PDS算法进行近红外定量模型更新的效果评估

2014-09-26 21:11袭辰辰冯艳春胡昌勤
分析化学 2014年9期
关键词:碳纳米管

袭辰辰 冯艳春 胡昌勤

摘要在玻碳电极表面修饰碳纳米管,并用多电位阶跃法在碳纳米管表面沉积纳米金制得碳纳米管/纳米金复合膜。通过纳米金和微囊藻毒素(亮氨酸精氨酸)抗体之间的吸附作用,将抗微囊藻单克隆抗体固定于电极表面,以牛血清白蛋白封闭非特异性吸附位点,研制了检测微囊藻毒素的电化学免疫传感器。利用微囊藻毒素与其抗体之间的特异性识别作用构建“三明治”夹心结构的免疫分析模式,以辣根过氧化物酶标记抗体为二抗,利用微分脉冲伏安法实现了对微囊藻毒素的检测。在优化条件下,此传感器的响应电流与微囊藻毒素浓度在0.50~12.0 μg/L范围内呈良好的线性关系,检出限为0.30 μg/L(S/N=3)。对实际水样进行了微囊藻毒素的加标回收实验,回收率在93.0%~108.5%之间,相对标准偏差为3.8%~5.0%。

关键词微囊藻毒素; 碳纳米管/纳米金复合膜; 电化学免疫传感器

1引言

微囊藻毒素(Microcystins,MCs)是由淡水蓝绿藻产生的一类毒性强、急性危害大的环七肽缩氨酸肝毒素,对水生生物、人类饮用水安全和人类健康产生严重影响\[1,2\]。其中, 微囊藻毒素(亮氨酸精氨酸)(Microcystin(leucinearginine),MCLR)是最常见、急性毒性最大的微囊藻毒素之一\[3,4\],水体中MCLR的含量已被多个国家和组织作为衡量水质标准的一个重要指标\[5\]。目前, 检测水体中MCLR的传统方法中,高效液相色谱法、高效液相色谱质谱联用技术检测效果较好,但其仪器设备价值昂贵、操作繁琐且对操作人员技术要求较高;植物细胞的生物测试法和蛋白磷酸酶抑制法灵敏度相对较低;酶联免疫吸附法灵敏度较高,但其线性范围较窄\[6~10\]。在传统检测方法得到广泛应用的同时,研究者不断将新技术引入到MCLR测定中,以期待建立更快速、更灵敏的MCLR检测方法。

电化学免疫传感器将免疫反应的特异性和电化学的便捷性相结合,具有灵敏度高、特异性强、快速方便、可微型化和容易实现在线检测等优点\[11,12\],在测定MCLR的研究中展现出较好的应用前景\[13\]。在发展电化学免疫传感器的过程中,抗体的有效固定及其活性保持和电化学信号的放大是关键的问题\[14\]。纳米材料由于其特殊的电化学性质而备受关注\[15\]。其中,纳米复合膜在增大材料的比表面积、提高表面反应活性、改善催化反应的动力学条件等方面突破了单一组分材料性能的局限,表现出良好的生物亲和性、导电性、高催化活性等突出优点\[16\],使其更适合应用于电化学分析领域。基于碳纳米管(CNTs)和纳米金(AuNPs)的优良特性\[17\],本研究制备了碳纳米管/纳米金复合膜,并将其用于构建电化学免疫传感器检测水体中MCLR,此传感器表现出了较高的灵敏度和较好的选择性,具有较宽的测量范围。

2实验部分

2.1仪器与试剂

CHI 660C型电化学工作站(上海辰华仪器公司),电化学反应池为三电极体系:以玻碳电极为基底的免疫传感器为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极;S4800型扫描电子显微镜(SEM, Hitachi公司)。

辣根过氧化物酶(HRP)、牛血清白蛋白(BSA)、HAuCl4·3H2O(美国Sigma公司);MCLR标准品、antiMCLR单抗和多抗(北京伊普瑞斯科技有限公司);HRP标记的antiMCLR多抗(antiMCLRHRP)依据参考文献\[11\]制备;碳纳米管(CNTs)购于深圳纳米港,并按文献\[17\]方法进行纯化,将纯化好的碳纳米管溶于N,N二甲基甲酰胺制得碳纳米管溶液(0.10 mg/mL);其它试剂均购于国药集团化学试剂公司。实验所用试剂均为分析纯。实验用水为二次蒸馏水(电阻率为18 MΩ·cm)。稀释液:0.01 mol/L磷酸盐缓冲溶液(PBS, pH 7.4),置于4 ℃的冰箱中保存。洗涤液为稀释液加入0.05% Tween20, 封闭液为含有2%牛血清白蛋白的PBS。

2.2免疫传感器的制备

玻碳电极(GCE, Φ=3 mm)用Al2O3抛光至镜面,依次用丙酮、1.0 mol/L HNO3、1.0 mol/L NaOH及二次蒸馏水超声清洗5 min。将处理好的玻碳电极吹干后,滴涂10 μL 碳纳米管溶液,并在红外灯下烘干。将制得的GCE/CNT电极放入含有0.10 mmol/L HAuCl4的H2SO4溶液(0.50 mol/L)中,用多电位阶跃的方法在电极表面沉积纳米金(在1.055~

Symbolm@@ 0.045 V 的阶跃电位范围内扫描15 s)制备GCE/CNT/AuNP电极。将电极用二次蒸馏水清洗并吹干后,滴涂10 μL antiMCLR单抗,并在37 ℃条件下孵育60 min, 然后用洗涤液清洗电极以除去未结合的抗体并晾干。在电极表面滴加10 μL 封闭液,孵育30 min以封闭活性位点。

2.3电化学检测

将制备的免疫传感器清洗并吹干后,放入一定浓度的MCLR溶液中,在37 ℃下培养60 min。用洗涤液清洗电极后,将10 μL antiMCLRHRP滴于电极表面并放置60 min。然后,用水清洗电极并将其放入5 mL含有0.80 mmol/L H2O2和0.50 mmol/L对苯二酚的PBS中,用微分脉冲伏安法进行定量检测,扫描范围为

Symbolm@@ 0.6~0.4 V。以对苯二酚为电子媒介体,通过HRP催化H2O2产生的响应电流实现对MCLR的检测。电化学交流阻抗(EIS)测试条件:应用电位0.20 V,振幅0.05 V,频率为0.10 Hz~100 kHz, 静置时间2 s;循环伏安(CV)测试条件:电压范围

3结果与讨论

3.1免疫传感器的扫描电子显微镜图和电化学表征

用扫描电子显微镜表征修饰电极(GCE/CNT和GCE/CNT/AuNP)的表面形貌。图2A表明,大部分纳米管以小束或单管的形式分布于玻碳电极的表面。如图2B所示,纳米金在碳纳米管表面的分布具有一致性,该纳米结构具有比表面积大、稳定性好和传导性高等优点。

作为氧化还原探针,采用交流阻抗法考察了电极表面的修饰过程(图3A)。裸玻碳电极的电子转移阻抗值(Ret)约为160 Ω(曲线a),当电极修饰碳纳米管后, Ret明显减小(曲线b)。电沉积纳米金后,电极的导电性能进一步提高(曲线c),表明CNT/AuNP复合膜作为良好的导电材料有效促进了电子传递。当antiMCLR与电极表面纳米金结合后,抗体作为非导电性物质阻碍了电子传递(曲线d),Ret明显增大。依次加入MCLR与antiMCLRHRP后(曲线e,f),Ret逐步增大,证明二者先后结合在电极表面。

将修饰电极GCE/CNT/AuNP/antiMCLR/MCLR/antiMCLRHRP在不同条件下进行循环伏安扫描用于测定电极表面HRP的电化学行为(图3B)。实验发现,该传感器在空白PBS中具有很低的背景电流(曲线a)。在PBS中加入对苯二酚后,可以观察到一对明显的氧化还原峰(曲线b)。当H2O2加入到上述溶液中后,还原峰峰电流明显增加且峰电位向负方向移动(曲线c),显示了电极的催化特征,说明HRP已固定在免疫传感器的表面并保持了良好的催化活性。

3.2免疫传感器的性能比较

选用不同材料(CNTs,AuNPs,CNT/AuNP)分别修饰玻碳电极制备电化学免疫传感器并比较其性能。图4显示CNT/AuNP复合膜修饰玻碳电极的电化学免疫传感器获得了最高响应电流,表明CNT/AuNP复合膜对放大信号从而提高检测灵敏度起着十分重要的作用。这是由于该复合膜具有一致的纳米结构,能够增大电极的比表面积、增强机械稳定性和导电性、增加了抗体在电极表面的固载量并可以保持其良好的生物活性。

3.3微囊藻毒素测定条件的优化

温度和时间是影响免疫反应的重要因素。本研究在23~43 ℃范围内考察了温度对电化学免疫传感器检测MCLR的影响。结果表明,随着温度升高,响应电流逐步增强,在37 ℃获得最大响应电流。当高于此温度时,响应电流下降,因此最佳免疫反应温度选择37 ℃。同时,响应电流随着免疫反应时间的延长而增强,在60 min时,响应电流趋于稳定,因此最佳免疫反应时间选择60 min。

对苯二酚和H2O2的浓度是影响电化学酶催化分析的重要因素。实验表明,电流信号分别随着两者的浓度增大而增强,并且分别在0.50 mmol/L对苯二酚和0.80 mmol/L H2O2时达到最大电流值,因此对苯二酚和H2O2的最优浓度选择分别0.50和0.80 mmol/L。

3.4传感器的标准曲线及检出限

在优化条件下,对不同浓度的MCLR进行测定(图5)。响应电流与MCLR浓度在0.50~12.0 μg/L范围内呈良好的线性关系(图5插图),线性方程为Y (μA)=1.960+0.533X(μg/L)(R2=0.9952, n=5),检出限达到0.30 μg/L(S/N=3)。结果表明,此电化学免疫传感器检测MCLR的灵敏度高,[TS(]图5免疫传感器对不同浓度MCLR的响应(从a到f浓度分别为: 0.50, 2, 4, 7, 10, 12 μg/L)。

3.5传感器的重现性和稳定性研究

对不同批次制备的免疫传感器进行了测试。对4个浓度(1,3,5和7 μg/L)MCLR分别测定5次,批内的相对标准偏差(RSD)分别为5.3%,6.7%,6.9%和7.2%,批间的RSD分别为5.0%,7.5%,6.3%和4.8%,表明此传感器具有良好的制备重现性。

将制备的免疫传感器置于4 ℃冰箱保存1星期后,用于检测10 μg/L MCLR,所得响应电流值为初始值的95.2%;置于4 ℃冰箱保存3星期后,检测10 μg/L MCLR,所得响应电流值为初始值的87.9%,表明此传感器具有较好的稳定性。

3.6干扰实验

淡水水体中其它蓝藻毒素,如节球藻毒素、鱼腥藻毒素a和石房蛤毒素等对MCLR的测定可能产生影响。在7 μg/L MCLR溶液中分别加入7 μg/L节球藻毒素、鱼腥藻毒素a和石房蛤毒素,发现在其它蓝藻毒素存在时,检测MCLR产生的响应电流信号(分别为5.42, 5.5和5.53 μA)与单独测定MCLR产生的响应电流信号(5.7 μA)相差不大,表明其它蓝藻毒素的存在对MCLR的测定无明显影响,证实了此传感器具有良好的选择性。

3.7样品分析

分别取实验室自来水、桶装饮用水、镇江市玉带河(水样有一定浊度,测定之前用孔径0.45 μm的滤膜抽滤水样)和太湖水样(水样中有藻类残余,且浊度较大,取样后冰冻保存带回,并保存在4 ℃冰箱中,测定前用孔径0.45 μm的滤膜抽滤水样),采用本方法分别检测,结果见表1。利用标准加入法向其中加入适量MCLR进行检测,其回收率为93.0%~108.5%,相对标准偏差(RSD)为3.8%~5.0%,表明此电化学免疫传感器用于实际水样的检测可靠性好、准确度高。

4结论

基于CNT/AuNP复合膜发展了一种用于水体中MCLR检测的电化学免疫传感器。实验表明,CNT/AuNP复合膜能够有效增强电极的导电性、增加抗体在电极表面的固载量并保持其良好的生物活性,对信号放大从而提高灵敏度起着重要的作用。此传感器制备简单、可靠性好、准确度高,对MCLR的检测具有线性范围宽、检出限低等优点。实际水样的加标回收实验结果表明该电化学免疫传感器技术在水体中MCLR检测方面具有良好的应用前景。

References

1Poste A E, Hecky R E, Guildford S J. Environ. Sci. Technol., 2011, 45: 5806-5811

2ZHANG JinGuo, KANG TianFang, XUE Rui, SUN Xue. Chinese J. Anal. Chem., 2013, 41(9): 1353-l358

张金果, 康天放, 薛 瑞, 孙 雪. 分析化学, 2013, 41(9): 1353-1358

3Tong P, Tang S R, He Y, Shao Y H, Zhang L, Chen G N. Microchim. Acta, 2011, 173: 299-305

4Long F, He M, Zhu A N, Shi H C. Biosens. Bioelectron., 2009, 24: 2346-2351

5Draper W M, Xu D D, Perera S K. Anal. Chem., 2009, 81(10): 4153-4160

6Metcalf J S, Hyenstrand P, Beattie K A, Codd G A. J. Appl. Microbiol., 2000, 89: 532-538

7Li C M, Chu R Y Y, Hsientang Hsieh D P H. J. Mass Spectrum., 2006, 41(2): 169-174

8Sheng J W, He M, Shi H C. Anal. Chim. Acta, 2007, 603(1): 111-118

9Gehringer M M, Kewada V, Coates N, Downing T G. Toxicon, 2003, 41(7): 871-876

10Fontal O I, Vieytes M R, Baptista S J M, Louzao M C, Botana L M. Anal. Biochem., 1999, 269(2): 289-296

11Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Anal. Chem., 2010, 82(3): 1117-1122

12Lou Y, He T, Jiang F, Shi J J, Zhu J J. Talanta, 2014, 122: 135-139

13Li R Y, Xia Q F, Li Z J, Sun X L, Liu J K. Biosens. Bioelectron., 2013, 44: 235-240

14LIU HuiJie, ZHANG XinAi, TENG YingQiao, ZHANG Wen, JIN LiTong. Chinese J. Anal. Chem., 2009, 37(A03): 283-284

刘慧杰, 张新爱, 滕英巧, 张 文, 金利通. 分析化学, 2009, 37(A03): 283-284

15Zhang X A, Teng Y Q, Fu Y, Xu L L, Zhang S P, He B, Wang C G, Zhang W. Anal. Chem., 2010, 82(22): 9455-9460

16Lian W J, Liu S, Yu J H, Li J, Cui M, Xu W, Huang J D. Biosens. Bioelectron., 2013, 44: 70-76

17Zhang X A, Teng Y Q, Fu Y, Zhang S P, Wang T, Wang C G, Jin L T, Zhang W. Chem. Sci., 2011, 2: 2353-2360

18WHO. Guidelines for DrinkingWater Quality, 3rd ED, Geneva: World Health Organization, 2004: 407-408

AbstractCarbon nanotubes/Au nanoparticles (CNT/AuNP) composite film was fabricated on glassy carbon electrode (GCE) by first dropping CNTs on the electrode surface and then electrodeposition of AuNPs by multipotential step. The antibody of microcystin(leucinearginine) (antiMCLR) was immobilized on the modified electrode surface through adsorption on AuNPs. Subsequently, bovine serum albumin (BSA) was used to block the nonspecific adsorption to obtain the immunosensor for MCLR assay. The immunosensor could effectively capture MCLR by the specific immunoreaction between the electrode surfaceconfined antibody and MCLR, followed by the attachment of the antiMCLR HRPlabeled to form a sandwichtype system. The analysis of MCLR was performed based on the catalytic reaction of HRP toward the oxidation of hydroquinone (QH2) by H2O2. Under the optimal experimental conditions, the peak current response increased linearly with the concentration of MCLR in the range of 0.50-12 μg/L with a detection limit of 0.30 μg/L (S/N=3). The developed immunosensor was used to determine MCLR in real water samples, and the recoveries of standard addition experiments were in the range of 93.0%-108.5%, with the relative standard deviation of 3.8%-5.0%.

KeywordsMicrocystins; Carbon nanotubes/gold nanoparticles composite film; Electrochemical immunosensor

1Poste A E, Hecky R E, Guildford S J. Environ. Sci. Technol., 2011, 45: 5806-5811

2ZHANG JinGuo, KANG TianFang, XUE Rui, SUN Xue. Chinese J. Anal. Chem., 2013, 41(9): 1353-l358

张金果, 康天放, 薛 瑞, 孙 雪. 分析化学, 2013, 41(9): 1353-1358

3Tong P, Tang S R, He Y, Shao Y H, Zhang L, Chen G N. Microchim. Acta, 2011, 173: 299-305

4Long F, He M, Zhu A N, Shi H C. Biosens. Bioelectron., 2009, 24: 2346-2351

5Draper W M, Xu D D, Perera S K. Anal. Chem., 2009, 81(10): 4153-4160

6Metcalf J S, Hyenstrand P, Beattie K A, Codd G A. J. Appl. Microbiol., 2000, 89: 532-538

7Li C M, Chu R Y Y, Hsientang Hsieh D P H. J. Mass Spectrum., 2006, 41(2): 169-174

8Sheng J W, He M, Shi H C. Anal. Chim. Acta, 2007, 603(1): 111-118

9Gehringer M M, Kewada V, Coates N, Downing T G. Toxicon, 2003, 41(7): 871-876

10Fontal O I, Vieytes M R, Baptista S J M, Louzao M C, Botana L M. Anal. Biochem., 1999, 269(2): 289-296

11Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Anal. Chem., 2010, 82(3): 1117-1122

12Lou Y, He T, Jiang F, Shi J J, Zhu J J. Talanta, 2014, 122: 135-139

13Li R Y, Xia Q F, Li Z J, Sun X L, Liu J K. Biosens. Bioelectron., 2013, 44: 235-240

14LIU HuiJie, ZHANG XinAi, TENG YingQiao, ZHANG Wen, JIN LiTong. Chinese J. Anal. Chem., 2009, 37(A03): 283-284

刘慧杰, 张新爱, 滕英巧, 张 文, 金利通. 分析化学, 2009, 37(A03): 283-284

15Zhang X A, Teng Y Q, Fu Y, Xu L L, Zhang S P, He B, Wang C G, Zhang W. Anal. Chem., 2010, 82(22): 9455-9460

16Lian W J, Liu S, Yu J H, Li J, Cui M, Xu W, Huang J D. Biosens. Bioelectron., 2013, 44: 70-76

17Zhang X A, Teng Y Q, Fu Y, Zhang S P, Wang T, Wang C G, Jin L T, Zhang W. Chem. Sci., 2011, 2: 2353-2360

18WHO. Guidelines for DrinkingWater Quality, 3rd ED, Geneva: World Health Organization, 2004: 407-408

AbstractCarbon nanotubes/Au nanoparticles (CNT/AuNP) composite film was fabricated on glassy carbon electrode (GCE) by first dropping CNTs on the electrode surface and then electrodeposition of AuNPs by multipotential step. The antibody of microcystin(leucinearginine) (antiMCLR) was immobilized on the modified electrode surface through adsorption on AuNPs. Subsequently, bovine serum albumin (BSA) was used to block the nonspecific adsorption to obtain the immunosensor for MCLR assay. The immunosensor could effectively capture MCLR by the specific immunoreaction between the electrode surfaceconfined antibody and MCLR, followed by the attachment of the antiMCLR HRPlabeled to form a sandwichtype system. The analysis of MCLR was performed based on the catalytic reaction of HRP toward the oxidation of hydroquinone (QH2) by H2O2. Under the optimal experimental conditions, the peak current response increased linearly with the concentration of MCLR in the range of 0.50-12 μg/L with a detection limit of 0.30 μg/L (S/N=3). The developed immunosensor was used to determine MCLR in real water samples, and the recoveries of standard addition experiments were in the range of 93.0%-108.5%, with the relative standard deviation of 3.8%-5.0%.

KeywordsMicrocystins; Carbon nanotubes/gold nanoparticles composite film; Electrochemical immunosensor

1Poste A E, Hecky R E, Guildford S J. Environ. Sci. Technol., 2011, 45: 5806-5811

2ZHANG JinGuo, KANG TianFang, XUE Rui, SUN Xue. Chinese J. Anal. Chem., 2013, 41(9): 1353-l358

张金果, 康天放, 薛 瑞, 孙 雪. 分析化学, 2013, 41(9): 1353-1358

3Tong P, Tang S R, He Y, Shao Y H, Zhang L, Chen G N. Microchim. Acta, 2011, 173: 299-305

4Long F, He M, Zhu A N, Shi H C. Biosens. Bioelectron., 2009, 24: 2346-2351

5Draper W M, Xu D D, Perera S K. Anal. Chem., 2009, 81(10): 4153-4160

6Metcalf J S, Hyenstrand P, Beattie K A, Codd G A. J. Appl. Microbiol., 2000, 89: 532-538

7Li C M, Chu R Y Y, Hsientang Hsieh D P H. J. Mass Spectrum., 2006, 41(2): 169-174

8Sheng J W, He M, Shi H C. Anal. Chim. Acta, 2007, 603(1): 111-118

9Gehringer M M, Kewada V, Coates N, Downing T G. Toxicon, 2003, 41(7): 871-876

10Fontal O I, Vieytes M R, Baptista S J M, Louzao M C, Botana L M. Anal. Biochem., 1999, 269(2): 289-296

11Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Anal. Chem., 2010, 82(3): 1117-1122

12Lou Y, He T, Jiang F, Shi J J, Zhu J J. Talanta, 2014, 122: 135-139

13Li R Y, Xia Q F, Li Z J, Sun X L, Liu J K. Biosens. Bioelectron., 2013, 44: 235-240

14LIU HuiJie, ZHANG XinAi, TENG YingQiao, ZHANG Wen, JIN LiTong. Chinese J. Anal. Chem., 2009, 37(A03): 283-284

刘慧杰, 张新爱, 滕英巧, 张 文, 金利通. 分析化学, 2009, 37(A03): 283-284

15Zhang X A, Teng Y Q, Fu Y, Xu L L, Zhang S P, He B, Wang C G, Zhang W. Anal. Chem., 2010, 82(22): 9455-9460

16Lian W J, Liu S, Yu J H, Li J, Cui M, Xu W, Huang J D. Biosens. Bioelectron., 2013, 44: 70-76

17Zhang X A, Teng Y Q, Fu Y, Zhang S P, Wang T, Wang C G, Jin L T, Zhang W. Chem. Sci., 2011, 2: 2353-2360

18WHO. Guidelines for DrinkingWater Quality, 3rd ED, Geneva: World Health Organization, 2004: 407-408

AbstractCarbon nanotubes/Au nanoparticles (CNT/AuNP) composite film was fabricated on glassy carbon electrode (GCE) by first dropping CNTs on the electrode surface and then electrodeposition of AuNPs by multipotential step. The antibody of microcystin(leucinearginine) (antiMCLR) was immobilized on the modified electrode surface through adsorption on AuNPs. Subsequently, bovine serum albumin (BSA) was used to block the nonspecific adsorption to obtain the immunosensor for MCLR assay. The immunosensor could effectively capture MCLR by the specific immunoreaction between the electrode surfaceconfined antibody and MCLR, followed by the attachment of the antiMCLR HRPlabeled to form a sandwichtype system. The analysis of MCLR was performed based on the catalytic reaction of HRP toward the oxidation of hydroquinone (QH2) by H2O2. Under the optimal experimental conditions, the peak current response increased linearly with the concentration of MCLR in the range of 0.50-12 μg/L with a detection limit of 0.30 μg/L (S/N=3). The developed immunosensor was used to determine MCLR in real water samples, and the recoveries of standard addition experiments were in the range of 93.0%-108.5%, with the relative standard deviation of 3.8%-5.0%.

KeywordsMicrocystins; Carbon nanotubes/gold nanoparticles composite film; Electrochemical immunosensor

猜你喜欢
碳纳米管
碳纳米管将普通衬衫变成心率监测器
碳纳米管/月桂酸复合材料的制备及其热物性分析
一种氮化镁 碳纳米管颗粒增强镁基合金材料的制备方法
碳纳米管:让晶体管加速退出历史舞台
利用手机检测有毒气体
碳纳米晶体管性能首次超越硅晶体管
碳纳米管技术专利分析
从碳管中流出清泉
2008-2009年度首届黄昆物理奖获奖者获奖成果介绍
碳纳米管——天使还是魔鬼?