特异性基因沉默对Machado—Joseph病ATXN3变异表达的抑制作用

2014-09-15 03:28欧阳嶷何志义刘嘉晖朱华倩
中国医药导报 2014年24期

欧阳嶷+何志义+刘嘉晖+朱华倩

[摘要] 目的 利用RNAi技术,观察不同siRNA在体外对Machado-Joseph病变异基因表达的抑制作用,为其应用于临床打下基础。 方法 本研究分为变异型ATXN3组、野生型ATXN3组及空病毒载体组(对照组)。通过设计针对ATXN3变异基因的特异性siRNA,构建重组型慢病毒载体转染HEK293T细胞,采用Real-time PCR及Western blot检测ATXN3 mRNA和蛋白的表达水平,从而对siRNA体外抑制Machado-Joseph病变异基因的效果进行评估。 结果 Real-time PCR分析表明,在共转染表达人变异型ATXN3基因和siRNA ATXN3 Mut载体的细胞中,变异型ATXN3组中ATXN3 mRNA的表达较对照组明显下降,差异有统计学意义(P < 0.05),而野生型ATXN3组中ATXN3 mRNA的表达较对照组仅轻微下降,差异无统计学意义(P > 0.05)。Western blot结果表明,与对照组比较,变异型ATXN3组ATXN3蛋白表达被siRNA ATXN3 Mut 1~4明显抑制,差异有统计学意义(P < 0.05),野生型ATXN3组中ATXN3蛋白表达仅被siRNA ATXN3 Mut 1~4轻度抑制。 结论 特异性siRNA可以选择性沉默变异型ATXN3,说明RNAi是Machado-Joseph病治疗的潜在方向。

[关键词] Machado-Joseph病;基因沉默;RNA干扰;小干扰RNA;慢病毒载体

[中图分类号] R744 [文献标识码] A [文章编号] 1673-7210(2014)08(c)-0016-04

Inhibitory effect of specific gene silencing on the expression of mutant ATXN3 in Machado-Joseph disease

OUYANG Yi HE Zhiyi LIU Jiahui ZHU Huaqian

Department of Neurology, the First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang 110001, China

[Abstract] Objective To observe the inhibitory effect of specific different siRNAs on the expression of mutant ATXN3 in Machado-Joseph disease in vitro by RNA interfere, and lay the foundation for its application in clinical. Methods This study was divided into mutant ATXN3 group, wild type ATXN3 group and empty vector group (control group). The siRNAs interfering sequence targeting to mutant ATXN3 gene were designed and synthesized. Then the recombinant lentivirus vector were constructed and used to transfect HEK293T cells.The expression level of ATXN3 mRNA and protein was detected by Real-time PCR and Western blot, and the inhibitory effect of siRNAs on the expression of mutant ATXN3 in Machado-Joseph disease in vitro were evaluated. Results Real-time PCR analysis showed that, ATXN3 mRNA of mutant ATXN3 group was decreased significantly compared with the control group, the difference was statistically significant (P < 0.05), but ATXN3 mRNA in wild type ATXN3 group was only slightly decline, had no statistically significant difference (P > 0.05). Western blot analysis confirmed that, compared with the control group, the expression of ATXN3 protein in mutant ATXN3 group was significantly inhibited, the difference was statistically significant (P < 0.05), and that of wild type ATXN3 group was only slight inhibited by siRNA ATXN3 Mut 1-4. Conclusion The specific silencing of ATXN3 significantly decreases the expression of mutant ATXN3 in Machado–Joseph disease in vitro, these data demonstrate that RNAi has potential for use in Machado-Joseph treatment.endprint

[Key words] Machado-Joseph disease; Gene silencing; siRNA; RNA interference(RNAi); Lentivirus vector

Machado-Joseph病,又称为脊髓小脑共济失调3型(SCA3),其临床特征为小脑性共济失调伴有不同程度的锥体束征、锥体外系征、眼外肌麻痹及周围神经病等[1]。该疾病是最常见的一种常染色体显性遗传性脊髓小脑共济失调,其罹患率高达脊髓小脑共济失调的40%~50%[2]。和许多神经系统遗传变性病一样,Machado-Joseph病至今尚无有效的治疗方法。

Machado-Joseph病属于多聚谷氨酰胺病,其致病基因ATXN3外显子近3'端是一段是不稳定的CAG重复序列编码。当CAG出现病理性扩增时(拷贝数55~84),其编码的超长多聚谷氨酰胺链(poly Q)片段形成具有某种细胞毒性作用的细胞内包涵体,从而导致Machado-Joseph病发生[3-4]。近年来,RNA干扰(RNA interference,RNAi)技术被认为是有希望干预多聚谷氨酰胺病的手段之一[5-6]。本研究旨在通过RNAi技术,针对ATXN3基因变异设计若干特异性小干扰RNA(siRNA),评价不同siRNA在体外对Machado-Joseph病变异基因表达是否具有抑制作用,从而揭示特异性基因沉默对Machado-Joseph病神经保护作用的可能机制。

1材料与方法

1.1主要试剂

HEK293T细胞(美国Invitrogen公司),pBC质粒(荷兰Stratagene公司), pENTR/D-TOPO 载体(美国Invitrogen公司),质粒提取试剂盒、RT-PCR试剂盒及限制性内切酶(大连Takara生物公司);T4 DNA连接酶和转染试剂(北京全式金公司);Myc 标签抗体 4A6(美国Merck Millipore公司)、β-actin和tubulin抗体以及山羊抗兔IgG二抗(美国Sigma公司);siRNA序列合成及DNA测序由北京欧比特仪器有限公司完成。

1.2 方法

1.2.1 特异性 siRNA的设计与合成 根据Elbashir设计原则,查找人类ATXN3基因序列(GeneBank,NM_001127696.1)。利用ATXN3基因的G/C单核苷酸多态性,设计并合成特异性针对ATXN3变异等位基因的四组siRNA Mut 1~4,该单核苷酸多态位于ATXN3基因cDNA中CAG重复序列与3'端的连接部位,其序列为5'-t cca aaa aag cagn(c/g)gg gac cta tca gga TT-3'。同时设计对照 siRNA序列。序列经BLAST查询,证实为人类基因组中不存在任何同源性的序列。四组siRNA片段及对照siRNA如表1所示。

1.2.2 siRNA表达载体的构建与鉴定 使用前用稀释缓冲液将siRNA溶解成20 μmol/L的工作母液。借鉴文献[7]方法,取上述稀释好的正义链和反义链低聚体溶液各5 μL、引物H1(CACCGAACGCTGACGTCATCAACCCG)1 μL进行PCR,以pBC-H1质粒(含H1促进子)为模板,将 PCR纯化产物插入pENTR/D-TOPO载体。按照1∶10的比例连接,反应条件为16℃,1 h;转化到E.coli中,37℃ Amp抗性培养板上培养12 h;挑取单菌落,摇菌,提取质粒DNA,酶切鉴定并测序。取测序正确后的克隆,摇菌扩大培养,提取质粒DNA,用于后期的病毒包装。

1.2.3 重组型慢病毒载体的制备 本研究分为变异型ATXN3组、野生型ATXN3组及空病毒载体组(对照组)。参照文献[8]所述方法,选用SIN-W-PGK转移载体克隆编码人野生型ATXN3(Q22G)(野生型ATXN3组)及变异型ATXN3 (Q79C) (变异型ATXN3组)的cDNA。通过瞬时转染HEK 293T细胞的方法制备含有siRNA和野生型ATXN3(Q22G)或变异型ATXN3(Q79C)的组合型慢病毒载体。具体操作如下:用含有10%胎牛血清(FBS)的DMEM培养基培养HEK 293T细胞,37℃、5%CO2及95%饱和湿度的培养箱中培养。选择细胞融合至80%左右的处于增殖旺盛期的HEK 293 T细胞进行转染,转染前2 h,将旧培养液倒掉,换成完全培养基,采用磷酸钙法进行共转染。将构建好的重组质粒SIN-W-PGK-Q79C(变异型ATXN3,1 mg)或SIN-PGK-W-Q22G(野生型ATXN3,1 mg)以及各siRNA (5 mg)共转染到HEK 293T细胞中,同理共转染空病毒载体SIN-W-PGK(对照组)及各siRNA。6 h换新鲜培养基,转染48 h后在荧光显微镜下观察细胞转染的效果,并用冷磷酸盐缓冲液洗涤,加入胰蛋白酶,离心收集病毒上清及细胞。应用TCID50法计算病毒滴度。

1.2.4 Real-time PCR分析HEK 293T细胞中ATXN3 mRNA水平 感染后48 h收集细胞,提取各组总RNA,反转录为cDNA,用ABI PRISM 9700进行Real-time PCR。特异性扩增ATXN3的引物为ataxia-1F:GGCTCACTTTGTGCTCAACATTG和ataxia-1R:TCTCATCCTCTCCTCCTCATCCAG,PCR总反应体系为20 μL,扩增参数:95℃ 2 min;95℃ 20 s;95℃ 15 s,60℃ 1 min;40个循环;65 ℃ 5 s,95℃。以β-actin水平(β-actin-1F:TGAAGGTGACAGCAGTCGGTTG; β-actin-1R:GGCTTTTAGGATGGCAAGGGAC)作为恒定常量进行校正。以β-半乳糖苷酶基因寡聚核苷酸(LacZ-1F:CCTTACTGCCGCCTGTTTTGAC;LacZ-1R:TGATGTTGAACTGGAAGTCGCC)作为内参评估转染率。测得变异型ATXN3组、野生型ATXN3组以及对照组的数据利用2-ΔΔCt方法分析HEK 293T细胞中的ATXN3 mRNA水平。实验重复3次,取标准化的平均值。endprint

1.2.5 Western blot法检测不同siRNA对ATXN3变异表达的抑制作用 提取各组细胞的蛋白质,等量上样,SDS-PAGE电泳分离,半干转膜,脱脂奶粉封闭3 h后,加入一抗(Myc 标签抗体4A6为1∶1000;tubulin为1∶4000),室温50 r/min 离心1 h,过夜,TBST洗4次;加入二抗(山羊抗兔IgG为1∶5000),室温50 r/min,离心1 h,洗涤缓冲液洗后,ECL发光检测。实验重复3次。

1.3 统计学方法

采用SPSS 13.0统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,两组间比较采用t检验;计数资料用率表示,组间比较采用χ2检验,以P < 0.05为差异有统计学意义。

2 结果

2.1 重组慢病毒载体滴度的测定

成功包装慢病毒后,测得ATXN3野生型、变异型病毒滴度与对照空病毒的有效滴度分别为1×106、1×106、1×105 pfu/mL。

2.2 不同siRNA对HEK 293T细胞中野生型(Q22G)和变异型(Q79C)ATXN3 mRNA表达水平的影响

经过实时定量PCR检测证实,在共转染人变异型(Q79C)ATXN3基因和siRNA ATXN3 Mut载体的HEK 293T细胞中,变异型ATXN3组ATXN3 mRNA的表达较对照组明显下降,差异有统计学意义(P < 0.05)(图1);而共转染人野生型(Q22G)ATXN3基因和siRNA ATXN3 Mut载体的HEK 293T细胞中,野生型ATXN3组ATXN3 mRNA的表达仅轻微下降,与对照组比较,差异无统计学意义(P > 0.05)(图2)。说明本研究设计的siRNA可以选择性沉默变异型ATXN3。

2.3 不同siRNA对ATXN3蛋白表达的影响

Western blot结果表明,与对照组相比,ATXN3变异(Q79C)蛋白表达被siRNA ATXN3 Mut 1~4明显抑制,差异有统计学意义(P < 0.05),其中siRNA ATXN3 Mut4对ATXN3变异蛋白表达的抑制作用最为明显。与之相对,野生型(Q22G) ATXN3 蛋白表达仅被siRNA ATXN3 Mut 1~4轻度抑制而内参tubulin在所有处理组中保持恒定(图3、4)。

图3 Western blot法分析不同siRNA在体外对Machado-Joseph病的致病基因ATXN3表达的抑制作用

与野生型Q22G比较,※P < 0.05

图4 不同的siRNA对Q79C和Q22G表达的抑制效果

3 讨论

Machado-Joseph病的发病原因为CAG的病理性扩增,其发病机制符合gain of function学说,即:正常的等位基因产生半量的正常蛋白质,而变异的等位基因却产生异常蛋白质,这些异常蛋白质因具有与正常蛋白质不同的功能或毒性而导致发病[9]。

RNAi技术是进入21世纪以来发展起来的一种用于基因功能研究以及基因治疗的新技术。通过转录后水平的基因沉默机制,采用小分子双链mRNA特异性地降解与之互补靶基因的mRNA,以达到沉默致病基因表达的目的[10]。目前RNAi已被用于多种常染色体显性遗传性疾病的治疗研究中,如Huntington's病[5,11-12]、家族性肌萎缩侧索硬化症[13]等。本研究利用RNAi技术,合成针对ATXN3的特异性的基因序列,克隆到慢病毒载体上,并包装重组慢病毒,将其作用于HEK293T细胞,发现特异性siRNA可有效地抑制变异ATXN3的表达,而正常的ATXN3表达则不受影响。本研究结果提示的这种siRNA对于变异ATXN3作用的选择性和特异性,表明了特异性siRNA对于Machado-Joseph病具有一定的保护作用,但具体机制尚未明确,有待于将来进一步的研究加以证实。

虽然本研究选择的四种siRNA对ATXN3变异蛋白的表达均有显著的抑制作用,但siRNA Mut4的抑制作用最为明显,显示了各siRNA沉默效率的差异性。今后,上述siRNA还应在在动物模型中做进一步筛查和验证,以期为将来筛选最为有效的基因治疗药物奠定基础。

此外,本研究采用重组慢病毒作为载体感染HEK 293T细胞,有别于以往某些研究中采用的腺病毒载体。慢病毒载体具有将外源siRNA有效整合到宿主染色体上,达到持久、稳定表达目的基因的优势。迄今为止,慢病毒已广泛应用于多种肿瘤、神经系统疾病、心血管疾病的基础研究中。本研究将ATXN3 siRNA与慢病毒载体相结合,并将包装的重组慢病毒导入HEK293T细胞,为今后的其他神经系统遗传变性疾病的治疗研究提供了实验基础。

[参考文献]

[1] Durr A,Stevanin G,Cancel G,et al. Spinocerebellar ataxia 3 and Machado-Joseph disease:clinical,molecular, and neuropathological features [J]. Ann Neurol,1996,39(4):490-499.

[2] Ruano L,Melo C,Silva MC,et al. The global epidemiology of hereditary ataxia and spastic paraplegia:a systematic review of prevalence studies [J]. Neuroepidemiology,2014, 42(3):174-183.

[3] Onodera O. Molecular mechanism for spinocerebellar ataxias [J]. Rinsho Shinkeigaku,2009,49(11):1-8.endprint

[4] Cancel G,Abbas N,Stevanin G,et al. Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus [J]. Am J Hum Genet,1995,57(4):809-816. [5] Gary DS,Davidson A,Milhavet O,et al. Investigation of RNA interference to suppress expression of full-length and fragment human huntingtin [J]. Neuromolecular Med,2007,9(2):145-155.

[6] Nagai Y,Popiel HA,Fujikake N,et al. Therapeutic strategies for the polyglutamine diseases [J]. Brain Nerve,2007,59(4):393-404.

[7] Nóbrega C,Nascimento-Ferreira I. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice [J]. PLoS One,2013,8(1):e52396.

[8] Alves S,Régulier E,Nascimento-Ferreira I,et al. Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease [J]. Hum Mol Genet,2008,17(14):2071-2083.

[9] Tarlac V,Storey E. Role of proteolysis in polyglutamine disorders [J]. J Neurosci Res,2003,74(3):406-416.

[10] Nielsen T,Nielsen J. Antisense gene silencing:therapy for neurodegenerative disorders [J]. Genes(Basel),2013,4(3):457-484.

[11] Doumanis J,Wada K,Kino Y,et al. RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation [J]. PLoS One,2009,4(9):e7275.

[12] Godinho BM,Ogier JR,Darcy R,et al. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors:focus on Huntington's disease [J]. Mol Pharm,2013,10(2):640-649.

[13] Raoul C,Abbas-Terki T,Bensadoun JC,et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS [J]. Nat Med,2005,11(4):423-428.

(收稿日期:2014-05-13 本文编辑:任 念)endprint

[4] Cancel G,Abbas N,Stevanin G,et al. Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus [J]. Am J Hum Genet,1995,57(4):809-816. [5] Gary DS,Davidson A,Milhavet O,et al. Investigation of RNA interference to suppress expression of full-length and fragment human huntingtin [J]. Neuromolecular Med,2007,9(2):145-155.

[6] Nagai Y,Popiel HA,Fujikake N,et al. Therapeutic strategies for the polyglutamine diseases [J]. Brain Nerve,2007,59(4):393-404.

[7] Nóbrega C,Nascimento-Ferreira I. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice [J]. PLoS One,2013,8(1):e52396.

[8] Alves S,Régulier E,Nascimento-Ferreira I,et al. Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease [J]. Hum Mol Genet,2008,17(14):2071-2083.

[9] Tarlac V,Storey E. Role of proteolysis in polyglutamine disorders [J]. J Neurosci Res,2003,74(3):406-416.

[10] Nielsen T,Nielsen J. Antisense gene silencing:therapy for neurodegenerative disorders [J]. Genes(Basel),2013,4(3):457-484.

[11] Doumanis J,Wada K,Kino Y,et al. RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation [J]. PLoS One,2009,4(9):e7275.

[12] Godinho BM,Ogier JR,Darcy R,et al. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors:focus on Huntington's disease [J]. Mol Pharm,2013,10(2):640-649.

[13] Raoul C,Abbas-Terki T,Bensadoun JC,et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS [J]. Nat Med,2005,11(4):423-428.

(收稿日期:2014-05-13 本文编辑:任 念)endprint

[4] Cancel G,Abbas N,Stevanin G,et al. Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus [J]. Am J Hum Genet,1995,57(4):809-816. [5] Gary DS,Davidson A,Milhavet O,et al. Investigation of RNA interference to suppress expression of full-length and fragment human huntingtin [J]. Neuromolecular Med,2007,9(2):145-155.

[6] Nagai Y,Popiel HA,Fujikake N,et al. Therapeutic strategies for the polyglutamine diseases [J]. Brain Nerve,2007,59(4):393-404.

[7] Nóbrega C,Nascimento-Ferreira I. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice [J]. PLoS One,2013,8(1):e52396.

[8] Alves S,Régulier E,Nascimento-Ferreira I,et al. Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease [J]. Hum Mol Genet,2008,17(14):2071-2083.

[9] Tarlac V,Storey E. Role of proteolysis in polyglutamine disorders [J]. J Neurosci Res,2003,74(3):406-416.

[10] Nielsen T,Nielsen J. Antisense gene silencing:therapy for neurodegenerative disorders [J]. Genes(Basel),2013,4(3):457-484.

[11] Doumanis J,Wada K,Kino Y,et al. RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation [J]. PLoS One,2009,4(9):e7275.

[12] Godinho BM,Ogier JR,Darcy R,et al. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors:focus on Huntington's disease [J]. Mol Pharm,2013,10(2):640-649.

[13] Raoul C,Abbas-Terki T,Bensadoun JC,et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS [J]. Nat Med,2005,11(4):423-428.

(收稿日期:2014-05-13 本文编辑:任 念)endprint