灌浆结实期冷水胁迫对寒地粳稻籽粒淀粉积累及相关酶活性的影响

2016-04-29 01:54夏楠赵宏伟吕艳超赵振东邹德堂刘化龙王敬国贾琰
中国水稻科学 2016年1期
关键词:粳稻淀粉

夏楠 赵宏伟 吕艳超 赵振东 邹德堂 刘化龙 王敬国 贾琰

(东北农业大学 农学院/水稻研究所, 哈尔滨150030;*通讯联系人, E-mail:hongweizhao@163.com)



灌浆结实期冷水胁迫对寒地粳稻籽粒淀粉积累及相关酶活性的影响

夏楠赵宏伟*吕艳超赵振东邹德堂刘化龙王敬国贾琰

(东北农业大学 农学院/水稻研究所, 哈尔滨150030;*通讯联系人, E-mail:hongweizhao@163.com)

夏楠,赵宏伟,吕艳超,等. 灌浆结实期冷水胁迫对寒地粳稻籽粒淀粉积累及相关酶活性的影响. 中国水稻科学, 2016, 30(1): 62-74.

摘要:采用寒地粳稻田间试验,研究灌浆结实期冷水胁迫(17℃,持续3,6,9,12,15 d)对三个不同寒地粳稻品种(东农428、松粳10、龙稻7号)籽粒淀粉合成与积累、产量构成因素的影响,并探讨冷水胁迫下淀粉合成关键酶活性变化与淀粉组分及其含量的关系。结果表明,与对照相比,灌浆结实期17℃冷水胁迫下,不同寒地粳稻品种灌浆结实期可溶性淀粉合成酶(SSS)活性、淀粉分支酶(SBE)活性降低,籽粒总淀粉含量、支链淀粉含量显著下降,直链淀粉含量显著上升。相关分析表明,SSS活性、SBE活性与淀粉及其淀粉组分密切相关,对淀粉及淀粉组分含量变化均有同等重要的作用。同时,冷水胁迫下,灌浆结实期不同寒地粳稻品种的每穗实粒数、千粒重及结实率均显著降低,随着冷水胁迫时间的延长,不同寒地粳稻品种各指标的变化幅度逐渐加大。寒地粳稻产量构成因素各相关指标是不同耐冷性品种响应冷水胁迫的差异产物, 可用于耐冷性鉴定。从不同寒地粳稻品种对冷水胁迫的反应指数看,松粳10受影响最大,东农428受影响最小,龙稻7号介于二者之间。

关键词:粳稻; 灌浆结实期; 冷水胁迫; 淀粉合成关键酶; 淀粉

淀粉一般占糙米重的90%以上,籽粒的充实过程主要是淀粉合成积累的过程[1]。水稻籽粒淀粉的积累及含量主要受品种遗传特性的影响,但环境条件对其也有很大作用[2]。在诸多环境生态因子中,温度特别是灌浆结实期的温度是影响稻米品质的首要环境因子[3-4]。近年来,全国范围内低温冷害时有发生,据统计,平均每3~5年就发生一次较大规模的冷害,每年因低温冷害损失的稻谷达30亿~50亿kg[5],造成严重的产量及经济损失。黑龙江省作为主要寒地稻作区,低温冷害频繁发生,已成为限制黑龙江省水稻生产发展的主要因素之一[6]。

淀粉合成过程中,可溶性淀粉合成酶(SSS)和淀粉分支酶(SBE)均起着重要作用[7-9]。SSS是催化淀粉合成积累的一个关键酶,它通常是以游离态存在于胚乳淀粉体中,催化腺苷二磷酸葡萄糖与淀粉引物(葡聚糖)反应,将一个葡萄糖分子转移到淀粉引物上,使淀粉链延长[10]。籽粒中SSS活性越强,催化合成淀粉能力就越强[11],并对籽粒中直链淀粉与支链淀粉比率也有影响[12]。SBE不仅参与形成α-1,6糖苷支链合成支链淀粉,而且通过产生新的非还原末端产物作为α-葡聚糖受体,有利于淀粉合成酶的催化反应,提高淀粉的生物合成速率[13-15],是影响水稻籽粒中淀粉组成与结构的关键酶。

温度对籽粒淀粉形成关键酶活性及稻米蒸煮食味品质的影响国内外已有很多报道,但多为高温对水稻淀粉形成关键酶活性及稻米品质的影响[16-19]。金正勋等[16]认为高温提高了可溶性淀粉合成酶活性,使稻米蒸煮食味品质变劣;吕艳梅等[19]研究表明齐穗后高温明显降低籽粒总淀粉和支链淀粉含量,提高直链淀粉含量,对成熟期籽粒淀粉的组成比例造成一定影响。而前人对水稻低温冷害的研究主要集中在不同生育期低温对稻米品质的影响。武琦发现不同时期低温胁迫对水稻淀粉结构产生不同程度的影响,灌浆期影响最为严重,水稻灌浆受阻,灌浆速率放缓,灌浆相关酶活性降低[20]。而宋广树等[21]认为品种是决定稻米营养品质的关键因素,不同时期低温处理下籽粒蛋白质、脂肪和直链淀粉含量均降低,降幅均表现出品种间差异大于处理时期间差异。尽管前人对低温冷害有一些报道,但对灌浆结实期低温胁迫下籽粒淀粉形成关键酶活性变化与淀粉合成之间的关系缺乏系统的研究,并且通过人工气候箱进行控温,与实际大田生产有一定差距。因此,本研究以黑龙江省不同粳稻品种东农428、松粳10、龙稻7号为试验材料,在大田条件下采用冷水灌溉的方式模拟自然低温,研究灌浆结实期低温胁迫对籽粒淀粉合成关键酶活性及淀粉组分含量的影响,明确淀粉合成关键酶的调控效应,以期丰富寒地粳稻耐冷研究的生理基础,为黑龙江省寒地粳稻高产优质生产及预防低温冷害提供理论依据。

1材料与方法

1.1试验地点与条件

试验于2014年在东北农业大学香坊试验实习基地进行。于2014年4月20日播种,5月25日移栽。供试土壤为黑土,基础肥力如下:土壤有机质22.3 g/kg,全氮 1.2 g/kg,全磷0.4 g/kg,缓效钾706.5 mg/kg,碱解氮129.8 mg/kg,速效磷 18.7 mg/kg,速效钾 99.1 mg/kg,土壤pH 值6.8。

1.2试验材料与设计

选用黑龙江省第二积温带粳稻品种东农428、松粳10和龙稻7号为供试材料。东农428是由东北农业大学农学院水稻研究所2009年以东农423为父本,以五优稻1号为母本经系谱法选育而成,生育期138 d左右,需活动积温2520℃左右。松粳10是由黑龙江省农业科学院第二水稻研究所2005年以合江20为父本,以辽粳5号为母本经系谱法选育而成,生育期137 d,需活动积温2450~2500℃左右。龙稻7号是由黑龙江省农业科学院耕作栽培研究所于2006年以父母本均为五优稻1号经系谱法选育而成,生育期137 d,需活动积温2500℃左右。

试验采用裂区设计,以不同天数冷水处理为主区,粳稻品种为副区。在灌浆结实期(水稻植株平均抽穗80%左右)进行冷水灌溉,处理温度为(17±1)℃[22](接近寒地粳稻灌浆结实期低温冷害温度),主区设6个处理,即连续冷水灌溉0(正常灌溉)、3、6、9、12、15 d,分别记为D0、D3、D6、D9、D12、D15,主区四周垒筑土埂并留有通水口,将各主区隔开。每主区3次重复。副区设12行区(附带保护行),行长 5 m,行距 30 cm,穴距 13.3 cm,每穴3株。17℃冷水为地下深井水(8℃~9℃)与晒水池中水(22℃~24℃)混合后形成。冷水灌溉时间为每天8:00-18:30。每隔30 min测各小区平均水温,并通过调节冷水灌入量及水流速度,使冷水处理各小区水温维持在17℃左右(冷水处理期间每天6:00和20:00测量各冷水处理区水温均维持在16℃~18℃)。正常灌溉为晒水池中水。用Pt100温度计测量水温,冠层分析仪测量冠层温度,田间气候自动测量仪测量大田气温、光照辐射量。冷水胁迫处理期间田间试验条件见表1。其他管理同一般大田生产。

表1灌浆结实期冷水胁迫处理期间田间试验条件

Table 1. Field experiment conditions under cold-water stress during grain-filling stage.

试验处理Treatment水温Tn/℃空气温度Ta/℃冠层温度Tc/℃上层Upper中层Middle下层Lower热量Rd/(MJ·m-2·d-1)对照Control23.9±1.524.3±1.625.7±0.425.4±0.624.9±0.515.1±7.0冷水胁迫Cold-waterstress17.2±0.424.1±1.525.2±0.824.8±0.517.6±0.515.0±6.7

1.3试验方法

1.3.1取样方法

在齐穗期,各小区选取生长整齐一致的植株200株挂牌标记。自各处理结束后第2天开始取样,每隔3d取样一次,待全部处理结束后,每隔5d取样一次。晴天上午 9:30-10:30取样,各小区选挂牌标记植株3穴,每穴选3穗,取穗中部籽粒用于测定籽粒SSS和SBE活性。每处理3次重复。在上述各小区同时选取挂牌标记植株3穴,每穴选3穗,取穗中部籽粒,于105℃下杀青 30 min,然后在 80℃恒温条件下烘干至恒重。粉碎后,过100目筛,存放在干燥器内,用于籽粒中直链淀粉、支链淀粉及总淀粉含量的测定。每处理3次重复。同时,在成熟期,每处理取10穴,3次重复。进行室内考种,测定并计算每穗实粒数、千粒重、结实率。

1.3.2测定方法

1.3.2.1籽粒淀粉合成关键酶活性测定

1)取籽粒样品1 g,去壳。在预冻的研钵中研磨,提取介质为10 mL缓冲液[100 mmol/LHepes-NaOH (pH 7.6),5 mmol/L MgCl2,5 mmol/L DTT,2% PVP],研磨液在10 000×g、 4℃下离心10 min,上清液即为粗酶液。参照 Douglas等[23]、程方民等[24]方法测定SSS活性。酶活性测定重复3次。

2)称 2 g左右籽粒用 0.05 mol/L柠檬酸缓冲液(pH7.0)在冰浴中研磨成匀浆(1mL缓冲液研磨,5 mL洗研钵两次)然后在 12 000×g、 4℃下冷冻离心 20 min,上清液即为酶液。参照李太贵等[25]的方法测定SBE的活性。酶活性测定重复3次。

1.3.2.2籽粒淀粉及其组分含量测定

称取上述干燥器中过筛籽粒样品5 g,用乙醇脱脂,从中称取脱脂样品0.1 g用于淀粉含量测定,重复3次。参照《粮油籽粒品质及其分析技术》[26],采用双波长法以UV-2450型紫外分光光度计测定籽粒淀粉含量,测定支链淀粉的主波长是550 nm,参比波长730 nm;测定直链淀粉的主波长是620 nm,参比波长430 nm。

1.3.3计算方法

低温冷水胁迫下的水稻籽粒淀粉合成关键酶活性峰值变化、成熟期籽粒淀粉及其组分含量变化、穗部性状及产量构成因素相关指标变化用冷水反应指数(CRI)[27]说明,计算公式如下:

冷水反应指数(CRI)=冷水处理区性状表型值/对照区性状表型值×100%。

1.4数据分析

均采用 Microsoft Excel 2003 和SPSS 19.0 统计分析数据。

2结果与分析

2.1灌浆结实期冷水胁迫对寒地粳稻籽粒淀粉合成关键酶活性的影响

2.1.1对可溶性淀粉合成酶(SSS)活性的影响

由图1可见,灌浆结实期籽粒SSS活性随着齐穗后天数的增加呈单峰曲线变化,峰值均出现在齐穗后16d。灌浆结实期冷水胁迫对籽粒SSS活性影响较为明显,各冷水处理在到达峰值之前SSS活性上升速率低于对照,峰值活性也低于对照,峰值过后酶活性先缓慢下降,后迅速下降。由表2可见,随着冷水胁迫天数的增加,峰值酶活性与对照相比降幅增大, 其中D12、D15表现最为明显,SSS活性峰值冷水反应指数(CRI)均在85.50%以下。不同品种SSS活性对冷水胁迫的应激能力不同,松粳10各冷水处理下SSS活性峰值下降幅度最大,CRI为72.20%~91.20%,受影响最大;其次为龙稻7号,CRI为75.81%~92.91%;东农428降幅最小,CRI为83.33%~95.09%,受影响最小。

D0、D3、D6、D9、D12、D15分别表示冷水灌溉0、3、6、9、12和15 d。下同。

D0,D3,D6,D9,D12 and D15 refer to successive cold-water treatment for 0,3,6,9,12 and 15 days,respectively. The same as below.

图1灌浆结实期冷水胁迫下寒地粳稻籽粒可溶性淀粉合成酶活性的变化

Fig. 1. Changes in grain soluble starch synthase ( SSS ) activity of japonica rice under cold-water stress during grain-filling stage in cold-region.

2.1.2对淀粉分支酶(SBE)活性的影响

由图2可知,灌浆结实期不同品种SBE活性随着齐穗后天数的增加呈单峰曲线变化,峰值均出现在齐穗后21 d,冷水胁迫对SBE活性的影响贯穿于整个灌浆时期。冷水胁迫下,各冷水处理SBE活性前期迅速增加,达到峰值后,先快速下降,再缓慢降低。由表3可见,随着冷水胁迫天数的增加,SBE峰值酶活性与对照相比降幅增大,其中D12、D15表现最为明显,SBE活性峰值CRI均在82.07%以下。不同品种SBE活性对冷水胁迫的应激能力不同,松粳10 各冷水处理SBE活性峰值降幅最大,CRI为74.22%~91.89%,受影响最大;其次为龙稻7号,CRI为76.81%~91.85%;东农428降幅最小,CRI为79.71%~96.31%,受影响最小。

2.2灌浆结实期冷水胁迫对寒地粳稻籽粒淀粉及其组分形成与积累的影响

2.2.1灌浆结实期冷水胁迫对寒地粳稻籽粒总淀粉含量的影响

淀粉是水稻籽粒的主要成分,水稻籽粒干物质的积累过程主要是淀粉的充实过程[28]。由表4可见,3个供试品种齐穗后总淀粉含量不断增加,呈“S”型曲线,即随着灌浆进程的推进,总淀粉含量不断增加,增加速率先快后慢。与对照相比,灌浆初期各冷水处理总淀粉含量均显著降低;灌浆中后期,东农428 D0与D3、D6差异不显著,与其他冷水处理差异显著,且随着冷水胁迫天数的增加,总淀粉含量降幅增大。松粳10和龙稻7号灌浆中期D0与其他冷水处理差异显著,灌浆后期D0与D3差异不显著,与其他冷水处理差异显著,并随着冷水胁迫天数的增加,总淀粉含量降幅增大。由表5可见,不同品种成熟期总淀粉含量对冷水胁迫的应激能力不同,东农428各冷水处理成熟期总淀粉含量降幅最小,CRI为97.87%~99.85%,受影响最小;其次为龙稻7号,CRI为97.02%~99.90%;松粳10降幅最大,CRI为95.56%~99.90%,受影响最大。

表2灌浆结实期冷水胁迫下寒地粳稻籽粒SSS活性峰值变化

Table 2. Changes in peak grain soluble starch synthase ( SSS ) activity of japonica rice under cold-water stress during grain-filling stage in cold-region.

处理Treatment东农428Dongnong428峰值酶活性Peakenzymeactivity/(U·g-1min-1)峰值酶活性CRICRIforpeakenzymeactivity/%松粳10Songjing10峰值酶活性Peakenzymeactivity/(U·g-1min-1)峰值酶活性CRICRIforpeakenzymeactivity/%龙稻7号Longdao7峰值酶活性Peakenzymeactivity/(U·g-1min-1)峰值酶活性CRICRIforpeakenzymeactivity/%D018.76±0.16100.0018.83±0.12100.0018.65±0.11100.00D317.84±0.1495.0917.17±0.1291.2017.33±0.1892.91D617.06±0.1290.9316.24±0.1186.2516.31±0.1487.44D916.71±0.1889.0715.05±0.1579.9415.20±0.1381.50D1216.04±0.1085.5014.32±0.1076.0714.42±0.1477.32D1515.63±0.1783.3313.59±0.1272.2014.14±0.1375.81

CRI-冷水反应指数。下同。

CRI, Cold-response index. The same as below.

图2灌浆结实期冷水胁迫下寒地粳稻籽粒淀粉分支酶活性的变化

Fig. 2. Changes in grain starch branching enzyme ( SBE ) activity of japonica rice under cold-water stress during grain-filling stage in cold-region.

2.2.2灌浆结实期冷水胁迫对寒地粳稻籽粒支链淀粉含量的影响

由表6可见,3个供试品种齐穗后籽粒支链淀粉积累速率均呈先快后慢的趋势,即“S”型曲线。随着冷水胁迫天数的增加,各冷水处理支链淀粉含量均显著低于对照,D0、D3处理下东农428 在齐穗后21~31 d差异不显著,其他时期差异显著;松粳10在 D0、D3在齐穗后36d差异不显著,其他时期差异显著;龙稻7号 D0、D3在齐穗后21、26d差异不显著,其他时期差异显著。齐穗后7~36 d,3个供试品种籽粒支链淀粉含量迅速增加,此后趋于稳定,开始平稳增长。在整个灌浆过程中,D3、D6支链淀粉含量与D0差异较小,一直保持相对较高水平,说明寒地粳稻遭受短时间低温在恢复正常灌溉后,淀粉合成关键酶活性恢复正常,支链淀粉积累也逐渐恢复正常;D9、D12、D15支链淀粉含量显著下降,说明灌浆结实期长时间冷水胁迫会影响支链淀粉合成,并随着冷水胁迫天数的增加,支链淀粉含量降幅增大。由表7可见,不同品种成熟期支链淀粉含量对冷水胁迫的应激能力不同,东农428各冷水处理成熟期支链淀粉含量降幅最小,CRI为94.53%~99.72%,受影响最小;松粳10 CRI为90.57%~99.64%,受影响最大;龙稻7号处于二者之间, CRI为93.10%~99.64%。

表3灌浆结实期冷水胁迫下寒地粳稻籽粒SBE活性峰值变化

Table 3. Changes in peak grain starch branching enzyme ( SBE ) activity of japonica rice under cold-water stress during grain-filling stage in cold-region.

处理Treatment东农428Dongnong428峰值酶活性Peakenzymeactivity/%峰值酶活性CRICRIforpeakenzymeactivity/%松粳10Songjing10峰值酶活性Peakenzymeactivity/%峰值酶活性CRICRIforpeakenzymeactivity/%龙稻7号Longdao7峰值酶活性Peakenzymeactivity/%峰值酶活性CRICRIforpeakenzymeactivity/%D011.91±0.21100.0011.83±0.19100.0012.03±0.22100.00D311.47±0.1396.3110.87±0.2191.8911.05±0.1691.85D610.78±0.1490.5110.22±0.1886.3710.44±0.2086.78D910.21±0.1985.739.73±0.2182.2410.02±0.1683.27D129.77±0.1582.079.06±0.1376.569.46±0.2678.63D159.49±0.1479.718.78±0.1574.229.24±0.1776.81

表4灌浆结实期冷水胁迫对齐穗后籽粒总淀粉含量的影响

Table 4. Total starch content in grains of japonica rice at various days after full heading under cold-water stress.

品种与处理Varietyandtreatment齐穗后天数Daysafterfullheading/d7101316212631364146东农428Dongnong428 D022.86±0.11a33.60±0.08a45.68±0.15a51.92±0.18a63.62±0.17a70.22±0.18a74.20±0.17a78.32±0.14a80.73±0.14a81.38±0.14a D321.73±0.25b32.69±0.21b44.62±0.21b50.15±0.32b63.47±0.13a70.12±0.20a74.11±0.37a78.21±0.24a80.69±0.30a81.26±0.53a D620.67±0.11c31.93±0.13c42.52±0.25c49.60±0.19c61.84±0.22b69.74±0.20b74.07±0.19a78.17±0.16a80.57±0.12a81.06±0.17b D931.09±0.15d41.26±0.12d48.78±0.20d59.11±0.13c67.27±0.21c73.81±0.17b77.62±0.16b79.84±0.22b80.73±0.19c D1238.96±0.17e47.49±0.13e58.40±0.19d66.39±0.15d73.46±0.20c77.13±0.15c79.24±0.17c80.01±0.34d D1546.41±0.17f57.17±0.14e65.62±0.16e73.12±0.16d76.54±0.18d79.05±0.24d79.65±0.23e松粳10Songjing10 D023.36±0.25a31.98±0.23a47.03±0.29a53.29±0.25a64.32±0.29a71.62±0.23a74.88±0.28a78.94±0.25a81.08±0.23a81.82±0.25a D321.58±0.24b29.78±0.27b44.23±0.42b50.71±0.32b62.42±0.20b71.27±0.25b74.65±0.33b78.82±0.29b81.03±0.25a81.74±0.31a D620.02±0.35c27.75±0.23c41.24±0.33c48.39±0.23c60.04±0.28c67.70±0.24c73.33±0.21b76.01±0.29c78.24±0.32b79.39±0.29b D925.90±0.17d39.90±0.26d47.17±0.40d59.01±0.12d65.96±0.21d72.00±0.30c75.87±0.13c78.03±0.25c78.82±0.13c D1237.96±0.24e45.59±0.27e57.74±0.27e65.42±0.18e72.12±0.23c75.46±0.22d77.47±0.19d78.31±0.17d D1544.80±0.17f56.48±0.18f65.09±0.27f71.82±0.25d75.22±0.31e77.25±0,21e78.19±0.15d龙稻7号Longdao7 D022.96±0.17a30.84±0.37a46.60±0.22a54.88±0.34a64.15±0.18a70.09±0.15a75.08±0.26a78.60±0.25a80.71±0.17a81.56±0.36a D321.29±0.31b30.00±0.23b44.47±0.31b53.30±0.25b63.95±0.34b69.91±0.23b74.78±0.24b78.53±0.20a80.66±0.23a81.48±0.18a D620.29±0.22c28.19±0.21c42.03±0.25c51.57±0.14c61.10±0.25c69.29±0.24c74.70±0.29b77.47±0.13b79.68±0.30b80.40±0.27b D926.72±0.34d39.72±0.36d48.69±0.22d59.53±0.21d67.65±0.25d74.07±0.23c76.85±0.28c79.22±0.22c79.97±0.28c D1238.92±0.30e47.04±0.24e58.61±0.24e66.76±0.09e73.13±0.10d76.44±0.28d78.92±0.24d79.57±0.09d D1546.25±0.20f57.39±0.32f66.00±0.35f72.96±0.27d76.08±0.23e78.26±0.24e79.13±0.31e

同一列中,数据(平均值±标准差)后跟不同小写字母者表示差异达5%显著水平(最小显著差数法)。下同。

Values (mean±SD) followed by different lowercase letters are significantly different at the 5% level by LSD. The same as in tables below.

表5灌浆结实期冷水胁迫对寒地粳稻成熟期籽粒总淀粉含量的影响

Table 5.Total starch content in grains of japonica rice in maturity stage under cold-water stress during grain-filling stage in cold-region.

处理Treatment东农428Dongnong428总淀粉含量Totalstarchcontent/%总淀粉含量CRICRIfortotalstarchcontent/%松粳10Songjing10总淀粉含量Totalstarchcontent/%总淀粉含量CRICRIfortotalstarchcontent/%龙稻7号Longdao7总淀粉含量Totalstarchcontent/%总淀粉含量CRICRIfortotalstarchcontent/%D081.38±0.14a100.0081.82±0.25a100.0081.56±0.36a100.00D381.26±0.53a99.8581.74±0.31a99.9081.48±0.18a99.90D681.06±0.17b99.6179.39±0.29b97.0380.40±0.27b98.58D980.73±0.19c99.2078.82±0.13c96.3379.97±0.28c98.05D1280.01±0.34d98.3278.31±0.17d95.7179.57±0.09d97.56D1579.65±0.23e97.8778.19±0.15d95.5679.13±0.31e97.02

2.2.3灌浆结实期冷水胁迫对寒地粳稻籽粒直链淀粉含量的影响

由表8可以看出,3个供试品种齐穗后籽粒直链淀粉含量均不断增加,但不同冷水处理直链淀粉积累速率却有所不同。D0先迅速增加,后缓慢增加并逐渐趋于稳定;各冷水处理前期迅速增加,后缓慢增加,齐穗后26 d又迅速增加并逐渐趋于稳定,且在齐穗后31d直链淀粉含量高于对照,且冷水胁迫处理的时间越长,直链淀粉含量越高。D0、D3处理下,东农428 齐穗后21 d、26 d、36 d、41 d、46 d差异不显著,其他时期差异显著,整个灌浆过程中D6、D9、D12、D15与D0差异显著。D0、D3处理下松粳10 齐穗后36 d差异不显著,其他天数差异显著, D12、D15齐穗后41 d差异不显著;D0、D3 处理下,龙稻7号 齐穗后21、26 d差异不显著,其他时期差表6灌浆结实期冷水胁迫对齐穗后籽粒支链淀粉含量的影响

Table 6. Amylopectin content in grains of japonica rice at various days after full heading under cold-water stress during grain-filling stage.

品种与处理Varietyandtreatment齐穗后天数Daysafterfullheading/d7101316212631364146东农428Dongnong428 D017.61±0.09a26.11±0.29a36.07±0.24a40.65±0.17a49.47±0.13a53.59±0.18a57.08±0.13a60.65±0.17a62.65±0.14a63.27±0.16a D316.59±0.18b25.37±0.17b35.37±0.30b39.11±0.23b49.38±0.44a53.58±0.25a56.91±0.20a60.46±0.16b62.58±0.12a63.09±0.19b D615.80±0.29c24.87±0.27c33.69±0.21c38.86±0.21c47.87±0.18b53.27±0.18b56.73±0.20b60.35±0.07b62.36±0.15b62.81±0.20c D924.31±0.16d32.82±0.22d38.13±0.15d45.89±0.24c52.09±0.21c55.78±0.11c58.86±0.26c60.66±0.20c61.40±0.18d D1230.78±0.19e37.15±0.13e45.45±0.16d51.37±0.18d55.24±0.24d57.84±0.28d59.73±0.21d60.31±0.20e D1536.26±0.19f44.68±0.16e50.69±0.17e54.56±0.32e57.03±0.30e59.32±0.23e59.81±0.21f松粳10Songjing10 D018.04±0.26a24.35±0.23a37.25±0.19a41.88±0.18a50.04±0.21a54.79±0.27a57.43±0.31a61.18±0.15a63.13±0.38a63.75±0.27a D316.68±0.16b22.69±0.21b35.13±0.22b39.62±0.07b48.27±0.33b54.58±0.25b57.07±0.26b61.01±0.26a62.91±0.18b63.52±0.26b D615.45±0.07c21.07±0.16c32.67±0.18c37.58±0.30c46.40±0.31c52.09±0.24c55.06±0.24c57.17±0.22b59.08±0.25c60.15±0.36c D919.78±0.24d31.71±0.30d36.82±0.22d45.86±0.21d50.22±0.56d53.28±0.22d56.42±0.16c58.36±0.25d59.09±0.24d D1230.29±0.21e36.06±0.22e45.13±0.26e49.47±0.24e52.86±0.38e55.74±0.18d57.41±0.12e58.18±0.22e D1535.59±0.09f44.11±0.33f49.20±0.27f52.13±0.10f55.02±0.21e56.92±0.24f57.74±0.23f龙稻7号Longdao7 D017.82±0.19a23.51±0.22a37.05±0.24a43.54±0.17a49.74±0.25a53.86±0.29a57.50±0.31a60.55±0.24a62.51±0.24a63.35±0.13a D316.34±0.16b22.95±0.21b35.41±0.20b42.38±0.23b49.61±0.25a53.73±0.32a57.02±0.19b60.36±0.19b62.31±0.16b63.12±0.20b D615.77±0.16c21.59±0.20c33.29±0.30c41.05±0.21c47.48±0.37b53.24±0.31b56.57±0.19c59.15±0.16c60.44±0.25c61.07±0.06c D920.37±0.15d31.65±0.21d38.52±0.17d46.18±0.13c51.78±0.24c55.63±0.33d57.67±0.22d59.86±0.29d60.48±0.28d D1231.11±0.26e37.27±0.25e45.56±0.30d51.01±0.35d54.28±0.07e56.93±0.19e59.19±0.44e59.67±0.24e D1536.71±0.20f44.46±0.16e50.58±0.09e53.70±0.37f56.25±0.21f58.32±0.24f58.98±0.34f

表7灌浆结实期冷水胁迫对寒地粳稻成熟期支链淀粉含量的影响

Table 7. Amylopectin content in grains of japonica rice in maturity stage under cold-water stress in cold-region.

处理Treatment东农428Dongnong428支链淀粉含量Amylopectincontent/%支链淀粉含量CRICRIforamylopectincontent/%松粳10Songjing10支链淀粉含量Amylopectincontent/%支链淀粉含量CRICRIforamylopectincontent/%龙稻7号Longdao7支链淀粉含量Amylopectincontent/%支链淀粉含量CRICRIforamylopectincontent/%D063.27±0.16a100.0063.75±0.27a100.0063.35±0.13a100.00D363.09±0.19b99.7263.52±0.26b99.6463.12±0.20b99.64D662.81±0.20c99.2760.15±0.36c94.3561.07±0.06c96.40D961.40±0.18d97.0459.09±0.24d92.6960.48±0.28d95.47D1260.31±0.20e95.3258.18±0.22e91.2659.67±0.24e94.19D1559.81±0.21f94.5357.74±0.23f90.5758.98±0.34f93.10

异显著,D6、D9、D12、D15与D0差异显著。由表9可见,不同品种成熟期直链淀粉含量对冷水胁迫的应激能力不同,东农428各冷水处理成熟期直链淀粉含量增幅最小,CRI为100.28%~109.49%,受影响最小;松粳10 增幅最大,CRI为100.83%~113.17%,受影响最大;龙稻7号处于二者之间, CRI为101.32%~110.59%。

2.3灌浆结实期冷水胁迫对寒地粳稻穗部性状及产量构成因素的影响

由表10可以看出,灌浆结实期冷水胁迫对东农428、松粳10和龙稻7号的每穗实粒数影响均达显著水平,随着冷水胁迫天数的增加,各冷水处理每穗实粒数与D0相比均有显著差异,且各冷水处理间差异显著。东农428各冷水处理下每穗实粒数CRI为85.20%~98.06%;松粳10 CRI为79.49%~93.51%;龙稻7号 CRI为82.71%~95.86%。可见,灌浆结实期冷水胁迫对各品种结实率的影响存在明显差异,对松粳10影响最大,对东农428影响最小,龙稻7号处于两者之间。

灌浆结实期冷水胁迫对东农428、松粳10和龙稻7号的结实率影响显著,东农428 D3处理与D0差异不显著,其他冷水处理与D0相比差异显著,除D12、D15处理差异不显著外,其他冷水处理间差异也达显著水平;松粳10和龙稻7号随着冷水胁迫天数的增加,各冷水处理的结实率均显著低于对照,除松粳10 D9、D12及龙稻7号 D12、D15间差异不显著,其他冷水处理间差异显著。东农428各冷水处理结实率CRI为88.85%~98.57%;松粳10 CRI为85.44%~95.40%;龙稻7号 CRI为87.67%~97.38%。可见,灌浆结实期冷水胁迫下各品种间结实率差异也较为明显,对松粳10影响最大,东农428受到影响最小,龙稻7号处于二者之间。这说明3个供试品种对灌浆结实期低温的耐受能力存在差异,冷水胁迫下松粳10耐冷性最差,东农428耐冷性最好,龙稻7号处于二者之间。

表8灌浆结实期冷水胁迫对粳稻籽粒齐穗后直链淀粉含量的影响

Table 8. Amylose content in grains of japonica rice at various days after full heading under cold-water stress during grain-filling stage.

品种与处理Varietyandtreatment齐穗后天数Daysafterfullheading/d7101316212631364146东农428Dongnong428 D05.25±0.13a7.49±0.12a9.61±0.13a11.27±0.07a14.15±0.09a16.62±0.09a17.11±0.10f17.67±0.15e18.08±0.08e18.12±0.10d D35.14±0.08b7.33±0.08b9.25±0.12b11.04±0.11b14.09±0.10a16.54±0.11ab17.20±0.09e17.75±0.11de18.11±0.08e18.17±0.10cd D64.87±0.07c7.06±0.06c8.83±0.08c10.74±0.14c13.97±0.21b16.47±0.15b17.34±0.14d17.82±0.12d18.20±0.09d18.25±0.16c D96.78±0.10d8.44±0.18d10.65±0.12d13.22±0.11c15.18±0.10c18.03±0.11c18.76±0.17c19.18±0.12c19.33±0.16b D128.18±0.08e10.33±0.15e12.95±0.12d15.02±0.12d18.22±0.13b19.29±0.09b19.51±0.09b19.70±0.08a D1510.15±0.09f12.49±0.07e14.93±0.13e18.57±0.09a19.51±0.08a19.73±0.11a19.84±0.15a松粳10Songjing10 D05.32±0.06a7.63±0.10a9.78±0.10a11.41±0.15a14.28±0.11a16.83±0.13a17.45±0.07f17.76±0.14e17.95±0.12e18.07±0.08f D34.90±0.10b7.09±0.08b9.10±0.08b11.09±0.08b14.15±0.10b16.69±0.18b17.58±0.11e17.81±0.08e18.12±0.07d18.22±0.11e D64.57±0.09c6.69±0.11c8.57±0.10c10.81±0.11c13.64±0.14c15.61±0.13e18.26±0.10d18.84±0.13d19.16±0.12c19.24±0.15d D96.12±0.08d8.19±0.06d10.36±0.09d13.15±0.09d15.74±0.07f18.72±0.11c19.45±0.11c19.67±0.09b19.73±0.15c D127.67±0.08e9.53±0.11e12.61±0.13e15.95±0.07c19.25±0.11b19.72±0.11b20.06±0.08a20.13±0.08b D159.21±0.10f12.37±0.08f15.88±0.20d19.69±0.09a20.20±0.12a20.33±0.14a20.45±0.12a龙稻7号Longdao7 D05.14±0.06a7.33±0.08a9.55±0.13a11.34±0.11a14.41±0.09a16.23±0.18a17.58±0.11f18.06±0.09f18.20±0.13f18.22±0.13f D34.95±0.10b7.05±0.13b9.06±0.11b10.92±0.14b14.34±0.12a16.18±0.12a17.76±0.28e18.17±0.14e18.35±0.22e18.46±0.24e D64.52±0.12c6.60±0.21c8.74±0.16c10.52±0.24c13.62±0.18b16.05±0.24b18.13±0.24d18.32±0.24d19.24±0.26d19.33±0.11d D96.35±0.15d8.07±0.19d10.17±0.17d13.35±0.22c15.87±0.18c18.44±0.22c19.18±0.17c19.36±0.11c19.49±0.12c D127.81±0.16e9.77±0.14e13.04±0.17d15.75±0.12d18.85±0.11b19.51±0.12b19.72±0.15b19.90±0.11b D159.53±0.09f12.93±0.16e15.42±0.08e19.26±0.09a19.83±0.12a19.94±0.10a20.15±0.13a

表9灌浆结实期冷水胁迫对寒地粳稻成熟期籽粒直链淀粉含量的影响

Table 9. Amylose content in grains of japonica rice in maturity stage under cold-water stress in cold-region.

处理Treatment东农428Dongnong428直链淀粉含量Amylosecontent/%直链淀粉含量CRICRIforamylosecontent/%松粳10Songjing10直链淀粉含量Amylosecontent/%直链淀粉含量CRICRIforamylosecontent/%龙稻7号Longdao7直链淀粉含量Amylosecontent/%直链淀粉含量CRICRIforamylosecontent/%D018.12±0.10d100.0018.07±0.08f100.0018.22±0.13f100.00D318.17±0.10cd100.2818.22±0.11e100.8318.46±0.24e101.32D618.25±0.16c100.7219.24±0.15d106.4719.33±0.11d106.09D919.33±0.16b106.6819.73±0.15c109.1919.49±0.12c106.97D1219.70±0.08a108.7220.13±0.08b111.4019.90±0.11b109.22D1519.84±0.15a109.4920.45±0.12a113.1720.15±0.13a110.59

灌浆结实期冷水胁迫对东农428、松粳10和龙稻7号的千粒重影响最为显著,东农428 D3处理 与D0差异不显著,其他冷水处理与D0相比差异显著,除D9、D12处理差异不显著外,其他冷水处理间差异达显著水平;松粳10和龙稻7号随着冷水胁迫程度的增加,千粒重均显著低于对照,松粳10 D9、D12差异不显著,与其他冷水处理间差异显著;龙稻7号 D9与D12差异不显著,D12与D15差异不显著,其他冷水处理间差异显著。东农428各冷水处理千粒重CRI为78.80%~98.71%;松粳10 CRI为74.72%~91.43%;龙稻7号 CRI为76.14%~表10灌浆结实期冷水胁迫对寒地粳稻穗部特征及产量构成因素的影响

Table 10. Panicle traits and yield components of japonica rice under cold-water stress during grain-filling stage in cold-region.

品种与处理Varietyandtreatment每穗实粒数Grainnumberperpanicle每穗实粒数CRICRIforgrainnumberperpanicle/%结实率Seed-settingpercentage/%结实率CRICRIforseed-settingpercentage/%千粒重1000-grainweight/g千粒重CRICRIfor1000-grainweight/%东农428Dongnong428 D0110.01±4.54a100.0092.36±0.41a100.0026.42±0.29a100.00 D3107.88±3.14b98.0691.04±0.34a98.5726.08±0.26a98.71 D6103.39±3.60c93.9888.96±0.61b96.3224.24±0.26b91.75 D998.70±3.00d89.7285.10±0.84c92.1422.51±0.82c85.20 D1295.89±2.21e87.1683.25±0.95d90.1422.06±0.21c83.50 D1593.73±2.35f85.2082.06±1.12d88.8520.82±0.29d78.80松粳10Songjing10 D0107.78±6.09a100.0091.55±0.61a100.0025.44±0.27a100.00 D3100.78±3.06b93.5187.34±0.44b95.4023.26±0.22b91.43 D698.13±3.49c91.0585.91±0.67c93.8421.58±0.35c84.83 D991.93±3.96d85.2981.87±0.56d89.4320.23±0.22d79.52 D1289.22±0.50e82.7880.28±0.44d87.6919.89±0.20d78.18 D1585.67±3.31f79.4978.22±0.46e85.4419.01±0.24e74.72龙稻7号Longdao7 D0103.21±3.79a100.0091.87±0.54a100.0026.11±0.17a100.00 D398.94±2.99b95.8689.46±0.35b97.3824.82±0.32b95.06 D695.00±3.28c92.0587.07±0.94c94.7822.59±0.49c86.52 D990.18±3.70d87.3883.48±0.48d90.8721.21±0.22d81.23 D1286.74±1.53e84.0481.25±0.43e88.4420.63±0.36de79.01 D1585.36±1.91f82.7180.54±0.45e87.6719.88±0.20e76.14

表11可溶性淀粉合成酶(SSS)、淀粉分支酶(SBE)活性与淀粉及其组分含量的相关分析

Table 11. Correlation coefficients of soluble starch synthase (SSS), starch branching enzyme (SBE) activities and starch content in japonica rice in cold-region.

品种与淀粉含量Varietyandstarchcontent齐穗后天数Daysafterfullheading/d可溶性淀粉合成酶活性SSSactivity4~1314~2627~46淀粉分支酶活性SBEactivity4~1314~2627~46东农428Dongnong428 直链淀粉Amylosecontent0.183-0.918**-0.897*0.034-0.843*-0.923** 支链淀粉Amylopectincontent-0.2460.909*0.897*-0.1010.836*0.951** 总淀粉Totalstarchcontent-0.3160.871*0.870*-0.1780.8020.954**松粳10Songjing10 直链淀粉Amylosecontent0.114-0.936**-0.974**-0.384-0.880*-0.973** 支链淀粉Amylopectincontent-0.0470.945**0.975**0.4390.897*0.957** 总淀粉Totalstarchcontent-0.0060.945**0.970**0.4690.902*0.943**龙稻7号Longdao7 直链淀粉Amylosecontent0.053-0.957**-0.979**-0.084-0.900*-0.964** 支链淀粉Amylopectincontent-0.0820.954**0.981**0.0550.892*0.967** 总淀粉Totalstarchcontent-0.1080.948**0.980**0.0290.883*0.967**

*,**分别表示在0.05和0.01水平上显著相关。

*,**indicate significant correlation at the 0.05 and 0.01 levels,respectively.

95.06%。可见,灌浆结实期冷水胁迫下各品种间千粒重差异也较为明显,冷水胁迫对松粳10影响最大,东农428受到影响最小,龙稻7号处于二者之间。这说明3个供试品种对灌浆结实期低温的耐受能力存在差异,冷水胁迫下松粳10耐冷性最差,东农428耐冷性最好,龙稻7号处于二者之间。

2.4淀粉合成关键酶活性与成熟期淀粉及其组分含量的相关分析

由表11可知,东农428成熟期直链淀粉含量与灌浆前期籽粒SSS活性正相关,与灌浆中后期籽粒SSS活性呈显著或极显著负相关;成熟期支链淀粉、总淀粉含量与灌浆前期籽粒SSS活性呈负相关,与灌浆中、后期籽粒SSS活性呈显著正相关。松粳10、龙稻7号成熟期直链淀粉含量与灌浆前期籽粒SSS活性与呈正相关,与灌浆中后期籽粒SSS活性呈极显著负相关;成熟期支链淀粉、总淀粉含量与灌浆前期籽粒SSS活性与呈负相关,与灌浆中后期籽粒SSS活性呈极显著正相关。

通过表11还可以看出,东农428成熟期直链淀粉含量与灌浆前期籽粒SBE活性呈正相关,与灌浆中后期籽粒SBE活性呈显著或极显著负相关;成熟期支链淀粉、总淀粉含量与灌浆前期籽粒SBE活性呈负相关,与灌浆中期籽粒SBE活性呈正相关或显著正相关,与灌浆后期籽粒SBE活性呈极显著正相关。松粳10、龙稻7号成熟期直链淀粉含量与灌浆前期籽粒SBE活性呈负相关,与灌浆中后期籽粒SBE活性呈显著或极显著负相关;成熟期支链淀粉、总淀粉含量与灌浆前期籽粒SBE活性呈正相关,与灌浆中后期籽粒SBE活性呈显著或极显著正相关。

3讨论

温度是影响水稻籽粒淀粉合成积累的主要因素之一[16-21]。许多研究证实,无论是高等植物的光合还是非光合器官,SSS和SBE在淀粉合成过程中均起重要作用[7]。水稻在低温条件下灌浆结实,导致淀粉合成关键酶活性呈不同程度的下降,对淀粉初期的合成及后期的积累影响显著[11]。本研究发现,灌浆结实期冷水胁迫下东农428籽粒中SSS和SBE活性普遍高于龙稻7号,龙稻7号普遍高于松粳10。受冷水胁迫的影响,3个品种的SSS和SBE活性变化不尽相同,随着冷水胁迫天数的增加,峰值酶活性降幅逐渐增大。这可能是因为:一是低温条件下水稻体内代谢平衡被打破,破坏了组织及细胞的微结构,酶发挥正常功能的内部环境产生变化,导致酶活性下降;二是叶片叶绿素含量降低,叶片早衰,光合产物减少造成灌浆底物减少,从而导致酶活性下降。

水稻籽粒的充实过程,主要是淀粉的合成与积累过程,淀粉的积累又受一系列与淀粉合成代谢有关酶的调控[29]。灌浆结实期是水稻籽粒淀粉合成积累的关键时期,此期遭遇低温对灌浆系统内部结构和功能造成一定的损伤,已有研究表明低温会引起水稻籽粒淀粉含量的降低,导致籽粒中直链淀粉与支链淀粉的比例发生改变[30]。本研究发现,籽粒支链淀粉、总淀粉含量与灌浆中、后期籽粒SSS活性、SBE活性呈显著或极显著正相关(除灌浆中期东农428外),这说明SSS与SBE一起主要作用于籽粒支链淀粉的合成。本研究同时发现,随着灌浆结实期冷水胁迫程度的增加,成熟期支链淀粉、总淀粉含量降幅逐渐增大;短时间(3 d)冷水胁迫对总淀粉含量影响不显著,而长时间(6~15 d)冷水胁迫导致支链淀粉及总淀粉含量下降,其降幅与品种对低温的耐性有关,分析原因可能是灌浆初期遭受短时间低温,籽粒灌浆启动晚,前期淀粉积累速度慢,影响灌浆初期淀粉的合成积累,随着后期恢复正常灌溉,酶活性逐渐得到恢复,进而总淀粉含量升高并接近于对照,而长时间低温胁迫对水稻生殖器官的内含物质及生理结构均造成一定损伤,导致源库关系异常;另一方面受到籽粒本身淀粉转化机能下降的限制[10],短时间内酶活性无法恢复,导致淀粉及其组分积累受阻,总淀粉含量降低。大部分品种的灌浆结实期温度与直链淀粉含量间存在密切联系[31,32]。周德翼等研究发现中、低直链淀粉品种在低温胁迫下灌浆结实会造成籽粒中直链淀粉含量过高[30],而宋广树等认为不同时期低温处理下籽粒直链淀粉含量降低[21]。本研究表明,灌浆结实期冷水胁迫导致成熟期籽粒直链淀粉含量显著增加,且随着冷水胁迫程度的加重,直链淀粉含量增幅逐渐增大。本研究还发现,灌浆结实期冷水胁迫下成熟期直链淀粉含量与灌浆前期SSS活性呈正相关;与灌浆中、后期SSS活性呈显著或极显著负相关,这与赵步洪[33]、常二华[34]等的研究结果基本一致。此结果也说明成熟期直链淀粉含量与灌浆中、后期SSS活性没有明显关系,由此推断在灌浆中、后期颗粒结合型淀粉合成酶(GBSS)开始发挥作用。许多研究报道证实,GBSS也是籽粒淀粉合成代谢过程中的一个关键酶,它是水稻灌浆过程中影响直链淀粉积累量的一个决定性因素[35],由此推断,籽粒灌浆前期SSS活性、SBE活性逐渐升高,淀粉积累速率逐渐加快,到灌浆中后期GBSS活性急剧上升[36],籽粒中淀粉粒形成一定的晶体结构,GBSS才能开始催化直链淀粉大量合成[37],这可能是导致灌浆后期直链淀粉含量上升的缘故,但这尚需进一步探讨。

以往多数研究表明水稻在低温条件下灌浆结实,可引起灌浆速率降低,使水稻籽粒空瘪程度加重[20-21,38]。本研究表明,灌浆结实期冷水胁迫下3个不同品种每穗实粒数、结实率、千粒重显著降低(东农428冷水处理3 d除外);东农428影响最小,松粳10受影响程度最大,这是由于冷水胁迫处理下籽粒淀粉合成关键酶活性降低,导致籽粒淀粉形成积累受阻,进而造成每穗实粒数、结实率、千粒重的降低;而不同供试品种耐冷性又存在一定差异,耐冷品种对冷水胁迫的抵抗力强,冷敏感品种抵抗力差所引起的。由此可见,每穗实粒数、结实率、千粒重是不同耐冷性供试品种响应冷水胁迫的差异产物,可用于耐冷性鉴定。为了预防低温冷害,选取耐冷型品种是最基本的途径,同时辅以必要合理的栽培措施,可实现黑龙江省寒地粳稻高产。

参考文献:

[1]杨建昌,彭少兵,顾世梁,等. 水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化. 作物学报, 2001,(2):157-164.

Yang J C, Peng S B, Gu S L, et al. Changes in activities of three enzymes associated with starch synthesis in rice grains during grain filling.ActaAgronSin, 2001, 27(2): 157-164. (in Chinese with English abstract)

[2]王贺正,马均,李旭毅,等. 水分胁迫对水稻籽粒灌浆及淀粉合成有关酶活性的影响. 中国农业科学, 2009,5:1550-1558.

Wang H Z, Ma J, Li X Y. Effects of water stress on grain filling and activities of enzymes involved in starch synthesis in rice.SciAgricSin, 2009, 5:1550-1558. (in Chinese with English abstract)

[3]孟亚利,高如嵩,张嵩午. 影响稻米品质的主要气候因子. 西北农业大学学报,1994,22(1):40-43.

Meng Y L, Gao R S, Zhang S W. Effects of the main climate factor in rice.JXibeiAgricUniv, 1994, 22(1):40-43.(in Chinese with English abstract)

[4]TAIRA Toshio . Relation between mean air temperature during ripening period of rice and amylographic characteristicsor cooking quality.JpnCropSci,1999, 68(1): 45-49.

[5]王连敏. 寒地水稻耐冷基础的研究:Ⅱ.小孢子阶段低温对水稻结实的影响. 中国农业气象,1997, 4: 12-14.

Wang L M. Research on cold tolerance rice in cold region: Ⅱ. Effects of seed in low temperature of microspore stage on rice.AgricMeteorol, 1997, 4: 12-14. (in Chinese with English abstract)

[6]武琦,邹德堂,赵宏伟,等. 不同生育时期低温胁迫下水稻耐冷指标变化的研究. 作物杂志,2012, 6: 95-101.

Wu Q, Zou D T, Zhao H W, et al. Research on changes of cold tolerance in different growth stage of japonica rice in cold region.Crops, 2012, 06:95-101. (in Chinese with English abstract)

[7]Nakamura Y, Yuki K, Park S Y, et al. Carbohydrate metabolism in the developing endosperm of rice grains.PlantCellPhysiol, 1989, 30: 833-839.

[8]董明辉,赵步洪,吴翔宙,等. 水稻结实期不同粒位籽粒相关内源激素含量和关键酶活性的差异及其与品质的关系. 中国农业科学, 2008, 41(2): 370-380.

Dong M H, Zhao B H, Wu X Z, et al. Difference in hormonal content and activities of key enzymes in the grains at different positions on a rice panicle during grain filling and their correlations with rice qualities.SciAgricSin, 2008, 41(2): 370-380.(in Chinese with English abstract)

[9]Dauvillée D, Mestre V, Colleoni C, et al. The debranching enzyme complex missing in glycogen accumulating mutants ofChlamydomonasreinhardtiidisplays an isoamylase-type specificity.PlantSci, 2000,157(2):145-156.

[10]程方民,钟连进,孙宗修. 灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响. 中国农业科学,2003,5:492-501.

Cheng F M, Zhong L J, Sun Z X. Effect of temperature at grain-filling stage on starch biosynthetic metabolism in developing rice grains of early-indica.SciAgricSin, 2003,05:492-501. (in Chinese with English abstract)

[11]沈波,庄云杰,樊叶杨,等. 水稻籽粒淀粉分支酶活性的遗传分析. 植物生理与分子生物学学报, 2005,31(6):631-636.

Shen B, Zhuang Y J, Fan Y Y, et al. Genetic analysis of starch branching enzyme activity in rice grain.JPlantPhysiolMolBio, 2005,31(6):631-636. (in Chinese with English abstract)

[12]Fontaine T, D'Hulst C, Maddelein M L, et al. Toward an understanding of the biogenesis of the starch granule,evidence that chlamydomonas soluble starch synthase II controls the synthesis of intermediate size glucans of amylopectin.JBiolChem,1993, 268(22):16223-16230.

[13]Nakamura Y, Takeichi T, Kawaguchi K, et al. Purification of two forms of starch branching enzyme (Q-enzyme) from developing rice endosperm.PhysiolPlant, 1992, 84: 329-335.

[14]Yamanouchi H, Nakamura Y. Organ specificity of is forms of starch branchig enzyme (Q-enzyme) in rice.PlantCellPhysiol,1992,33(7):985-991.

[15]Smith A M.Major differences in isoforms of starch-branching enzyme between developing embryos of round- and wrinkled-seeded peas (PisumsativumL.).Planta, 1988, 175: 270-279.

[16]金正勋,杨静,钱春荣,等. 灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响. 中国水稻科学,2005,4:377-380.

Jin Z X, Yang J, Qian C R, Effects of temperature during grain filling period on activities of key enzymes for starch synthesis and rice grain quality.ChinJRiceSci, 2005,04:377-380. (in Chinese with English abstract)

[17]金正勋,秋太权,孙艳丽,等. 结实期温度对稻米理化特性及淀粉谱特性的影响. 中国农业气象, 2001,22(2):1-5.

Jin Z X, Qiu T Q, Sun Y L. Effects of shading levels on biomass of banana seedlings in winter and spring.AgricMeteorol, 2001,22(2):1-5. (in Chinese with English abstract)

[18]孟亚利,周治国. 结实期温度与稻米品质的关系. 中国水稻科学,1997,11(1):51-54.

Meng Y L, Zhou Z G. Relationship between temperature and quality of rice at grain-filling stage.ChinJRiceSci, 1997,11(1):51-54. (in Chinese with English abstract)

[19]吕艳梅,谭伟平,肖层林,等. 高温对优质水稻籽粒淀粉形成及淀粉合成相关酶活性的影响. 华北农学报,2014,1:135-139.

Lv Y M, Tan W P, Xiao C L, et al. Effect of high temperature on starch formation of grain and activities of enzymes related to starch synthesis of quality rice varieties.ActaAgricBoreali-Sin, 2014,(29)1:135-139. (in Chinese with English abstract)

[20]武琦. 不同生育时期低温胁迫下寒地粳稻淀粉积累规律的研究. 哈尔滨:东北农业大学, 2013.

Wu Q. Research on starch accumulation rule in different growth stage of japonica rice in cold region. Harbin: Northeast Agric Univ, 2013. (in Chinese with English abstract)

[21]宋广树,孙忠富,王夏,等. 不同生育时期低温处理对水稻品质的影响. 中国农学通报,2011,18:174-179.

Song G S, Sun Z F, Wang X, et al. Effect of low temperature on rice quality in different growth period.ChinAgricSciBull, 2011,18:174-179. (in Chinese with English abstract)

[22]Shimono H, Hasegawa T, Iwama K. Response of growth and grain yield in paddy rice to cool water at different growth stages.FieldCrops,2002,73:67-79.

[23]Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize.PlantPhysiol,1988,86:1013-1019.

[24]程方民,蒋德安,吴平,等. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征. 作物学报, 2001, 27(2): 201-206.

Cheng F M, Jiang D A, Wu P, et al. The dynamic change of starch synthesis enzymes during the kernel filling stage and effects of temperature upon it.ActaAgronSin, 2001, 27(2): 201-206. (in Chinese with English abstract)

[25]李太贵,沈波,陈能,等. Q酶在水稻籽粒垩白形成中作用的研究. 作物学报,1997,23(3):338-344.

Li T G, Shen B, Chen N, et al. Effect of Q-enzyme on the chalkiness formation of rice grain.ActaAgronSin, 1997, 23(3): 338-344. (in Chinese with English abstract)

[26]何照范. 谷物淀粉组份分离及测试方法评述. 粮食储藏,1985,6:32-38.

He Z F. Grain Quality and Its Analysis Technology. Beijing: Agriculture Press, 1985: 274-294. (in Chinese with English abstract)

[27]杨志奇,杨春刚,汤翠凤,等. 中国粳稻地方品种孕穗期耐冷性评价及聚类分析. 植物遗传资源学报,2008,4:485-491.

Yang Z Q, Yang C G, Tang C F, et al. Evaluation of cold tolerance at booting stage and cluster analysis for japonica rice landraces in China.JPlantGeneRes, 2008, 4:485-491. (in Chinese with English abstract)

[28]梁建生,曹显祖,徐生,等. 水稻籽粒库强与其淀粉积累之间关系的研究. 作物学报,1994,6:685-691.

Liang J S, Cao X Z, Xu S, et al. Studies on the relationship between the grain sink strength and it's starch accumulation in rice (O.sativa).ActaAgronSin,1994,20(6): 685-691. (in Chinese with English abstract)

[29]唐国胜. 温度对水稻灌浆期籽粒淀粉合成代谢的影响. 长沙:湖南农业大学,2009.

Tang G S. Effect of temperature on starch biosynthetic metabolism in developing grain of rice duing grain-filling stage. Changsha: Hunan Agric Univ, 2009 (in Chinese with English abstract)

[30]周德翼, 张嵩午, 高如嵩, 等. 稻米直链淀粉含量与结实期温度间的关系研究. 西北农业大学学报,1994,(2):1-5.

Zhou D Y, Zhang S W, Gao R S, et al. The relationship between amylose content in rice grain and temperature in grain-filling stage.JXibeiAgricUniv, 1994,(2):1-5. (in Chinese with English abstract)

[31]程方民,丁元树,朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系. 生态学报, 2000,4:646-652.

Cheng F M, Ding Y S, Zhu B Y. The formation of amylose content in rice grain and its relation with field temperature.ActaEcoloSin, 2000,4:646-652. (in Chinese with English abstract)

[32]玉置雅彦,江幡守卫,田代亨,等. 关于稻米品质形成的生理生态学研究:Ⅰ.齐穗时追氮与成熟期气温对米质的影响. 湖南大学邵阳分校学报,1991,(3):232-235.

Tamaki M, Ebata M, Tashiro T, et al. Physico-ecological studies on quality formation of rice kernel :Ⅰ. Effects of nitrogen top-dressed at full heading time and air temperature during ripening period on quality of rice kernel.JHunanUniveShaoyang, 1991,(3):232-235. (in Chinese with English abstract)

[33]赵步洪,张文杰,常二华,等. 水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系. 中国农业科学, 2004,8:1123-1129.

Zhao B H, Zhang W J, Chang E H, et al. Changes in activities of the key enzymes related to starch synthesis in rice grains during grain filling and their relation-ships with the filling rate and cooking quality.SciAgricSin, 2004, 8:1123-1129. (in Chinese with English abstract)

[34]常二华,王朋,唐成, 等. 水稻根和籽粒细胞分裂素和脱落酸浓度与籽粒灌浆及蒸煮品质的关系. 作物学报,2006,32(4):540-547.

Chang E H, Wang P, Tang C, et al. Concentrationsof cytokinin and abscisic acid in roots and grains and its relationship with grain filling and cooking quality of rice.ActaAgronSin, 2006,32(4):540-547. (in Chinese with English abstract)

[35]郭连安,胡运高,杨国涛,等. 不同直链淀粉含量水稻籽粒淀粉积累及其相关酶的活性变化研究. 云南大学学报:自然科学版), 2014, 6: 942-949.

Guo L A, Hu Y G, Yang G T,et al. The research on the accumulation of grain starch and change of related enzymes activity in rice with different amylose contents.JYunnanUniv, 2014,6:942-949. (in Chinese with English abstract)

[36]Umemoto T, Nakamura Y, Ishikura N. Activity of starch synthase and the amylose content in rice endosperm.Phytochemistry,1995,40(6):1613-1616.

[37]钟连进,程方民. 水稻籽粒灌浆过程直链淀粉的积累及其相关酶的品种类型间差异. 作物学报,2003,29(3):452-456.

Zhong L J, Cheng F M. Varietal differences in amylose accumulation and activities of major enzymes associated with starch synthesis during grain filling in rice.ActaAgronSin, 2003, 29(3):452-456. (in Chinese with English abstract)

[38]Maysaya T, RandiC J, Maria, et al. Effects of environmental factors on cereal cereal starch biosynthesis and composition.JCerealSci,2012,56:67-80.

Effect of Cold-water Stress at Grain-filling Stage on Starch Accumulation and Related Enzyme Activities in Grains of japonica Rice in Cold-region

XIA Nan, ZHAO Hong-wei*, LV Yan-chao, ZHAO Zhen-dong, ZOU De-tang, LIU Hua-long, WANG Jing-guo,JIA Yan

(RiceResearchInstitute/CollegeofAgronomy,NortheastAgriculturalUniversity,Harbin150030,China;*Corresponding author,E-mail: hongweizhao@163.com)

XIA Nan, ZHAO Hongwei, LV Yanchao, et al. Effect of cold-water stress at grain-filling stage on starch accumulation and related enzyme activities in grains of japonica rice in cold-region. Chin J Rice Sci, 2016, 30(1): 62-74.

Abstract:A field experiment was conducted to reveal the influence of cold-water stress(17℃,lasting 3,6,9,12,15d) on grain starch synthesis and accumulation, yield components of japonica rice (Dongnong 428, Songjing 10 and Longdao 7) in cold-region during grain-filling stage, as well as the relationships between the changes in key enzymes activities related to starch synthesis and starch composition under cold-water stress. The results showed that compared with the control, soluble starch synthase (SSS) activity and starch branching enzyme (SBE) activity decreased, as well as the total starch contents and amylopectin content, while the amylose content increased under 17℃ cold-water stress during grain-filling stage. According to the correlation analysis,the activities of soluble starch synthase (SSS) and starch branching enzyme (SBE) were significantly correlated with grain starch accumulation, playing an equally important role in the changes of starch and its component contents. Meanwhile,the grain number per panicle, thousand seed weight and seed setting rate were significantly reduced during grain-filling stage. The amplitude of variation for every indicator increased gradually with lengthening cold-water treatment time. The indicators related to the yield components of japonica rice in cold-region varied with cold-water stress duration and can be used for the identification of cold resistance. According to the indexes under the cold-water stress for different japonica rice varieties in cold-region, Songjing 10 was the most susceptible, followed by Longdao 7 and Dongnong 428.

Key words:japonica rice; grain-filling stage; cold-water stress; key enzymes to starch synthesis; starch

文章编号:1001-7216(2016)01-0062-13

中图分类号:Q945.78;S511.01

文献标识码:A

基金项目:国家科技支撑计划资助项目(2013BAD20B04);国家自然科学基金资助项目(31571609);黑龙江省重大科技招标项目(GA14B102);东北农业大学研究生科技创新一般项目(YJSCX 14050)。

收稿日期:2015-06-15; 修改稿收到日期: 2015-08-18。

猜你喜欢
粳稻淀粉
从人工合成淀粉说开去
我国双季早粳稻实现“零的突破”
解读粳稻品种南方种植播期
解淀粉芽孢杆菌Lx-11
豫南粳稻机械化适应品种筛选及利用研究
一个粳稻早熟突变体的遗传分析及育种应用潜力的初步评价
MMT/淀粉-g-PAA的制备及其对铬(Ⅵ)的吸附
播期播量对晚粳稻宁84农艺性状及产量的影响
蕉藕淀粉与薯类淀粉特性对比研究
蛋白酶水解马铃薯淀粉对于淀粉化学性质改变的研究