Meng Xiangjin,Hou Zengqian,Gao Yongfeng,et al.Development of porphyry copper-molybdenum-lead-zinc ore-forming system in east Gangdese belt,Tibet:Evidence from Re-Os age of molybdenite in Bangpu copper polymetallic deposit[J].Mineral Deposit,2003,22(3):246-252.

[8] 周 雄,温春齐,温 泉,等.西藏邦铺大型斑岩钼铜矿床二长花岗斑岩锆石SHRIMP定年及其地质意义[J].矿物岩石地球化学通报,2010,29(4):373-379. Zhou Xiong,Wen Chunqi,Wen Quan,et al.Zircon U-Pb SHRIMP dating of the monzonite granite-porphyry from the Bangpu large porphyry molybdenum-copper deposits,Tibet,and its geological significance[J].Bulletin of Mineralogy,Petrology and Geochemistry,2010,29(4):373-379.

[9] 周 雄,温春齐,张学全,等.西藏邦铺大型钼铜多金属矿床Rb-Sr等时线年龄及地质意义[J].高校地质学报,2010,16(4):448-456. Zhou Xiong,Wen Chunqi,Zhang Xuequan,et al.Rb-Sr isochron age dating in Bangpu large-scale Mo-Cu polymetallic deposit,Tibet,and its geological significance[J].Geological Journal of China Universities,2010,16(4):448-456.

[10] 周 雄,温春齐,温 泉,等.西藏邦铺斑岩型钼铜多金属矿床含钼铜脉石英的激光显微探针40Ar/39Ar年龄及地质意义[J].矿物岩石,2011,31(1):43-48. Zhou Xiong,Wen Chunqi,Wen Quan,et al.Laser microprobe40Ar-39Ar dating from vein quartz containing Mo and Cu of Bangpu porphyry-type Mo-Cu polymetallic deposits,Tibet[J].Journal of Mineralogy and Petrology,2011,31(1):43-48.

[11] 王立强,陈毓川,唐菊兴,等.西藏邦铺钼(铜)矿床含矿二长花岗斑岩LA-ICP-MS锆石U-Pb定年及地质意义[J].矿床地质,2011,30(2):349-360. Wang Liqiang,Chen Yuchuan,Tang Juxing,et al.LA-ICP-MS zircon U-Pb dating of ore-bearing monzogranite porphyry in Bangpu molybdenum (copper) deposit,Tibet and its significance[J].Mineral Deposits,2011,30(2):349-360.

[12] 温 泉,多 吉,温春齐,等.西藏邦铺钼铜矿区花岗斑岩成岩年龄研究[J].矿物岩石,2011,31(2):48- 53. Wen Quan,Duo Ji,Wen Chunqi,et al.Dating of monzonitic granite porphyry in the Bangpu Mo-Cu deposit,Tibet[J].Journal of Mineralogy and Petrology,2011,31(2):48- 53.

[13] 周 雄,温春齐,张 贻,等.西藏邦铺钼铜多金属矿床辉钼矿Re-Os年代学及地质意义[J].矿物岩石.2013,33(2):59-64. Zhou Xiong,Wen Chunqi,Zhang Yi,et al.Re-Os dating of molybdenite from the Bangpu polymetallic deposit,Tibet,and its Geological significance[J].Journal of Mineralogy and Petrology,2013,33(2):59-64.

[14] 王立强.西藏邦铺式钼多金属矿床——兼论冈底斯成矿带东段钼多金属矿床成矿规律[D].北京:中国地质科学院,2013. Wang Liqiang.Study on Bangpu-type Molybdenum Polymetallic Deposit,Tibet and the Metallogenic Regularity of Molybdenum Polymetallic Deposits in the East Section of the Gangdese Metallogenic Belt[D].Beijing:Chinese Academy of Geological Sciences,2013.

[15] Spangenberg J,Fontboté L,Sharp Z D,et al.Carbon and oxygen isotope study of hydrothermal carbonates in the zinc-lead deposits of the San Vicente district,central Peru:A quantitative modeling on mixing processes and CO2degassing[J].Chemical Geology,1996,133(1-4):289-315.

[16] 毛景文,郝 英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质,2002,21(2):121-127. Mao Jingwen,Hao Ying,Ding Tiping.Mantle fluids involved in metallogenesis of Jiaodong gold district:Evidence of C,O and H isotopes[J].Mineral Deposits,2002,21(2):121-127.

[17] 毛景文,李厚民,王义天,等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J].地质学报,2005,79 (6):839-857. Mao Jingwen,Li Houmen,Wang Yitian,et al.The relationship between mantle-derived fluid and gold ore-formation in the eastern Shandong peninsula:evidences from D-O-C-S Isotopes[J].Acta Geological Sinica,2005,79 (6):839-857.

[18] 沈能平,彭建堂,袁顺达,等.湖北徐家山锑矿床方解石C、O、Sr 同位素地球化学[J].地球化学,2007,36 (5):479-485. Shen Nengping,Peng Jiantang,Yuan Shunda,et al.Carbon,oxygen and strontium isotope geochemistry of calcites from Xujiashan antimony deposit,Hubei province[J].Geochemical,2007,36 (5):479-485.

[19] Keith W L,Weber J N.Carbon and oxygen isotopic composition of mollusk shells from marine and fresh water environment[J].Geochemical and Cosmochemical Acta,1964,28(10):1757-1786.

[20] 叶庆同.四川呷村含金富银多金属矿床成矿地质特征和成因[J].矿床地质,1991,10(2):107-117. Ye Qingtong.Characteristics and origin from Gacun gold-bearing rich silver polymetallic ore deposit,Sichuan[J].Mineral Deposits,1991,10(2):107-117.

[21] 刘建明,刘家军,郑明华,等.微细浸染型金矿床的稳定同位素特征与成因探讨[J].地球化学,1998,27(6):585-590. Liu Jianming,Liu Jiajun,Zheng Minghua,et al.Stable isotope compositions of micro-disseminated gold and genetic discussion[J].Geochemical,1998,27(6):585-590.

(责任编辑 邓永前)

Oxygen and Carbon Isotopic Composition and its Significance of Bangpu Molybdenum Polymetallic Deposit in Tibet

Zhou Xiong1Wen Chunqi2Fei Guangchun2Zhang Yi1Zhou Yu1,2Yue Xiangyuan1Wen Quan2

(1.InstituteofMineralResources,ChineseAcademyofGeologicalSciences,Chengdu610041,China;2.CollegeofEarthScience,ChengduUniversityofTechnology,Chengdu610041,China)

The limestone and calcite of Bangpu Mo-Cu polymetallic deposit are surveyed by Carbon,oxygen isotope determination.The results show that there are high carbon (δ13CV-PDB=3.1‰~4.0‰),oxygen isotope compositions (δ18OV-SMOW=5.2‰~12.5‰) and carbonate salinity index value ofZ(136.44~141.72) from the early period of limestone,while low carbon(-5.6‰~-3.8‰),oxygen isotope compositions(1.3‰~5.5‰) andZvalue (118.57~120.17) from later period of calcites.δ13CV-PDB-δ18OV-SMOWdiagram for the carbonate source shows that carbon mainly originates from the alteration of sedimentary carbonate rocks,δ13CV-PDB-δ18OV-SMOWdiagram for the source of the fluid shows that carbon in the ore-forming fluid mainly comes from magma and dissolution of carbonate rocks which obviously mixed atmospheric precipitation.It is concluded that it is the syngenetic diagenetic environment during the early period while buried mixed water environment during the later period.Carbon in ore-forming fluid was mainly derived from the dissolution of marine carbonate formation,but magmatic rock is also an important factor of carbon formation.Carbon and oxygen isotope results shows that when rainfall intensity increased,δ13CV-PDBshift to a low and negative direction andδ18OV-SMOWwith a negative excursion which means isotope excursion.

Carbon and oxygen isotopes,Dissolution,Mo-Cu polymetallic deposit,Bangpu

2013-11-10

国土资源部公益性行业科研专项(编号:201011013),“十一五”国家科技支撑计划项目(编号:2006BAB01A04)。

周 雄(1979—),男,工程师。

P597

A

1001-1250(2014)-01-092-04

猜你喜欢
金属矿床方解石碳酸盐岩
F-在方解石表面的吸附及其对方解石表面性质的影响
氯化钙和碳酸钠对方解石浮选的影响及其机理研究
碳酸盐岩裂缝描述七大难点
广西大厂铜坑锡多金属矿床Pb同位素组成对成矿物质来源的示踪
湖南仁里铌钽稀有多金属矿床经济价值及其找矿启示
湘南长城岭锑铅锌多金属矿床构造控矿规律研究
贵州重晶石与方解石常温浮选分离试验研究
大数据统计在碳酸盐岩油气田开发中的应用
塔河10区碳酸盐岩裂缝型储层承压堵漏技术
沙特阿拉伯AL Masane VMS型多金属矿床的研究进展及认识