水分胁迫对不同抗旱性砧木嫁接番茄生长发育及水气交换参数的影响

2017-02-24 03:07张志焕韩敏张逸王允刘灿玉曹逼力徐坤
中国农业科学 2017年2期
关键词:嫁接苗抗旱性土壤水分

张志焕,韩敏,张逸,王允,刘灿玉,曹逼力,徐坤

(山东农业大学园艺科学与工程学院/作物生物学国家重点实验室/农业部黄淮地区园艺作物生物学与种质创制重点实验室,山东泰安 271018)

水分胁迫对不同抗旱性砧木嫁接番茄生长发育及水气交换参数的影响

张志焕,韩敏,张逸,王允,刘灿玉,曹逼力,徐坤

(山东农业大学园艺科学与工程学院/作物生物学国家重点实验室/农业部黄淮地区园艺作物生物学与种质创制重点实验室,山东泰安 271018)

【目的】干旱是威胁农业生产的主要气象因素,合理利用作物抗旱种质资源是生物节水的重要内容。通过研究水分胁迫对不同抗旱性砧木嫁接番茄生长发育及水气交换参数的影响,探讨番茄采用抗旱性砧木进行嫁接栽培实现生物节水的可行性。【方法】试验采用裂区设计,主区为番茄嫁接苗处理,分别为接穗‘金棚 1号’自根苗(J)、抗旱性强的砧木‘606’嫁接苗(J/T)和水分敏感的砧木‘112’嫁接苗 J/S),副区为土壤水分处理,土壤相对含水量分别为80%、60%和40%。番茄采用盆栽称重法控制土壤水分,于植株盛果期测定展开功能叶片的色素、水势及水气交换参数,并计算瞬时水分利用效率,同时分析不同处理的番茄产量及果实品质。【结果】嫁接番茄的产量显著高于自根番茄,尤以抗旱性较强的J/T嫁接苗为高,抗旱性较弱的J/S嫁接苗次之,二者单株产量分别比J自根苗高 17.50%、11.00%;果实纵经、横经、硬度、Vc和番茄红素含量也均以J/T显著高于J和J/S。抗旱性不同的J/T、J/S嫁接番茄叶片色素含量、光合速率、叶片水势、蒸腾速率和水分利用效率均显著高于J,13∶00时,嫁接苗J/T、J/S的水分利用效率分别比自根苗J高15.16%和7.52%,J/T显著高于J/S。不同土壤含水量下番茄产量存在显著差异,表现为80%>60%>40%,而果实品质指标如可溶性固形物、可溶性蛋白、维生素C和番茄红素等品质指标则相反;随干旱胁迫程度的增加,嫁接番茄的增产效果愈加明显,且以J/T表现优于J/S,二者在土壤相对含水量80%条件下,分别较自根苗J增产7.47%和4.71%,而在40%条件下增产率分别达38.04%和22.35%;番茄叶片色素含量、光合速率、叶片水势及蒸腾速率均随水分胁迫加剧而显著降低;水分利用效率则以土壤含水量60%的处理较高,40%和80%较低。【结论】采用抗旱性较强的番茄砧木‘606’进行嫁接栽培,其果实产量较高,品质较好,叶片光合速率及叶片水分利用效率等均较高,特别在水分胁迫条件下表现尤为突出,说明采用抗旱性较强的砧木进行番茄嫁接栽培,可以在一定程度上实现生物节水的目标。

番茄;嫁接;抗旱砧木;产量;品质;水分利用效率

0 引言

【研究意义】干旱是作物生产中最常见的逆境胁迫,可打破植物体内的水分代谢平衡,显著影响叶片的光合作用和物质运输[1-3],但抗旱性不同的作物品种在受到水分胁迫时对干旱的反应显著不同[4]。因此,研究不同程度水分胁迫下抗旱性不同植株的生理反应,对于增强植株抗旱性具有重要意义。【前人研究进展】刘承等[5]研究表明,玉米干旱胁迫下,抗旱性弱的品种叶片相对含水量和光合能力降幅显著大于抗旱性强的品种,且复水后恢复缓慢;任海祥等[6]也认为,大豆结荚鼓粒期遭受土壤水分胁迫时,抗旱性强的品种水分利用效率和产量均高于抗旱性弱的品种。李静等[7]研究表明,干物质量和叶面积指数是影响黄瓜产量的重要指标,低水分条件下二者显著降低,而植株水分利用效率却显著增高。嫁接西瓜在水分胁迫条件下可以通过改善对水分和营养元素的吸收,维持较高的CO2同化效率,显著提高产量[8]。番茄水分胁迫条件下,光合速率及光饱和点降低,光补偿点增加,导致光能利用效率降低[9];甚至严重水分胁迫下,番茄根系在土壤中的分布较浅,植株生长受抑制[10],最终导致番茄单果重和产量显著降低[11]。綦伟等[12]研究认为,不同砧木嫁接的葡萄,适应水分逆境的能力主要取决于砧木;而孔祥悦等[13]的研究表明,黄瓜嫁接可促进根系对水分的吸收,在灌溉量减少情况下,有利于维持较高的产量。高方胜等[14]研究也表明,番茄嫁接可显著促进植株的生长,有利于提高产量并改善品质。【本研究切入点】关于采用抗旱性砧木嫁接提高番茄水分利用效率方面的研究鲜见报道。【拟解决的关键问题】研究不同土壤水分条件下,抗旱性显著不同番茄砧木嫁接苗的生长发育特性及叶片水气交换参数,旨在探讨生物节水的可行性,并为利用抗旱砧木进行番茄嫁接节水栽培提供理论和实践依据。

1 材料与方法

试验在2014年预备试验的基础上,于2015年1—7月在山东农业大学园艺实验站日光温室内进行。

1.1 试验设计

试验采用裂区设计,主区为不同砧穗组合嫁接苗,分别为接穗‘金棚1号’自根苗(J)、抗旱性强的砧木‘606’嫁接苗(J/T)和水分敏感的砧木‘112’嫁接苗(J/S)[15];副区为土壤水分,土壤相对含水量分别为80%、60%和40%。2015年1月8日播种,幼苗长至四叶一心时采用劈接法嫁接,待幼苗培养至8—9片真叶展开时,选取长势一致的幼苗,于3月12日移栽至直径25 cm、高30 cm的塑料盆内,每盆1株,内装风干土7.0 kg,土壤最大持水量28.6%,pH 6.67,有机质12.61 g·kg-1、碱解氮(N)132.7 mg·kg-1、速效磷(P2O5)57.3 mg·kg-1、速效钾(K2O)149.6 mg·kg-1。模拟土壤栽植法,在温室内按大行距100 cm、小行距70 cm、株距40 cm南北向摆盆,每行20株,2行为一个处理小区,3次重复,随机排列。待植株缓苗恢复生长时,以称重法调控土壤水分,每天分别在7:00、13:00各称重1次,补充土壤水分。

1.2 试验方法

番茄盛果期(6月9日)每处理随机选择3株,选取上数第3片完全展开功能叶测定叶片色素、水势、水气交换参数。叶片色素含量采用80%丙酮浸提比色法测定[16]。植株叶片水势(LWP)采用英国Hansatech公司生产的PSYPROTM水势仪测定。水气交换参数采用TPS-1型光合仪测定[16],包括叶片光合速率(Pn)、蒸腾速率(Tr),并计算叶片水分利用效率(WUE),WUE=Pn/Tr。

番茄果实成熟收获过程中,分别统计单株产量;7月16日番茄拉秧时,每处理随机选取5株,分别测定株高、茎粗和根、茎、叶鲜重;选取植株第2果穗成熟一致的果实5个,测定平均单果重及果实纵径、横径,并以硬度计测定果实硬度,阿贝折射仪测定可溶性固形物[17],考马斯亮蓝G-250染色法[16]测定可溶性蛋白,钼蓝比色法[18]测定维生素C,石油醚提取比色法[19]测定番茄红素。

1.3 统计分析

采用Excel 2007和DPS 7.05统计软件进行统计分析,Duncan新复极差法进行差异显著性检验。

2 结果

2.1 不同处理对番茄生长及产量的影响

不同处理番茄单株生长量及产量经统计分析(表1)表明,不同砧木嫁接苗和土壤水分对番茄植株生长均有极显著影响。嫁接苗生长量均以J/T处理较高,J/S次之,J自根苗处理较低,如J/T、J/S单株产量分别比J高17.50%和11.00%,而J/T比J/S增加了5.86%;土壤水分则以80%处理的植株生长量较高,60%次之,40%较低,如 80%、60%土壤水分处理的单株产量分别较40%高139.15%和94.58%。表1还显示,嫁接和土壤水分对番茄单株产量的互作效应显著。

表1 不同处理番茄生长量及产量的多重比较Table 1 Multiple comparison of tomato growth and yield among different treatments

2.2 不同处理对番茄果实品质的影响

表2是不同处理番茄果实品质统计分析结果,可以看出,J/T处理的果实纵径、横径、硬度、Vc和番茄红素含量均显著高于J/S嫁接苗和J自根苗,而J/S仅在果实硬度、可溶性固形物、Vc和番茄红素含量等方面高于 J,表明不同砧木嫁接苗果实的品质存在显著差异。不同土壤水分对番茄果实品质的影响较不同砧木更为显著,果实纵径、横径、硬度均以80%显著大于60%,60%显著大于40%,而可溶性固形物、可溶性蛋白、Vc及番茄红素则相反。表2还表明,除维生素C和番茄红素外,嫁接和土壤水分对果实品质的互作效应不显著。

2.3 不同处理对番茄叶片光合色素含量的影响

表3显示,嫁接和土壤水分对番茄叶片光合色素含量有极显著影响,嫁接苗J/T色素含量较高,J/S次之,其中二者的叶绿素含量分别较J高10.47%、6.50%;土壤水分以80%处理的色素含量显著高于60%,又显著高于 40%,如前二者的叶绿素含量分别较后者高24.71%和11.58%,类胡萝卜素含量分别高17.07%和7.32%;但嫁接和土壤水分处理对叶片光合色素含量的交互作用无显著差异。

表2 不同处理番茄果实品质的多重比较Table 2 Multiple comparison of tomato fruit quality among different treatments

表3 不同处理番茄叶片光合色素的多重比较Table 3 Multiple comparison of tomato photosynthetic pigments among different treatments

2.4 不同处理对番茄叶片光合速率的影响

本试验测定水气交换参数的环境条件如图 1。通过对不同处理番茄叶片水气交换参数进行统计分析,结果见图2。

图1 试验环境因子日变化动态Fig. 1 Diurnal changes of environmental factors in the experiment

图2 不同处理对番茄叶片光合速率日变化的影响Fig. 2 Effects of different treatments on diurnal changes of Pn in tomato leaves

由图 2可以看出,不同处理番茄叶片光合速率(Pn)日变化均呈不对称的双峰曲线,且两峰值均分别出现在11:00和15:00。主区因子嫁接处理的Pn除7:00无显著差异外,其他时间均以J/T处理较高,J/S次之,J处理较低,且尤以11:00差异最为显著,此时J处理Pn为25.60 μmol·m-2·s-1,J/T、J/S处理分别比J高15.04%和7.15%。副区因子土壤水分处理的Pn值一天内均以80%的较高,60%的次之,40%的较低,且其处理间差异明显高于嫁接处理的差异。进一步分析发现,不同砧木嫁接番茄的 Pn受土壤水分的影响较大,而在水分胁迫条件下抗旱性强的砧木嫁接更有利于维持较高的Pn。

2.5 不同处理对番茄叶片水分耗散与利用效率的影响

不同处理番茄叶片水势(LWP)、蒸腾速率(Tr)和叶片水分利用效率(WUE)的日变化动态统计分析结果如图3所示。可以看出,不同处理番茄LWP在一天中均表现为先降低后升高的趋势,主区因子嫁接处理以J/T较高,J/S次之,J较低,13:00嫁接苗J/T、J/S的LWP分别比自根苗J高15.16%和7.52%;副区因子土壤水分处理则以 80%较高,60%次之,40%较低。不同处理番茄叶片Tr的日变化均呈单峰曲线,峰值出现在13:00,嫁接处理以J/T较高,J/S次之,此时二者分别比自根苗J高4.48%和3.27%;土壤水分处理则以 80%较高,60%次之,40%较低。番茄叶片WUE也因嫁接苗砧木及土壤水分不同而显著不同,主区因子以嫁接苗J/T、J/S显著高于自根苗J,而副区因子则以土壤水分处理60%的较高,80%的较低,40%的居中。

3 讨论

前人研究表明,嫁接栽培在于通过砧木为接穗品种提供一个良好的根系系统,从而提高植株对水肥吸收能力[20]及对高温、盐渍、干旱等逆境胁迫的抵抗能力[21]。SELCUK等[22]研究表明,水分亏缺灌溉条件下,嫁接西瓜较自根西瓜产量高;SAVVAS等[23]也认为,盐胁迫条件下嫁接番茄果实数及产量较自根番茄显著增加;而嫁接蓝莓的总酚、维生素C、可溶性固形物、番茄红素和可滴定酸含量均高于自根蓝莓[24]。本研究表明,嫁接番茄生长量及果实产量显著高于自根番茄,特别是抗旱性较强的番茄砧木表现尤为突出;此外,嫁接番茄果实可溶性固形物、维生素C含量等显著高于自根番茄,这与高方胜[14]、FRANCISCO[25]等研究结果一致。但也有嫁接番茄果实产量与品质存在一定负相关的报道[26]。

图3 不同处理对番茄叶片水分状况日变化的影响Fig. 3 Effects of different treatments on diurnal changes of water status in tomato leaves

植物叶片水势会随着土壤水势的下降而降低,以利于植物从土壤中吸收水分[27],但若土壤水势过低,则植株吸水受阻,致使植株体内水分匮乏,影响相关生理代谢进程,加速叶片色素降解或导致叶绿素合成不足[28],使叶片色素含量降低,进而减少叶绿体的光吸收,降低光合作用[29]。植物在水分胁迫条件下蒸腾作用减缓,以减少其体内水分散失[30],而水分利用效率却显著增强,以维持体内正常代谢[31]。本研究结果显示,抗旱性较强番茄砧木嫁接苗叶片水势和水分利用效率显著高于抗旱性弱的嫁接番茄和自根番茄,叶片光合速率、蒸腾速率也有类似的趋势,表明通过嫁接增强根系的吸收能力,维持较高的水分利用效率可能是嫁接番茄抗旱性较强的生理机制之一[32];而不同土壤水分条件下,则以60%土壤水分处理的番茄水分利用效率较高,80%和40%的较低,表明番茄采用抗旱性较强的砧木进行嫁接栽培,可以在一定程度上达到生物节水的目的。

4 结论

采用抗旱性较强的砧木进行番茄嫁接栽培,其植株叶片水分状况较自根栽培显著改善,生长量显著增加,叶片光合速率及水分利用效率等显著提高。因此,嫁接栽培番茄果实产量较高,品质较好,尤其在土壤水分胁迫条件下表现尤为突出,表明采用抗旱性较强的砧木进行番茄嫁接栽培,可在一定程度上实现生物节水。

References

[1] 山仑, 张岁岐. 节水农业及其生物学基础. 水土保持研究, 1999, 6(1): 3-7. SHAN L, ZHANG S Q. Water saving agriculture and its biological basis. Research of Soil and Water Conservation, 1999, 6(1): 3-7. (in Chinese)

[2] BAI L P, SUI F G, GE T D SUN Z H, LU Y Y, ZHOU G S. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere, 2006, 16(3): 326-332

[3] 张永征, 李海东, 李秀, 肖静, 徐坤.光强和水分胁迫对姜叶片光合特性的影响. 园艺学报, 2013, 40(11): 2255-2262. ZHANG Y Z, LI H D, LI X, XIAO J, XU K. Effects of light intensity and water stress on leaf photosynthetic characteristics of ginger. Acta Horticulturae Sinica, 2013, 40(11): 2255-2262. (in Chinese)

[4] 张娜, 赵宝平, 郭若龙, 张艳丽, 刘景辉, 王莹, 李立军. 水分胁迫对不同抗旱性燕麦品种生理特性的影响. 麦类作物学报, 2012, 32(1): 150-156. ZHANG N, ZHAO B P, GUO R L, ZHANG Y L, LIU J H, WANG Y, LI L J. Effect of water stress on physiological characteristics of different oat cultivars. Journal of Triticeae Crops, 2012, 32(1): 150-156. (in Chinese)

[5] 刘承, 李佐同, 杨克军, 徐晶宇, 王玉凤, 赵长江, 张翼飞, 李竹,孙少慧, 富士江, 赵莹, 谷英楠, 付健, 方永江, 刘瑀, 张发明, 马丽峰, 石新新.水分胁迫及复水对不同耐旱性玉米生理特性的影响.植物生理学报, 2015, 51(5): 702-708. LIU C, LI Z T, YANG K J, XU J Y, WANG Y F, ZHAO C J, ZHANG Y F, LI Z, SUN S H, FU S J, ZHAO Y, GU Y N, FU J, FANG Y J, LIU Y, ZHANG F M, MA L F, SHI X X. Effects of water stress and subsequent rehydration on physiological characteristics of maize (Zea mays) with different drought tolerance. Plant Physiology Journal, 2015, 51(5): 702-708. (in Chinese)

[6] 任海祥, 童淑媛, 杜维广, 邵广忠, 杜震宇, 宗春美, 岳岩磊, 王玉莲. 结荚鼓粒期土壤水分胁迫对不同大豆品种形态和生理特性的影响. 中国油料作物学报, 2011, 33(4): 362-367. REN H X, TONG S Y, DU W G, SHAO G Z, DU Z Y, ZONG C M, YUE Y L, WANG Y L. Effects of soil water stress during seed formation stage on morphological and physiological characteristics in various soybean varieties. Chinese Journal of Oil Crop Sciences, 2011, 33(4): 362-367. (in Chinese)

[7] 李静, 张富仓, 方栋平, 李志军, 高明霞, 王海东, 吴东科. 水氮供应对滴灌施肥条件下黄瓜生长及水分利用的影响. 中国农业科学, 2014, 47(22): 4475-4487. LI J, ZHANG F C, FANG D P, LI Z J, GAO M X, WANG H D, WU D K. Effects of water and nitrogen supply on the growth and water use efficiency of cucumber (Cucumis sativus L.) under fertigation. Scientia Agricultura Sinica, 2014, 47(22): 4475-4487. (in Chinese)

[8] ROUPHAEL Y, CARDARELLI M, COLLA G, REA E. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. Hortscience, 2008, 43(3): 730-736.

[9] 韩国君, 陈年来, 黄海霞, 张萍, 张凯, 郭艳红. 番茄叶片光合作用对快速水分胁迫的响应. 应用生态学报, 2013(4): 1017-1022. HAN G J, CHEN N L, HUANG H X, ZHANG P, ZHANG K, GUO Y H. Responses of tomato leaf photosynthesis to rapid water stress. Chinese Journal of Applied Ecology, 2013(4): 1017-1022. (in Chinese)

[10] 杨再强, 邱译萱, 刘朝霞, 陈艳秋, 谭文. 土壤水分胁迫对设施番茄根系及地上部生长的影响. 生态学报, 2016, 36(3): 748-757. YANG Z Q, QIU Y X, LIU Z X, CHEN Y Q, TAN W. The effects of soil moisture stress on the growth of root and above-ground parts of greenhouse tomato crops. Acta Ecological Sinica, 2016, 36(3): 748-757. (in Chinese)

[11] 李建设, 周筠, 高艳明.水分胁迫及钾肥对樱桃番茄产量和品质的影响. 东北农业大学学报, 2013, 44(10): 97-103. LI J S, ZHOU Y, GAO Y M. Study on water stress and K level on yield and quality of cherry tomato. Journal of Northeast Agricultural University, 2013, 44(10): 97-103. (in Chinese)

[12] 綦伟, 厉恩茂, 翟衡, 王晓芳, 杜远鹏, 谭皓. 部分根区干旱对不同砧木嫁接玛瓦斯亚葡萄生长的影响. 中国农业科学, 2007, 40(4): 794-799. QI W, LI E M, ZHAI H, WANG X F, DU Y P, TAN H. Effect of partial rootzone drying on the growth of Vitis Vinifera cv. Malvasia grafted on varied rootstocks. Scientia Agricultura Sinica, 2007, 40(4): 794-799. (in Chinese)

[13] 孔祥悦, 王永泉, 眭晓蕾, 张振贤, 高丽红. 灌水量对温室自根与嫁接黄瓜根系分布及水分利用效率的影响. 园艺学报, 2012, 39(10): 1928-1936 KONG X Y, WANG Y Q, SUI X L, ZHANG Z X, GAO L H. Effects of irrigation on roots distribution and water use efficiency of own-rooted and grafted cucumber in solar greenhouse. Acta Horticulturae Sinica, 2012, 39(10): 1928-1936. (in Chinese)

[14] 高方胜, 王磊, 徐坤. 砧木与嫁接番茄产量品质关系的综合评价.中国农业科学, 2014, 47(3): 605-612. GAO F S, WANG L, XU K. Comprehensive evaluation of relationship between rootstocks and yield and quality in grafting tomato. Scientia Agricultura Sinica, 2014, 47(3): 605-612. (in Chinese)

[15] 张志焕, 韩敏, 张逸, 王允, 徐坤. 番茄砧木苗期耐旱性鉴定评价.生态学杂志, 2016(3): 719-725. ZHANG Z H, HAN M, ZHANG Y, WANG Y, XU K. Identification and evaluation of tomato rootstock seedlings for drought tolerance. Chinese Journal of Ecology, 2016(3): 719-725. (in Chinese)

[16] 赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科技出版社, 2002. ZHAO S J, SHI G A, DONG X C. Techniques of Plant Physiological Experiment. Beijing: Chinese Agricultural Science and Technology Press, 2002. (in Chinese)

[17] 韩雅珊. 食品化学试验指导. 北京: 中国农业大学出版社. 1996. HAN Y S. Experiment Guide of Food Chemistry. Beijing: China Agricultural University Press. 1996. (in Chinese)

[18] 李军. 钼蓝比色法测定还原型维生素 C. 食品科学, 2000, 21(8): 42-45. LI J. Molybdenum blue colorimetric method to determine reduced vitamin C. Food Science, 2000, 21(8): 42-45. (in Chinese)

[19] 吕鑫, 侯丽霞, 张晓明, 李莉, 何启伟. 番茄果实成熟过程中番茄红素含量的变化. 中国蔬菜, 2009(6): 21-24. LÜ X, HOU L X, ZHANG X M, LI L, HE Q W. Changes of tomato lycopene contents in its growing process. China Vegetables, 2009(6): 21-24. (in Chinese)

[20] 袁亭亭, 宋小艺, 王忠宾, 杨建平, 徐坤. 嫁接与施肥对番茄产量及氮磷钾吸收利用效率的影响. 植物营养与肥料学报, 2011, 17(1): 131-136. YUAN T T, SONG X Y, WANG Z B, YANG J P, XU K. Effect of grafting cultivation and fertilization on the yield, NPK uptake and utilization of tomatoes. Plant Nutrition and Fertilizer Science, 2011, 17(1): 131-136. (in Chinese)

[21] DIETMAR S, YOUSSEF R, GIUSEPPE C, JAN H V. Grafting as a tool to improve tolerance of vegetables to abiotic stresses. Scientia Horticulturae, 2010, 127: 162-171.

[22] SELCUK O, RIZA K, NEBAHAT S, MUSTAFA Ü. The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and un-grafted watermelon. Journal of Integrative Agriculture, 2015, 14(5): 966-976.

[23] SAVVAS D, COLLA G, ROUPHAEL Y, SCHWARZ D. Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 2010, 127: 156-161.

[24] XU C X, MA Y P, CHEN H. Technique of grafting with Wufanshu (Vaccinium bracteatum Thunb.) and the effects on blueberry plant growth and development, fruit yield and quality. Scientia Horticulturae, 2014, 176: 290-296.

[25] FRANCISCO F B, PALOMA S B. The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 2000, 125(3): 211-217.

[26] TURHAN A, OZMEN N, SERBECI M S. Effects of grafting on different rootstocks on tomato fruit yield and quality. Hort Science, 2011, 38(4): 142-149.

[27] 赵昌杰, 刘松忠, 张强. 果树对干旱胁迫的响应研究进展. 中国果树, 2011(4): 60-62. ZHAO C J, LIU S Z, ZHANG Q. The research progress of fruit trees response to drought stress. China Fruits, 2011(4): 60-62. (in Chinese) [28] AHMED C B, ROUINA B B, SENSOY S, BOUKHRIS M, ABDALLAH F B. Changes in gas exchange, proline accumulation and anti-oxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, 2009, 67: 345-352.

[29] PASTENES C, PIMENTEL P, LILLO J. Leaf movements and photo-inhibition in relation to water stress in field-grown beans. Journal of Experimental Botany, 2005, 56: 425-433.

[30] 付秋实, 李红岭, 崔健, 赵冰, 郭仰东. 水分胁迫对辣椒光合作用及相关生理特性的影响. 中国农业科学, 2009, 42(5): 1859-1866. FU Q S, LI H L, CUI J, ZHAO B, GUO Y D. Effects of water stress on photosynthesis and associated physiological characters of Capsicum annuum L.. Scientia Agricultura Sinica, 2009, 42(5): 1859-1866. (in Chinese)

[31] LIU C G, WANG Y J, PAN K W, JIN Y Q, LI W, ZHANG L. Effects of phosphorus application on photosynthetic carbon and nitrogen metabolism, water use efficiency and growth of dwarf bamboo (Fargesia rufa) subjected to water deficit. Plant Physiology and Biochemistry, 2015, 96: 20-28.

[32] ZHOU S S, LI M J, GUAN Q M, LIN F L, ZHANG S, CHEN W, YIN L H, QIN Y, MA F W. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in malus. Plant Science, 2015, 236: 44-60.

(责任编辑 赵伶俐)

Effect of Water Stress on Development and H2O and CO2Exchange in Leaves of Tomato Grafted with Different Drought Resistant Rootstocks

ZHANG ZhiHuan, HAN Min, ZHANG Yi, WANG Yun, LIU CanYu, CAO BiLi, XU Kun
(College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, Tai’an 271018, Shandong)

【Objective】The threat of drought is a main meteorological factor of agricultural production and rational use of the crops of drought resistant germplasm resources is an important element of biological water saving. This paper aims to study theeffect of water stress on the growth and development, water potential and gas exchange parameters of tomato leaves grafted with 2 different drought resistance rootstocks and to investigate the feasibility of biological water saving of tomato via grafting on drought resistant rootstocks.【Method】The experimental was designed by the split plot, the main plot was a grafting treatment composed of the ungrafted tomato of ‘Jinpeng 1’(J), the grafted tomato of ‘606’ (J/T) with drought-tolerant rootstock and ‘112’ (J/S) with drought-sensitive rootstock, and the subplot was a soil moisture treatment composed of 80%, 60% and 40% soil relative water content. Pot weighing method was adopted to control soil moisture of tomato. At the flourishing period of tomato plant, the expand functional leaves pigment, water potential and water-gas exchange parameters were determined and the instantaneous water use efficiency was calculated, simultaneously, the yield and fruit quality of tomato in different treatments were analyzed.【Result】The results showed that the yield of grafted tomato was significantly higher than the ungrafted tomato and the yields of J/T and J/S were 17.50% and 11.00% higher than J. Simultaneously, the vertical diameter, transverse diameter, firmness, content of vitamin C and lycopene of tomato fruit of J/T were significantly higher than J and J/S. The content of tomato leave pigments, photosynthetic rate, leaf water potential, transpiration rate and water use efficiency of J/T and J/S with different drought resistance were also significantly higher than J, and at 13:00 the water use efficiency of grafted treatment J/T and J/S were higher than ungrafted J by 15.16% and 7.52%, J/T was also significantly higher than J/S. The yield of tomato showed a significant difference under different soil moisture contents which showed an order of 80%>60%>40%, while the fruit quality indicators such as soluble solid, soluble protein, vitamin C and lycopene are contrary to the yield. With drought stress increased, the yield increase of grafted tomatoes was even more obvious. And J/T outperformed J/S, and the yield was 7.47%, 4.71% higher than ungrafted J, respectively, under the condition of the soil relative water content of 80%, and under the condition of 40% of water content, the yield increase rate was up to 38.04% and 22.35%. The contents of tomato leave pigments, photosynthetic rate, leaf water potential and transpiration rate were decreased as the water stress increased. The water use efficiency in 60% soil moisture treatment was higher than that in 40% and 80% soil moisture treatments. 【Conclusion】 Results of the experiment demonstrated that when tomato grafted with drought-tolerant rootstock ‘606’, its fruit yield was higher, fruit quality was better and the photosynthetic rate and water use efficiency were also higher, and especially prominent under water stress conditions. It was concluded that the possible way to realize biological water saving to a certain extent for tomato is grafting with drought-tolerant rootstock.

tomato; grafting; drought-tolerant rootstock; yield; quality; water use efficiency

2016-04-13;接受日期:2016-10-25

山东省现代农业产业技术创新体系(SDAIT-05-05)

联系方式:张志焕,E-mail:zhihuanz@163.com。通信作者徐坤,Tel:0538-8241783; E-mail:xukun@sdau.edu.cn

猜你喜欢
嫁接苗抗旱性土壤水分
云南小麦品种(系)萌发期抗旱性评价
磷素添加对土壤水分一维垂直入渗特性的影响
南瓜砧木嫁接对黄瓜幼苗生长及镉积累特性的影响
不同玉米品种萌发期和苗期抗旱性鉴定与评价
不同类型接穗银杏苗生长和光合特性的比较研究
不同光质对黄瓜幼苗抗旱性的影响
Spatial and temporal variations of the surface soil moisture in the source region of the Yellow River from 2003 to 2010 based on AMSR-E
多效唑提高西瓜砧木和嫁接苗质量
贮藏时间对黄瓜双断根嫁接苗质量的影响
植被覆盖区土壤水分反演研究——以北京市为例